

S I X T H E D I T I O N

SYSTEMS ANALYSIS
AND DESIGN
I N A CHANG ING WORLD

John W. Satzinger
Missouri State University

Robert B. Jackson
RBJ and Associates

Stephen D. Burd
University of New Mexico

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

 This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

www.cengage.com/highered

Systems Analysis and Design in a
Changing World, Sixth Edition

John W. Satzinger, Robert B. Jackson,
Stephen D. Burd

Publisher: Joe Sabatino

Senior Acquisitions Editor: Charles
McCormick Jr.

Senior Product Manager: Kate Mason

Development Editor: Kent Williams

Editorial Assistant: Courtney Bavaro

Marketing Director: Keri Witman

Marketing Manager: Adam Marsh

Senior Marketing Communications
Manager: Libby Shipp

Marketing Coordinator: Suellen Ruttkay

Design Direction, Production
Management, and Composition:
PreMediaGlobal

Media Editor: Chris Valentine

Senior Art Director: Stacy Jenkins Shirley

Cover Designer: Itzhack Shelomi

Cover Credit: ©iStock Photo

Manufacturing Coordinator: Julio Esperas

© 2012 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored, or used in any form or by any means
graphic, electronic, or mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, Web distribution, information networks, or
information storage and retrieval systems, except as permitted under Section 107
or 108 of the 1976 United States Copyright Act, without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.

Further permissions questions can be e-mailed to
permissionrequest@cengage.com.

Some of the product names and company names used in this book have been
used for identification purposes only and may be trademarks or registered
trademarks of their respective manufacturers and sellers.

Library of Congress Control Number: 2011940028

ISBN-13: 978-1-111-53415-8

ISBN-10: 1-111-53415-2

Instructor Edition:

ISBN-13: 978-1-111-53284-0

ISBN-10: 1-111-53284-2

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Screenshots for this book were created using Microsoft Visio® and Project®, and
were used with permission from Microsoft.

Microsoft and the Office logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Course
Technology, a part of Cengage Learning, is an independent entity from the
Microsoft Corporation, and not affiliated with Microsoft in any manner.

iPhone, iPad, iTunes, Macintosh, and Mac OS X are registered trademarks of
Apple Inc.

Course Technology, a part of Cengage Learning, reserves the right to revise this
publication and make changes from time to time in its content without notice.

Cengage Learning is a leading provider of customized learning solutions with
office locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local office at:
www.cengage.com/global.

Printed in the United States of America
1 2 3 4 5 6 7 15 14 13 12 11

www.cengage.com/permissions
www.cengage.com/global

DEDICATION

To my wife JoAnn—JWS

To my immediate and extended family—RBJ

To Dee, Amelia, and Alex—SDB

BRIEF CONTENTS

P A R T O N E An Introduction to Systems Development
1 From Beginning to End: An Overview of Systems Analysis and Design 3

Optional Online Chapter A The Role of the Systems Analyst

P A R T TWO Systems Analysis Activities
2 Investigating System Requirements 35
3 Use Cases 67
4 Domain Modeling 91
5 Extending the Requirements Models 119

Optional Online Chapter B The Traditional Approach to Requirements

P A R T T H R E E Essentials of Systems Design
6 Essentials of Design and the Design Activities 153
7 Designing the User and System Interfaces 187

P A R T F O U R Projects and Project Management
8 Approaches to System Development 225
9 Project Planning and Project Management 253

Optional Online Chapter C Project Management Techniques

P A R T F I V E Advanced Design and Deployment Concepts
10 Object-Oriented Design: Principles 293
11 Object-Oriented Design: Use Case Realizations 327
12 Databases, Controls, and Security 371
13 Making the System Operational 409
14 Current Trends in System Development 443

Index 481

iv

CONTENTS

Preface xv i

P A R T O N E An Introduction to Systems Development

1 From Beginning to End: An Overview of Systems Analysis
and Design 3

Software Development and Systems Analysis and Design 4
Systems Development Life Cycle 5
Introduction to Ridgeline Mountain Outfitters 6
Iterative Development 8
Developing RMO’s Tradeshow System 9
Where You Are Headed—The Rest of This Book 26
Chapter Summary 28
Review Questions 28
Chapter Case 29

P A R T TWO Systems Analysis Activities

2 Investigating System Requirements 35
Overview 36
The RMO Consolidated Sales and Marketing System Project 37
Systems Analysis Activities 40
What Are Requirements? 42
Models and Modeling 44
Stakeholders 46
Information-Gathering Techniques 48
Documenting Workflows with Activity Diagrams 57
Chapter Summary 60
Review Questions 61
Problems and Exercises 61
Case Study 62
Running Cases 63
Further Resources 66

v

3 Use Cases 67
Overview 68
Use Cases and User Goals 69
Use Cases and Event Decomposition 70
Use Cases and CRUD 77
Use Cases in the Ridgeline Mountain Outfitters Case 78
Use Case Diagrams 78
Chapter Summary 85
Review Questions 85
Problems and Exercises 86
Case Study 87
Running Case Studies 88
Further Resources 90

4 Domain Modeling 91
Overview 92
“Things” in the Problem Domain 92
The Entity-Relationship Diagram 98
The Domain Model Class Diagram 101
Chapter Summary 112
Review Questions 112
Problems and Exercises 113
Case Study 115
Running Case Studies 116
Further Resources 118

5 Extending the Requirements Models 119
Overview 120
Use Case Descriptions 121
Activity Diagrams for Use Cases 125
The System Sequence Diagram—Identifying Inputs and Outputs 126
The State Machine Diagram—Identifying Object Behavior 132
Integrating Requirements Models 142
Chapter Summary 143
Review Questions 144
Problems and Exercises 145
Case Study 147
Running Case Studies 148
Further Resources 150

P A R T T H R E E Essentials of Systems Design

6 Essentials of Design and the Design Activities 153
Overview 155
The Elements of Design 155

vi CONTENTS

Inputs and Outputs for Systems Design 159
Design Activities 160
Design the Environment 167
Chapter Summary 180
Review Questions 181
Problems and Exercises 182
Case Study 182
Running Case Studies 183
Further Resources 185

7 Designing the User and System Interfaces 187
Overview 188
User and System Interfaces 189
Understanding the User Interface 189
User-Interface Design Concepts 193
The Transition from Analysis to User-Interface Design 196
User-Interface Design 200
Identifying System Interfaces 208
Designing System Inputs 210
Designing System Outputs 211
Chapter Summary 218
Review Questions 219
Problems and Exercises 219
Case Study 220
Running Case Studies 221
Further Resources 222

P A R T F O U R Projects and Project Management

8 Approaches to System Development 225
Overview 226
The Systems Development Life Cycle 227
The Support Phase 232
Methodologies, Models, Tools, and Techniques 233
Two Approaches to Software Construction and Modeling 236
Agile Development 244
Chapter Summary 247
Review Questions 248
Problems and Exercises 249
Case Study 249
Running Case Studies 250
Further Resources 252

CONTENTS vii

9 Project Planning and Project Management 253
Overview 254
Principles of Project Management 255
Activities of Core Process 1: Identify the Problem and Obtain Approval 262
Activities of Core Process 2: Plan and Monitor the Project 271
Chapter Summary 283
Review Questions 283
Problems and Exercises 284
Case Study 286
Running Cases 287
Further Resources 289

P A R T F I V E Advanced Design and Deployment Concepts

10 Object-Oriented Design: Principles 293
Overview 294
Object-Oriented Design: Bridging from Analysis to Implementation 295
Object-Oriented Architectural Design 298
Fundamental Principles of Object-Oriented Detailed Design 304
Design Classes and the Design Class Diagram 308
Detailed Design with CRC Cards 314
Fundamental Detailed Design Principles 317
Chapter Summary 320
Review Questions 321
Problems and Exercises 322
Case Study 323
Running Cases 323
Further Resources 325

11 Object-Oriented Design: Use Case Realizations 327
Overview 328
Detailed Design of Multilayer Systems 329
Use Case Realization with Sequence Diagrams 332
Designing with Communication Diagrams 349
Updating and Packaging the Design Classes 351
Design Patterns 356
Chapter Summary 361
Review Questions 361
Problems and Exercises 362
Case Study 367
Running Case Studies 367
Further Resources 369

viii CONTENTS

12 Databases, Controls, and Security 371
Overview 373
Databases and Database Management Systems 373
Relational Databases 374
Data Access Classes 387
Distributed Database Architectures 387
Database Design Timing and Risks 391
Designing Integrity Controls 392
Designing Security Controls 396
Chapter Summary 403
Review Questions 404
Problems and Exercises 404
Case Study 405
Running Case Studies 406
Further Resources 408

13 Making the System Operational 409
Overview 410
Testing 411
Deployment Activities 417
Planning and Managing Implementation, Testing, and Deployment 423
Putting It All Together—RMO Revisited 434
Chapter Summary 437
Review Questions 438
Problems and Exercises 438
Case Study 439
Running Case Studies 439
Further Resources 441

14 Current Trends in System Development 443
Overview 444
Trends in System Development Methodologies 445
Trends in Technology Infrastructure 457
Trends in Application Software Availability 461
The Web as an Application Platform 465
Chapter Summary 475
Review Questions 476
Problems and Exercises 476
Case Study 477
Running Case Studies 478
Further Resources 480

Index 481

CONTENTS ix

FEATURES

Systems Analysis and Design in a Changing World, Sixth Edition, was written
and developed with instructor and student needs in mind. Here is just a sample
of the unique and exciting features that help bring the fi eld of systems analysis
and design to life.g

BRIEF CONTENTS

P A R T O N E An Introduction to Systems Development
1 From Beginning to End: An Overview of Systems Analysis and Design 3

Optional Online Chapter A The Role of the Systems Analyst

P A R T TWO Systems Analysis Activities
2 Investigating System Requirements 35
3 Use Cases 67
4 Domain Modeling 91
5 Extending the Requirements Models 119

Optional Online Chapter B The Traditional Approach to Requirements

P A R T T H R E E Essentials of Systems Design
6 Essentials of Design and the Design Activities 153
7 Designing the User and System Interfaces 187

P A R T F O U R Projects and Project Management
8 Approaches to System Development 225
9 Project Planning and Project Management 253

Optional Online Chapter C Project Management Techniques

P A R T F I V E Advanced Design and Deployment Concepts
10 Object-Oriented Design: Principles 293
11 Object-Oriented Design: Use Case Realizations 327
12 Databases, Controls, and Security 371
13 Making the System Operational 409
14 Current Trends in System Development 443

Index 481

hiking, ATV biking, camping, mountain climbing, rappelling—all had seen a

tremendous increase in interest in these states. People needed appropriate sports

clothes for these activities, so RMO expanded its line of sportswear to respond

to this market. It also added a line of high-fashion activewear and accessories

to round out its offerings to the expanding market of active people.

The company’s growth charted an interesting history of mail-order, brick-

and-mortar, and online sales. RMO got its start by selling to local clothing

stores in the Park City, Utah, area. In the late-1980s and early-1990s, it began

selling directly to customers by using catalogs with mail-in and telephone

orders. It opened its first store in 1994 and soon expanded to 10 retail outlets

throughout the West. Last year, retail store revenue was $67 million, telephone

and mail-order revenues were $10 million, and Web-based sales were $200 mil-

lion. Most sales continue to be in the West, although the market in several areas

of the eastern United States and Canada is growing.
RMO produces its own line of outdoor and sportswear clothing. However,

in order to offer a complete range of outdoor clothing in its retail outlets, it

also sells other brands of outdoor and sportswear clothing. In addition, other

types of clothing and accessories, such as footwear, leather apparel, and spe-

cialty sportswear, are available in the retail stores and through the online store.

Figure 1-2 shows a sample of the catalogs that RMO mails out. Although

mail-order and telephone sales are small, receiving the catalog encourages custo-

mers to go online to make purchases, so RMO continues to produce and mail

abbreviated versions of its catalogs.Figure 1-3 illustrates a typical order page from the online system.
Trade Shows
In order to keep its product line current and popular, RMO’s purchasing agents

attend apparel and fabric trade shows around the world. RMO purchasers have

a good track record of predicting what products will be good sellers. In addi-

tion, RMO is always watching for new products and accessories that will enable

it to expand its product line appropriately.
When purchasing agents attend a trade show, they frequently find various

products that they want to add to the spring, summer, or winter apparel offering.

2012 WINTER CATALOG

2012 W
INTER CATALOG

FIGURE 1-2RMO winter catalog

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 7

a formal process to get a project app
roved; othe

r organizatio
ns have a less for-

mal process.
Normally, there

are two goals an organizatio
n must decide

on to

get a project off
the ground:

■ Identify the problem and document the objective of the solution system.

(Core Process 1)

■ Obtain approval to
commence the project. (Co

re Process 1)

System Vision Document

As with all new projects within RMO, a System Vision Document is develo
ped to

identify the benefits to the company and the functional c
apabilities that will be

included in the system. Frequently
, this is don

e in two steps: devel
oping a prelimi-

nary statement of bene
fits and then adding estimates of specific dollar costs and

dollar benef
its. Figure 1-5 is the System

Vision Document for this
project.

Problem Description

Trade shows have become an important information source for new products, new

fashions, and new fabrics. In addition to the large providers of outdoor clothing and

fabrics, there are many smaller providers. It is important for RMO to capture information

about these suppliers while the trade show is in progress. It is also important to obtain

information about specific merchandise products that RMO plans to purchase.

Additionally, if quality photographs of the products can be obtained while at the trade

show, then the creation of online product pages is greatly facilitated.

It is recommended that a new system be developed and deployed so field purchasing

agents can communicate more rapidly with the home office about suppliers and specific

products of interest. This system should be deployed on portable equipment.

System Vision Document

RMO Tradeshow System

System Capabilities

The new system should be capable of:

• Collecting and storing information about the manufacturer/wholesaler (suppliers)

• Collecting and storing information about sales representatives and other key

 personnel for each supplier

• Collecting information about products

• Taking pictures of products (and/or uploading stock images of products)

• Functioning as a stand-alone without connection

• Connecting via Wi-Fi (Internet) and transmitting data

• Connecting via telephone and transmitting data

Business Benefits

It is anticipated that the deployment of this new system will provide the following

business benefits to RMO:

• Increase timely communication between trade show attendees and home office,

 thereby improving the quality and speed of purchase order decisions

• Maintain correct and current information about suppliers and their key personnel,

 thereby facilitating rapid communication with suppliers

• Maintain correct and rapid information and images about new products, thereby

 facilitating the development of catalogs and Web pages

• Expedite the placing of purchase orders for new merchandise, thereby catching

 trends more rapidly and speeding up product availability

FIGURE 1-5

Tradeshow
System Vision Document

10 PART 1 ■ An Introduction
to Systems Developmen

t

The innovative and entirely new text organization starts
with a complete beginning-to-end system development
example, moves immediately to systems analysis models
and techniques, and then to system design concepts
emphasizing system architecture, user interfaces, and
system interfaces. Analysis and much of design is
covered in the fi rst seven chapters. Next, the text focuses
on managing system development projects, including
contemporary approaches such as Agile development,
the Unifi ed Process, Extreme Programming, and Scrum,
after the student has a chance to learn what is involved
in system development. Finally, the text covers detailed
design topics, deployment topics, and current trends.

The text uses a completely updated integrated case study
of moderate complexity—Ridgeline Mountain Outfi tters
(RMO)—to illustrate key concepts and techniques. In
addition, a smaller RMO application—the Tradeshow
System—is used in Chapter 1 to introduce the entire
system development process.

FEATURES

solution to customer demand for catalog phone and mail orders. It is
integrated with the SCM and has reached capacity.

■ Retail Store System (RSS)—A retail store package with point-of-sale proces-
sing. It was upgraded eight years ago from overnight batch to real-time
inventory updates to/from the SCM.

■ Customer Support System (CSS)—This system was first deployed 15 years ago
as a Web-based catalog to support customer mail and phone orders. Four
years later, it was upgraded to an Internet storefront, supporting customer
inquiries, shopping cart, order tracking, shipping, back orders, and returns.

All organizations—including RMO—face a difficult challenge keeping all
their information systems current and effective. Because development resources
are limited, an organization’s technology and application architecture and its
information system inventory will include a mix of old and new. Older systems
were often designed for outdated operational methods and typically lack mod-
ern technologies and features that some competitors have adopted to improve
efficiency or competitiveness. Such is the case with RMO’s existing customer-
facing systems, which have several shortcomings, including:

■ Treating phone, Web, and retail sales as separate systems rather than as
an integrated whole

■ Employing outdated Web-based storefront technology
■ Not supporting modern technologies and customer interaction modes,

including mobile computing devices and social networking

Rather than incrementally update the existing sales systems, RMO plans to
replace them, as shown in Figure 2-1.

FIGURE 2-1 Proposed application architecture for RMO

Supply Chain Management (SCM) Consolidated Sales and Marketing System (CSMS)

Suppliers

Customers

Buyers

Retail Stores

Retail Sales

Phone Sales

CustomersTrade Show System (TSS)

Warehouses

Shipments

Orders
Shipments

Orders

Shipments

Online Sales

38 PART 2 ■ Systems Analysis Activities

The New Consolidated Sales and Marketing System
The goals of the Consolidated Sales and Marketing System (CSMS) are to modern-

ize the technology and functionality of the CSS and to add more customer-oriented

functionality. On the technology side, the CSMS will incorporate current Web

standards and be built under the assumption of high-bandwidth customer Internet

connections and high-resolution displays. Updating the technology will enable a

higher degree of interactivity, richer graphics, and a streamlined interface.

Key additions to system functionality will be support for mobile computing

devices, incorporation of customer feedback and comments into product informa-

tion, and integration of social networking functions. Unlike the CSS, the CSMS

will support smartphones and tablet computers with interfaces specifically designed

for each platform and with downloadable apps. Customer feedback will be

captured directly through the Internet storefront, from RMO-supported comment

forums and blogs, and mined from Facebook and Twitter. RMO will develop a

complete presence in each social networking venue and enable system users to

share purchases, recommendations, coupons, and store credits using those venues.

The new CSMS will also have four subsystems:
■ The Sales subsystem provides such basic functions as searching the online

catalog and purchasing items and paying for them online. However, it has

many new capabilities to assist the shopper making purchases. The system

will provide specific suggestions about accessories that go with the pur-

chased item. Images and videos of animated models will be available to help

the customer see how various items and accessory packages will look

together. The system will also provide information to shoppers about

related purchases made by other shoppers. Customer ratings and comments

are available for viewing. Finally, key social networking components will

permit shoppers to network with their friends by sending messages to ask

their opinions about particular merchandise items.

■ The Order Fulfillment subsystem will perform all the normal tasks of ship-

ping items and allowing customers to track the status of their orders as well

as the shipments. In addition, as part of order fulfillment, customers can rate

and make comments about particular merchandise and their overall shopping

experience. They may also make suggestions directly to RMO about the

attractiveness of the Web site and the quality of the service they received.

■ The Customer Account subsystem provides all those services that enhance the

customer experience. Customers can view and maintain their account informa-

tion. They also can “link up” with friends who are also customers to share

experiences and opinions on merchandise. The system will keep track of

detailed shipping addresses as well as payment preferences and information.

RMO also instituted a Mountain Bucks program wherein customers accumu-

late credits that can be used to redeem prizes as well as purchase merchandise.

Customers may use these Mountain Bucks for themselves or they may transfer

them to other people in their family/friends group. This is a great opportunity

to combine accumulated bucks to obtain expensive merchandise.

■ The Marketing subsystem is primarily for employees to set up the informa-

tion and services for customers. In this subsystem, employees can enter

information about all the merchandise offered by RMO. This subsystem is

also fed by the SCM system to maintain accurate data on the inventory in

stock and anticipated arrival dates of items on order. Employees also set up

the various promotional packages and seasonal catalogs by using the func-

tions of this subsystem. RMO is experimenting with a new idea to enhance

customer satisfaction: It is building partner relationships with other retailers

so that customers can earn “combined” points with RMO purchases or a

partner retailer purchase. These points can be used at RMO or transferred

and used at the partner. For example, because RMO sells outdoor and

sporting clothing, it has partnered with various sporting goods stores.

CHAPTER 2 ■ Investigating System Requirements 39

Performance
Consideratio

ns

Web sites in general and browser-based forms in particular are sensitive to

application
design and to the quality of the network connections

between the

user’s computing device and the servers that
host the site. When a user clicks a

hyperlink or a control tha
t acts like a hyperlink, t

he browser sends in
formation

entered by the user (if any) to a Web server, alon
g with a request for a new

page. That
information traverses multiple networks, is received and processed

by a server, and
then the response (a new page to be displayed)

is sent back

over the network. The delay between clicking a hyperlink and the display of the

requested page depends on the amount of data to be transmitted, the display

and network connection
speed of the user computing device, the

capacity of the

networks that carry the messages, an
d the number of other users and applica-

tions that a
re competing for that net

work capacity.

A trade-off ex
ists between the amount of inf

ormation transmitted between

the user’s computing device and the server and
the time it takes for

the page to

refresh; the more information that is transmitted, the longer the delay. That

trade-off is
especially important for

communication over the Internet, al
though

it is also a significant
issue within corporate networks when user desktops and

servers shar
e high-speed

connections
.

There is also a trade-off between the amount of information and other

data contained
within a Web page and a Web-based application

’s perfor-

mance. Pages
with extensive information content or

with embedded program-

ming can avoid or postpone page refreshes. F
or example, a page containing

a

blank order form may be quite small. But many page refreshes will be

required if the browser must interact with the server to validate every input

as the user enters it. If the page containing
the form also contains embedded

validation
programs, then many server interactions

and page refreshes can

be avoided. However, the initial download of the page will take longer

because there is more content and the validation
programs may be slow if

the user computing device isn’t very powerful (e.g., a relatively inexpensive

cell phone)
.

Designers of Web-based user interfaces must perform a careful balancing

act, providi
ng embedded “intelligenc

e” within a page to avoid refreshes bu
t not

overloading
page content so

as to avoid long delays when the user moves from

page to page. Thor
ough testing is the best way to ensure that the right balan

ce

FIGURE 7-11

Shopping cart page from RMO’s

Web site

CHAPTER 7 ■ Designing the User and System Interfaces 205

An overview of the RMO
Consolidated Sales and Marketing
System (CSMS) is presented in
Chapters 1 and 2 to place the
projects in context. The planned
system architecture provides for rich
examples—a Web-based component,
a wireless smartphone/tablet
application, and a client/server
Windows-based component.

The new Consolidated Sales and Marketing
System (CSMS) is the system development
project used throughout the text for examples
and explanations. It is strategically important to
RMO, and the company must integrate the new
system with legacy systems and other planned
systems. There are four subsystems, and the
requirements and design models are all new in
this edition. UML diagrams are used throughout
for examples and exercises.

FEATURES

added. Thu
s, the project can

be carefully planned, an
d the system can be built

according to the specificatio
ns.

An adaptive approach to the SDLC is used when the system’s requirements

and/or the
users’ needs

aren’t well understo
od. In this situatio

n, the project can’
t

be planned completely. Some system requirements may need to be determined

after preliminary development work. Developers should still be able to build the

solution, bu
t they need to be flexible a

nd adapt the p
roject as it p

rogresses. R
ecall

that the Tra
deshow system described in Chapter 1 used this approa

ch.

In practice, any project could have—and most do have—predictive and

adaptive elements. That is why Figure 8-1 shows them as endpoints along a

continuum, not as mutually exclusive categories.
The predictive approaches

are

more traditional
and were conceived

during the 1970s through the 1990s.

Many of the newer, adaptive approaches
have evolved with object-orien

ted

technology
and Web development; they were created during the late-1990s

and

into the 21st centur
y. Let us look at the more predictive approaches

and then

examine the newer adaptive
approaches

.

Traditional P
redictive Approaches

to the SDLC

The development of a new information system requires a number of diffe
rent but

related sets of activities. In
predictive approaches

, there is a group of activities

that identifi
es the problem and secures app

roval to develop a new system; this is

called project initiation. A second group of activities, called project planning,

involves planning, o
rganizing, a

nd scheduling
the project. These activities map

out the project’s overall stru
cture. A third group—analysis—focuses on discover-

ing and understandi
ng the details of the problem or need. The intent here

is to

figure out exactly
what the system must do to support the

business processes. A

fourth group—design—focuses on configuring
and structuring

the new system

components. These activities use the requirements that were defined earlier to

develop the program structure and the algorithms for the new system. A fifth

group—implementation—includes programming and testing the system. A sixth

group—deployment—involves ins
talling and putting the system into operation.

These six groups of activities
—project init

iation, proj
ect plannin

g, analysis,

design, implementation, an
d deployment—are sometimes referred

to as phases

of the system development project
, and they provide the framework for man-

aging the project. An
other phase

, called the support ph
ase, include

s the activi-

ties needed to upgrade and maintain the system after it has been deployed.

The support ph
ase is part of th

e overall SDLC, but it i
sn’t normally considered

part of the
initial deve

lopment project
. Figure 8-2 illustrates the six phases of

a traditional
predictive SDLC plus the support ph

ase.

The most predictiv
e SDLC approach (i.e., farthes

t to the left on the predictiv
e/

adaptive scale) is called a waterfall model, with the phases of the project

flowing down, one after another. As
shown in Figure 8-3, this model assum

es

that the phases can be carried out and completed sequentially
. First, a detailed

plan is developed,
then the requirements are thoroughly

specified, th
en the sys-

tem is designed down to the last algorith
m, and then it is programmed, tested,

and installed. After a project drops over the waterfall into the next phase,

The choice of SDLC varies depending on the project

Predictive

SDLC

Adaptive

SDLC

Requirements well understood

and well defined.

Low technical risk.

Requirements and needs

uncertain.

High technical risk.

FIGURE 8-1

Predictive versus adaptive approaches

to the SDLC

adaptive approach to the SDLC an

approach that assumes
the project must b

e

more flexible and adapt to changing needs as

the project progre
sses

phases related groups of dev
elopment

activities, suc
h as planning, a

nalysis, desig
n,

implementatio
n, and support

waterfall model an SDLC approach that

assumes the
phases can be completed

sequentially w
ith no overlap

228 PART 4 ■ Projects and Project Management

etimes refe

ide the framework for man-

rt phase, in
cludes the

activi-

after it has been deployed.

ut it isn’t n
ormally considered

2 illustrates the six phases of

hase.

hest to the left on the predictiv
e/

with the phases of the project

Figure 8-3, this model assum
es

ed sequentially
. First, a detailed

oroughly specified, th
en the sys-

d then it is programmed, tested,

waterfall into the next phase,

In the past, when RMO buyers wanted to place an order, they would exchange

contact information with the seller at the trade show and upon returning to the

home office would then follow up via e-mails and phone calls to formulate a con-

tract and make a purchase order. However, to expedite orders, RMO has now

initiated a project to develop a system for collecting and tracking information

about its suppliers and the new products it adds to its merchandise offerings.
Iterative DevelopmentIterative development is an approach to system development in which the sys-

tem is “grown” in an almost organic fashion. Core components are developed

first and then additional components are added. It is called “iterative” because

the six core development processes are repeated over and over again to add

additional functionality to the overall system. In other words, there is one big

project, which consists of many mini-projects, and the information system is

grown piece by piece.Figure 1-4 illustrates how an iterative Agile project might be executed. This

is a sample diagram. Real projects might be quite different. Across the figure,

you see six iterations. An iteration is like a mini-project in that it has a com-

pleted result and a constrained time frame. Often, it will last two to four weeks.

Down the left side of the figure, you see the six core processes. The rounded

FIGURE 1-3RMO sample online ordering page

Core
Processes

1 2 3 4 5 6

Identify problem and obtainapproval
Plan and monitor the project

Discover and understand details
Design system components

Build, test, and integrate systemcomponents
Complete system tests and deploy
solution

Iterations

FIGURE 1-4The six core processes, with iterations
for a typical project

iterative development an approach to
system development in which the system is
"grown" piece by piece through multipleiterations

8 PART 1 ■ An Introduction to Systems Development

The text describes predictive and adaptive
approaches to the SDLC and recommends
Agile, iterative development for most
projects. The SDLC used in the text
features a generic, condensed version of
the Unifi ed Process SDLC, which empha-
sizes iterations and core development
processes found in most current develop-
ment methodologies. Core processes and
iterations are emphasized over phases to
reduce the confusion that ordinarily
occurs when students are taught “phases”
and then told to use iterations. Project
planning and project management are
emphasized throughout, and the book
focuses more on systems analysis and
systems design as development disciplines
rather than phases.

FEATURES

7
Designing the User andSystem Interfaces

Chapter Outline
■ User and System Interfaces
■ Understanding the User Interface■ User-Interface Design Concepts■ The Transition from Analysis to User-Interface Design

■ User-Interface Design
■ Identifying System Interfaces
■ Designing System Inputs
■ Designing System Outputs

Learning Object ivesAfter reading this chapter, you should be able to:■ Describe the difference between user interfaces and system interfaces

■ Describe the historical development of the field of human-computer interaction (HCI)

■ Discuss how visibility and affordance affect usability
■ Describe user-interface guidelines that apply to all types of user-interface types

and additional guidelines specific to Web pages and mobile applications

■ Create storyboards to show the sequence of forms used in a dialog
■ Discuss examples of system interfaces found in information systems
■ Define system inputs and outputs based on the requirements of the application

program
■ Design printed and on-screen reports appropriate for recipients

187

OPENING CASE

Blue Sky Mutual Fund
s: A New Development Approa

ch

Jim Williams, vice president o
f finance for Blue Sky Mutual

Funds, spoke first. “There are some things I like about

this new approach,
but other things worry me,” he

told Gary Johnson, th
e company’s director of

information

technology.

“This idea of ‘growing’ the system through several

iterations makes a lot of sens
e to me. It is always hard

for my people to know exactly what they need a new

information system to do and what will work best

for the company. So, i
f they can get their ha

nds on the

system early, they
can begin acceptance

testing and try

it out to see whether it ad
dresses their needs

in the best

way.
“Let me see if I underst

and the big picture, tho
ugh.

Your develo
pment team and my investment advisor

s will

decide on a few core processes that the system needs to

support and
then your team will design and build a system

to support those core processes.
You will do that in a

mini-project t
hat will last abou

t six weeks. Then
, you will

continue adding more functionality
through several oth

er

mini-projects
until the system is complete and functioning

well. Is that right?”

Jim was becoming more enthusiastic
about this new

approach to system development.

“Yes, that’s
the basic idea,” Gary said. “Your

users

need to understand
that the first few versions of the

system won’t be complete and may not be completely

robust either. But these early versions will give them

something to work with and try out. We also need good

feedback from their accept
ance testing so the system will

be thoroughly
tested by the time we are through.”

“I realize that,” Jim said. “My people will like not

having to think from the very beginning about every
thing

they need the system to do. They’ll
like being able to try

things out. As I said earlier, I like
this approach. H

owever,

the part I don’t
like about this

approach is that it will be

more difficult for
you to give me a firm time schedule and

project cost. That worries me. In the past, those have

been two of the major tools we used to monitor a

project’s progress. Are you saying that now we won’t

have a schedule at all? And you want an open budget?”

Jim frowned.

“It’s not as bad as it first soun
ds,” Gary said. “This

approach is an ‘adaptive’ a
pproach, by

which I mean that

because the system is growing, the project is more open

ended. The
project manager will still crea

te a schedule

and estimate the project costs, but
she won’t even try

to identify and lock in all the required functionalit
y for

several of t
he iterations. B

ecause the system’s scope is

going to continually
be refined over the first few itera-

tions, there
is the risk of ‘scope creep.’ Tha

t is one of

the biggest risks with adaptive approaches
. You and I

should meet with the project manager fairly frequently

to ensure that the scope is controlled
and the project

doesn’t get
out of cont

rol.”

“Okay,” Jim said. “You
have convinced me to try this

new approach. H
owever, let’s treat this project as a pilot

and see how it works. If it’s
successful,

we will consider

using this iterative approach on our other projects.” Jim

and Gary agreed that a pilot was the best way to get

started. Gary then headed off to meet with the project

manager and
get the project star

ted.

Overview

Chapter 8 introduced
you to the SDLC and the various alte

rnatives for
organiz-

ing software development activitie
s. By now, you may be asking yourself su

ch

questions a
s:

■ “How are all these activities co
ordinated?”

■ “How do I know which tasks to do first?”

■ “How is the work assigned to the different tea
ms and team members?”

■ “How do I know which parts of the
new system should be develope

d first?”

The purpose of project planning and project management is to bring

some order to all these (sometimes seemingly unrelated)
tasks. As you will

learn in this chapter, the success of any given project highly depends on

the skills and abilities of those managing the project. You will also learn

that project management skills aren’t only
for project managers—that all the

project team members contribute
to the management of the project and thus

to its success.

254 PART 4 ■ Projects and Project Management

Each chapter provides a chapter outline,
states clear learning objectives, and
includes an opening case study.

FEATURES

because the packages contain only the classes from the use case interaction
diagrams that were developed in this chapter.

The other symbol used on a package diagram is a dashed arrow, which
represents a dependency relationship. The arrow’s tail is connected to the
package that is dependent, and the arrowhead is connected to the independent
package. Dependency relationships are used in package diagrams, class dia-
grams, and even interaction diagrams. A good way to think about a depen-
dency relationship is that if one element changes (the independent element),
the other (dependent) element might also have to be changed. Dependency
relationships can be between packages or between classes within packages.
Figure 11-19 indicates that several classes in the view layer are dependent on
classes in the domain layer. Thus, for example, if a change is made in the
ProductItem class, the SearchItemWindow class should be evaluated to capture
that change. However, the reverse isn’t necessarily true. Changes to the view
layer usually don’t carry through to the domain layer.

Two examples of dependency relationships are given in Figure 11-19. The
first, we have seen, is between classes. Another example is less detailed and indi-
cates a dependency between packages. Figure 11-20 indicates that the view
layer and the domain layer depend on the data access layer. For some simple
queries against the database, the view layer may directly access the data layer
without requiring any involvement of the domain layer. These dependencies
indicate that changes to the data structures, as reflected in the data access layer,
usually require changes at the domain layer and the view layer.

FIGURE 11-20 RMO subsystem packages

SearchItemWindow

AddItemWindow

AddAccessWindow

CustLoginWindow

Sales Subsystem

CartHandler

OnlineCart

CartItem

ReturnItem

Sale

SaleItem

AccessoryPackage

SaleTxn

Data Access Layer

PromoOfferingDA

ProductItemDA

InventoryItemDA

CustomerDA

OnlineCartDA

CartItemDA

ViewAccessWinodw

DisplayItem+AccessWindow

DisiplayItemWindow

Reporting Subsystem

Customer Account Subsystem

CustomerHandler

Customer

Address

FamilyLink

Message

Suggestion

Account CustPartnerCredit

Order Fulfillment Subsystem

Shipment Shipper

View Layer

Domain Layer

ProductItem

Inventory Item

PromoPartner

Promotion

PromoOffering

Marketing Subsystem

dependency relationship a relation-
ship between packages, classes, or use cases
in which a change in the independent item
requires a change in the dependent item

354 PART 5 ■ Advanced Design and Deployment Concepts

Note that each EBP (and thus each use case) occurs in response to a busi-

ness event. An event occurs at a specific time and place, can be described, and

should be remembered by the system. Events drive or trigger all processing that

a system does, so listing events and analyzing them makes sense when you need

to define system requirements by identifying use cases.Event Decomposition TechniqueAs stated previously, the event decomposition technique focuses on identifying

the events to which a system must respond and then determining how a system

must respond (i.e., the system’s use cases). When defining the requirements for

a system, it is useful to begin by asking, “What business events occur that will

require the system to respond?” By asking about the events that affect the

system, you direct your attention to the external environment and look at the

system as a black box. This initial perspective helps keep your focus on a high-

level view of the system (looking at the scope) rather than on the inner workings

of the system. It also focuses your attention on the system’s interfaces with out-

side people and other systems.Some events that are important to a retail store’s charge account processing

system are shown in Figure 3-2. The functional requirements are defined by

use cases based on six events. A customer triggers three events: “customer pays a bill,”

“customer makes a charge,” and “customer changes address.” The system responds

with three use cases: Record a payment, Process a charge, or Maintain customer

data. Three other events are triggered inside the system by reaching a point in time:

“time to send out monthly statements,” “time to send late notices,” and “time to
FIGURE 3-2 Events in a charge account processing system that lead to use cases

Charge account processing system

event something that occurs at a specific
time and place, can be precisely identified, and
must be remembered by the system

CHAPTER 3 ■ Use Cases 71

usually distributed
across geog

raphic locations. A
pplication programs can

access any
server and

usually make database updates to
only one server.

Servers peri
odically exchange update information to synchronize

their

database copies.

■ Partitioned
database server arch

itecture—Multiple distributed
database

servers are
used and the database schema is partitione

d, with some content

on only one server and
some content cop

ied on all servers.
Content tha

t

appears on
multiple servers is p

eriodically
synchronize

d.

■ Cloud-base
d database server arch

itecture—This archite
cture isn’t really

a separate architecture
. Rather, it

is a specific implementation of one or

more of the other archit
ectures by using the services of

a cloud computing

provider, su
ch as Amazon or Google. The

cloud provider ho
sts the database

on multiple servers dist
ributed across a predefined

geographic
area.

Application
programs access dat

abase services thr
ough the cloud provider.

The cloud provider ta
kes care of database

synchroniza
tion and backup.

The primary advantage
of single database server architecture

is its simplic-

ity. There is
only one server to manage, and

all clients a
re programmed to direct

requests to
that server.

Disadvantage
s include susceptibilit

y to server failu
re and

possible overload of the network or server. All application
programs that

FIGURE 12-16 Interaction
among problem domain class, data

access class, and the DBMS

promotionID

season

year

Promotion

description

startDate

endDate

getPromotionID()

setPromotionID()

getSeason()

setSeason()

getYear()

setYear()

getDescription()

setDescription()

getStartDate()

setStartDate()

getEndDate()

setEndDate()

Data updates

and queries

Extracted data and

processing results

Database

DBMS

Data
SQL

dbConnection

PromotionDA

updatePromotionID()

updateSeason()

updateYear()

updateDescription()

updateStartDate()

updateEndDate()

addNew()

delete()

find()

// find(
) - find

 a Promo
tion in

the data
base

// based
 on Prom

otionID

public P
romotion

 find(in
t promot

ionID)

 throws

 NotFoun
dExcepti

on

{
openConn

ection(d
bConnect

ion);

// Build
 an SQL

query

String q
uery;

query =
"SELECT

* FROM P
romotion

";

query +=
 " WHERE

 Promoti
onID = "

;

query +=
 promoti

onID;

try
{
 result

 = execu
teQuery(

query);

}

// remai
ning sta

tements
not show

n

partitioned
database server

architectur
e multiple distributed data-

base servers a
re used and th

e database sc
hema

is partitioned,
with some content on only one

server and some content copie
d on all servers

cloud-base
d database server

architectur
e use of a cloud computing

service provid
er to provide s

ome or all dat
abase

services

388 PART 5 ■ Advanced Design and Deployment
Concepts

Margin defi nitions of key terms are placed in the
text when the term is fi rst used. Each chapter
includes extensive fi gures and illustrations
designed to clarify and summarize key points
and to provide examples of UML models and
other deliverables produced by an analyst.

FEATURES

Chapter Summary

Multilayer design of new systems isn’t limited to architec-
tural design. Detailed object-oriented design also identi-
fies the various levels in a system. The identification of
classes and their responsibilities follows the three-layer
pattern explained in this chapter. The three layers are
the view layer, the business (or logic) layer, and the data
access layer.

Three-layer design is part of the overall movement in
systems design based on design patterns. A design pattern
is a standard solution or template that has proven to be
effective to a particular requirement in systems design.
The other pattern, introduced in Chapter 10, is a use
case controller, which addresses the need to isolate the
view layer from the business layer in a simple way that
limits coupling between the two layers.

Detailed design is use case driven in that each use
case is designed separately. This type of design is called
use case realization. The two primary models used for
detailed design are the design class diagram and the
sequence diagram. Design class diagrams were discussed
in Chapter 10.

Detailed design of use cases entails identifying prob-
lem domain classes that collaborate to carry out a use
case. Each input message from an external actor triggers
a set of internal messages. Using a sequence diagram or a
communication diagram, the designer identifies and
defines all these internal messages. In the first cut, only
the problem domain classes and their internal messages
are identified. Next, the solution is completed by adding

the classes and messages for the view layer and the data
access layer.

The final step is to convert each message, along with
the passed parameters and return values, into method sig-
natures located in the correct classes. This information is
used to update the design class diagram. Changes are also
made to the design class diagram to show required visi-
bility between the classes in order to send messages in the
sequence diagrams.

As classes are identified during the design process,
they are added to the DCD. The DCD can also be parti-
tioned into several layers or into subsystems. Package dia-
grams are used to partition the DCD into appropriate
packages. Dependency between the classes and the
packages is also added to the package diagram.

Popular design patterns include the adapter pattern,
factory pattern, singleton pattern, and observer pattern.
The adapter pattern implements the design principle
“protection from variations” by allowing a changing
piece of the system to simply plug into a more stable
part of the system. When the pluggable piece of the sys-
tem needs to change, it can just be unplugged and the
updated component can be plugged in.

The factory and singleton patterns have much in
common. Both return a reference to a specific object.
Both allow only one instance of that object to exist in
the system. The difference is that the factory pattern
enforces a single occurrence for utility classes and the sin-
gleton only enforces a single occurrence for itself.

Key Terms

activation lifeline 335

communication diagrams 332

dependency relationship 354

design patterns 330

persistent classes 345

separation of responsibilities 345

sequence diagrams 332

use case realization 328

Review Questions

1. What is meant by the term use case realization?

2. What are the benefits of knowing and using design
patterns?

3. What is the contribution to systems development by
the Gang of Four?

4. What are the five components of a standard design
pattern definition?

5. List five elements included in a sequence diagram.

6. How does a sequence diagram differ from an SSD?

7. What is the difference between designing with CRC
cards and designing with sequence diagrams?

8. Explain the syntax of a message on a sequence
diagram.

9. What is the purpose of the first-cut sequence
diagram? What kinds of classes are included?

10. What is the purpose of the use case controller?

11. What is meant by an activation lifeline? How is it
used on a sequence diagram?

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 361

Problems and Exercises1. Write a one-page paper that distinguishes among
the fundamental purposes of the analysis phase, the

design phase, and the implementation phase of the
traditional predictive SDLC.2. Describe an information system project that might
have three subsystems. Discuss how three iterations

might be used for the project.3. Why might it make sense to teach analysis and
design phases and activities sequentially, like a
waterfall, even though iterations are, in practice,
used in nearly all development projects?

4. List some of the models that architects create to
show different aspects of a house they are designing.

Explain why several models are needed.
5. What models might an automotive designer use to

show different aspects of a car?6. Sketch and write a description of the layout of your

room at home. Are both the sketch and the written

description considered models of your room?
Which is more accurate? More detailed? Which
would be easier to follow by someone unfamiliar
with your room?7. Describe a technique you use to help you complete

the activity “Get to class on time.” What are some
of the tools you use with this technique?

8. Describe a technique you use to make sure you get

assignments done on time. What are some of the
tools you use with this technique?9. What are some other techniques you use to help you

complete activities in your life?10. There are at least two approaches to the SDLC, two

approaches to software construction and modeling,

and a long list of techniques and models. Discuss
the following reasons for this diversity of
approaches: The field is young; the technology
changes quickly; different organizations have dif-
ferent needs; there are many types of systems;
developers have widely different backgrounds.

11. Go to the campus placement office to gather some
information on companies that recruit information
systems graduates. Try to find any information
about the companies’ approaches to developing
systems. Is their SDLC described? Do any mention
an IDE or a visual modeling tool? Visit the compa-

nies’ Web sites to look for more information.
12. Visit the Web sites of a few leading information

systems consulting firms. Try to find information
about their approaches to developing systems. Are
their SDLCs described? Do the sites mention any
tools, models, or techniques?

Case Study

A “College Education Completion” Methodology
Given that you are reading this book, you are probably a

college student working on a degree. Think about complet-

ing college as a project—a big project lasting many years

and costing more than you might want to admit. Some

students do a better job managing their college completion

projects than others. Many fail entirely (certainly not you),

and most complete college late and way over budget

(again, certainly not you).As with any other project, to be successful, you need

to follow some sort of “college education completion”

methodology—that is, a comprehensive set of guidelines

for completing activities and tasks from the beginning of

planning for college through to the successful completion.

1. What are the phases that your college education
completion life cycle might have?

2. What are some of the activities included with each
phase?

3. What are some of the techniques you might use to
help complete those activities?4. What models might you create? Differentiate the
models you create to get you through college from
those that help you plan and control the process of
completing college.5. What are some of the tools you might use to help you

complete the models?

CHAPTER 8 ■ Approaches to System Development 249

RUNNING CASE STUDIES

Community Board of Realto
rs

The Board
of Realtors

Multiple Listi
ng Service (MLS)

system isn’t very large in terms of use cases and

domain classes. In that respect, the functional

requirements are simple and well understo
od. MLS

needs a Web site with public access to the listings,

and it also needs to allow agents and brokers to log

in to the system to add and update listings. Th
ere is

very little back-end administrative data maintenance

required, ex
cept to add or update a real estate

office

or agent.

1. Compared to the Tradesh
ow application

described

in Chapter 1,
how long might this pr

oject take,

and which approach to the SDLC would be most

appropriate
?

2. If you use a predictive SDLC, how much time

might each phase of the project tak
e? How

much overlap of phases m
ight you plan for?

Be specific about how
you would overlap

the phases.

3. If you use an adaptive SD
LC, how many iterations

might you plan to include? What use cases would

you analyze, de
sign, and implement in the first

iteration? What use cases would you work on in

the second iteration? In additional i
terations?

Think in terms of getting
the core functionalit

y

implemented early and then building the support-

ing functionalit
y.

4. Let us say this project
focused on Web access to

the MLS. If you also plan to deploy a smartphone

application
for use by the public a

nd by the agents

and brokers, ho
w might this aff

ect your ch
oice of

the approach to the SDLC? What are the implica-

tions for in
cluding the smartphone application

in

the initial proje
ct versus ha

ving a separate project

for wireless later
?

5. Consider us
ing incremental develo

pment to

include the Web application
and the wireless sup-

port. Describe what would be included in the first

and second deployments of the
project. Tak

e into

consideratio
n that you might want to work on

some initial prob
lem solving for requirem

ents,

design, and
implementation of the wireless supp

ort

at the same time you are working on the Web

application
.

The Spring Breaks ‘R’ Us Travel S
ervice

Recall from Chapter 2 that SBRU’s initial system

included four major subsystems: Resort relations,

Student boo
king, Accou

nting and finance, an
d Social

networking. The project calls for an adaptive

approach to the SDLC for several reas
ons. One, it is

relatively large in scope. Two, there is a diverse set of

users in several func
tional areas

, internal a
nd external

to the company and in several foreign countries.

Three, the project needs to use an assortment of

newer technolo
gies that ca

n communicate any
time and

anywhere.

1. The SBRU
information system includes fou

r major

subsystems: Resort re
lations, Stu

dent bookin
g,

Accounting
and finance, and

Social netw
orking.

Although you have only worked with the domain

model class d
iagram for the Social netw

orking

subsystem, list as many of the domain classes

that would probably be involved in each of the

subsystems. Note which classes are
used by more

than one subsystem.

2. Based on the overlapping
classes, what domain

classes seem
to be part of t

he core fun
ctionality for

SBRU? Draw a domain model class d
iagram that

shows these classes and
their associ

ations.

3. Let us say you plan to implement the basic use

cases that c
reate and maintain the classes that

are

part of the
core functionally

you just modeled.

Describe what domain classes you
would focus on

in each iteration if you assumed that you would

need two iterations fo
r the initial core

functional-

ity and two additional i
terations to

complete each

of the subsystems.

4. How might you use incremental develo
pment to

get some core functionalit
y or some subsystems

deployed and put into use before the project is

completed?

(continued
on page 251)

250 PART 4 ■ Projects and Project Management

End-of-chapter material includes a
detailed summary, an indexed list of
key terms, and ample review
questions.

Each chapter also includes a collection of
problems and exercises that involves additional
research or problem solving, an end-of-chapter
case study that invites students to complete
analysis and design tasks appropriate to the
chapter, four running cases that create
challenging and integrated course assignments,
and a list of further resources.

PREFACE

When we wrote the first edition of this textbook, the world of system develop-
ment was in a major transition period—from structured methodologies to
object-oriented methodologies. We were among the first to introduce a compre-
hensive treatment of object-oriented methodologies, and Systems Analysis and
Design in a Changing World, Sixth Edition, continues to be the leader in teach-
ing object-oriented techniques.

However, change continues. Today, many new initiatives and trends have
become firmly embedded in the world of system development. First and fore-
most is the ubiquitous access to the Internet throughout the global economy.
The resulting explosion of connectivity means that project teams are now dis-
tributed around the world. In addition, large providers (such as Microsoft) and
a proliferation of small providers now contribute to a wonderfully rich and var-
ied software development environment.

In order to manage system development teams in today’s distributed, fast-
paced, connected, ever-changing environment, the techniques for software devel-
opment and the approach to project management have expanded. Along with
the foundational project management principles, additional approaches and phi-
losophies provide new, success-oriented methodologies, such as iterative, incre-
mental development approaches. These are thoroughly covered in this edition.

Even though Systems Analysis and Design in a Changing World, Sixth
Edition, continues to be the leader in its field, with thorough treatment of such
topics as use cases, object-oriented modeling, comprehensive project manage-
ment, the unified modeling language, and Agile techniques, it was time to take
another step forward in textbook design. This edition uses an innovative
approach to teaching systems analysis and design, taking advantage of the new
teaching tools and techniques that are now available. As a result, not only is
systems analysis and design easier to learn by using this approach, it is also
easier to teach. It brings together the best approaches for teachers and students.

In this edition, we accomplish three major new objectives. First, we teach all
the essential principles of system development—principles that must be followed
in today’s connected environment. Second, we teach and explain the new meth-
odologies and techniques that are now available because of widespread connec-
tivity. Third, we have organized and revamped the textbook so that it teaches
these new concepts in a new way.

For example, Chapter 1 presents a complete iteration in the development of
a new system. Students get to see that complete iteration—from beginning to
end (through implementation and testing)—before having to learn abstract prin-
ciples or memorize terms. Also, the newly written running cases throughout the
book focus on current issues of communication and connectedness and take the
students through all aspects of system development. Along with the textbook
itself, there are teaching tools, such as video explanations of complex models
and topics. We have also expanded the Instructor’s Materials and enhanced the
aids available through CourseMate, our online resource. Additional online
chapters are also available to enhance and extend the learning experience.

xvi

We are excited about this new approach. The time is right for new materials
and new tools for teaching systems analysis and design. Instructors will find this
textbook intuitive, powerful, and easy to use. Students will find it engaging and
empowering. Many concepts are presented so the students can teach themselves,
with coaching and direction provided by the professor. It will be an incredible
experience to teach and learn with this textbook.

Innovations
This edition is innovative in many respects. It includes key concepts from tradi-
tional and object-oriented approaches, covers the use case–driven object-
oriented approach (with UML modeling being detailed in depth), emphasizes
Agile and iterative development, and incorporates the latest concepts in project
management. Also, the material is completely reorganized to better support
learning systems analysis and design.

Coverage of Object Orientation and Traditional
Analysis and Design
This textbook is unique in its integration of key systems-modeling concepts that
apply to the traditional structured approach and the object-oriented approach—
user goals and events that trigger system use cases, plus objects/entities that are
part of the system’s problem domain. We devote one chapter to identifying use
cases and another chapter to modeling key objects/entities, including coverage of
entity-relationship diagrams, while emphasizing UML domain model class dia-
grams. After completing these chapters, instructors can cover structured analysis
and design by including an online chapter, or they can focus on object-oriented
analysis and design by using the chapters in this textbook. It is assumed from
the beginning that everyone should understand the key object-oriented concepts.
The traditional approach isn’t discarded; key structured concepts are included.
But these days, most instructors are emphasizing the object-oriented approach.

Full Coverage of UML and the Object-Oriented Approach
The object-oriented approach presented in this textbook is based on the Unified
Modeling Language (UML 2.0) from the Object Management Group, as origi-
nated by Grady Booch, James Rumbaugh, and Ivar Jacobson. A model-driven
approach to analysis starts with use cases and scenarios and then defines prob-
lem domain classes involved in the users’ work. We include requirements model-
ing with use case diagrams, domain modeling, use case descriptions, activity
diagrams, and system sequence diagrams. The FURPS+ model is used to empha-
sis functional and nonfunctional requirements.

Design principles and design patterns are discussed in depth, and system
architecture is modeled by using UML component diagrams and package dia-
grams. Detailed design models are also discussed in detail, with particular atten-
tion given to use case realization with CRC cards, sequence diagrams, and
design class diagrams.

Project Management Coverage
Many undergraduate programs depend on their systems analysis and design
course to teach project management principles. To satisfy this need, we cover
project management by taking a four-pronged approach. First, specific project
management techniques, skills, and tasks are included and highlighted through-
out this book. This integration teaches students how to apply specific project
management tasks to the various activities of the systems development life cycle,
including iterative development. Second, complete coverage of project planning
and project management is included in a separate chapter. Third, we include a
120-day trial version of Microsoft Project 2010 Professional in the back of this

PREFACE xvii

book so students can obtain hands-on experience with this important tool.
Fourth, a more in-depth treatment of project management techniques and prin-
ciples is provided in an online chapter on this book’s Web site. This information
is based on the Project Management Body of Knowledge (PMBOK), as devel-
oped by the Project Management Institute—the primary professional organiza-
tion for project managers in the United States.

Organized for More Effective Learning
This edition’s innovative and entirely new organization starts with a complete
beginning-to-end example of system development, moves immediately to systems
analysis models and techniques, and then proceeds to system design concepts,
emphasizing system architecture, user interfaces, and system interfaces. The stu-
dent sees analysis and much of design covered in the first seven chapters. Next,
the text focuses on managing system development projects, including Agile
development, after the student has had a chance to understand what is actually
involved in system development. Finally, the text covers detailed design topics,
deployment topics, and current trends, going into more depth about such
contemporary approaches as the Unified Process, Extreme Programming,
and Scrum.

Coursemate Companion Web Site
Cengage Learning’s Systems Analysis and Design in a Changing World, Sixth
Edition, CourseMate brings course concepts to life with interactive learning,
study, and exam preparation tools that support the printed textbook. Watch
student comprehension soar as your class works with the printed textbook and
the textbook-specific Web site. CourseMate goes beyond the book to deliver
what you need! Learn more at cengage.com/coursemate.

Engagement Tracker
How do you assess your students’ engagement in your course? How do you
know your students have read the material or viewed the resources you have
assigned? How can you tell if your students are struggling with a concept?
With CourseMate, you can use the included Engagement Tracker to assess stu-
dent preparation and engagement. Use the tracking tools to see progress for the
class as a whole or for individual students. Identify students at risk early in the
course. Uncover which concepts are most difficult for your class. Monitor time
on task. Keep your students engaged.

Interactive Teaching and Learning Tools
CourseMate includes interactive teaching and learning tools:

■ Quizzes
■ Case projects
■ Flashcards
■ Videos
■ PowerPoint presentations

These assets enable students to review for tests, prepare for class, and
address the needs of students’ varied learning styles.

Interactive eBook
In addition to interactive teaching and learning tools, CourseMate includes an
interactive eBook. Students can take notes, highlight, search for, and interact
with embedded media specific to their book. Use it as a supplement to the
printed text or as a substitute—the choice is your students’ with CourseMate.

xviii PREFACE

Organization and Use
Systems Analysis and Design in a Changing World, Sixth Edition, includes this
printed textbook, electronic editions, and supporting online chapters. The cur-
rent printed textbook provides a compact, streamlined, and focused presentation
of those topics that are essential and most important for information systems
developers. The online chapters extend those concepts and provide a broader
presentation of several topics. The online chapters may be integrated into the
course or simply used as additional readings as prescribed by the instructor.

There are three major subject areas discussed in this book: systems analysis,
systems design, and project management. There are additional subject areas,
which are no less important but aren’t discussed in as much depth. These
include systems implementation, testing, and deployment. In addition, we have
taken an approach that is quite different from other texts. Because students
already have a basic understanding of systems analysis and design from
Chapter 1, we immediately present in-depth concepts related to systems analysis
and design. We present project management topics later in the text. This allows
students to learn those project management concepts after understanding the
elements of systems analysis and design. We think it will be more meaningful
for students at that point in the course.

Part 1: Introduction to Systems Development
Part 1, comprising Chapter 1 and Online Chapter A, presents an overview of
systems development. The first chapter begins by briefly explaining the objec-
tives of systems analysis and systems design. Then, it provides a detailed, con-
crete example of what is required in a typical software development project.
Many students who take a programming class think that programming is all
you need to develop software and deploy a system. This chapter and the rest of
the book should dispel that myth.

Online Chapter A, “The Role of the Systems Analyst,” describes the many
skills required of a systems analyst. It also discusses the various career options
available to information systems majors. For students who are new to the disci-
pline of information systems, this chapter will provide interesting and helpful
knowledge about information systems careers.

Part 2: Systems Analysis Tasks
Chapters 2 through 5 cover systems analysis in detail. Chapter 2 discusses sys-
tem requirements, analysis activities, and techniques for gathering information
about the business problem. Developing the right system solution is possible
only if the problem is accurately understood. Chapter 2 also explains how to
identify and involve the stakeholders and introduces the concept of models and
modeling. Chapters 3 and 4 teach modeling techniques for capturing the
detailed requirements for the system in a useful form. When discussing an infor-
mation system, two key concepts are particularly useful: the use cases that
define what the end users need the system to do and the data entities/domain
classes that users work with while carrying out their work tasks. These two con-
cepts—use cases and data entities/domain classes—are important no matter
what approach to system development is being used. Chapter 5 presents more
in-depth requirements models, such as use case descriptions, use case diagrams,
system sequence diagrams, and state machine diagrams.

Online Chapter B, “The Traditional Approach to Requirements,” presents
the traditional, structured approach to developing systems. To those instructors
and students who desire to learn about data flow diagrams and structured
English, this chapter provides an in-depth presentation.

All these modeling techniques provide in-depth analysis of user needs and
allow the analyst to develop requirements and specifications. Again, the purpose

PREFACE xix

of systems analysis is to thoroughly understand and specify the user’s needs and
requirements.

Part 3: Essentials of Systems Design
Chapters 6 and 7 provide the fundamental concepts related to systems design
and designing the user experience. Chapter 6 provides broad and comprehensive
coverage of important principles of systems design and architectural design. It
serves not only as a broad overview of design principles but also as a founda-
tion for later chapters that explain the detailed techniques, tasks, skills, and
models used to carry out design.

Chapter 7 presents additional design principles related to designing the user
interface and the system interfaces. Designing the user interface is a combination
of analysis and design. It is related to analysis because it requires heavy user
involvement and includes specifying user activities and desires. On the other
hand, it is a design activity because it is creating specific final components that
are used to drive the programming effort. The screens and reports and other
user interaction components must be precisely designed so they can be pro-
grammed as part of the final system. Systems interfaces occur when one infor-
mation system communicates or interacts with another information system
without human intervention. System interfaces are becoming increasingly impor-
tant because of Web services and cloud computing.

Part 4: Projects and Project Management
By this point, students will have a basic understanding of all the elements of sys-
tems development. Part 4 brings together all these concepts by explaining more
about the process of organizing and managing development projects. Chapter 8
describes different approaches to systems development in today’s environment,
including several important system development life cycle models and Agile
development. It is an important chapter to help you understand how projects
actually get executed.

Chapter 9 extends these concepts by teaching foundation principles of project
planning and project management. Every systems analyst is involved in helping
organize, coordinate, and manage software development projects. In addition,
most good students will eventually become team leaders and project managers.
The principles presented in Chapter 9 are essential to a successful career.

Online Chapter C, “Project Management Techniques,” goes into more
detail regarding the tools and techniques used by systems analysts and project
managers to plan and monitor development projects. For those instructors and
students who would like to learn specific project management skills, this is an
important chapter.

Part 5: Advanced Design and Deployment Concepts
Part 5 goes into more depth with respect to systems design, database design,
and other important issues related to effective and successful system develop-
ment and deployment.

Chapters 10 and 11 explain in detail the models, skills, and techniques used
to design software systems. As mentioned earlier, systems design is a fairly
complex activity, especially if it is done correctly. The objective of these
two chapters is to teach the student the various techniques—from simple to
complex—that can be used to effectively design software systems.

Chapter 12 explains how to design the database from the information
gleaned during analysis and the identification of the object classes. Other related
concepts, such as controls and security, are also presented in this chapter.
Chapter 13 describes the final elements in systems development: final testing,
deployment, maintenance, and version control. Chapter 14 wraps things up by
looking at current trends and the future of software development.

xx PREFACE

Designing Your Analysis and Design Course
There are many approaches to teaching analysis and design courses, and the
objectives of the course differ considerably from college to college. In some aca-
demic information systems departments, the analysis and design course is a cap-
stone course in which students apply the material learned in prior database,
telecommunications, and programming courses to a real analysis and design
project. In other information systems departments, analysis and design is used
as an introduction to the field of system development and is taken prior to
more specialized courses. Some information systems departments offer a two-
course sequence emphasizing analysis in the first semester and design and imple-
mentation in the second semester. Some information systems departments have
only one course that covers analysis and design.

The design of the analysis and design course is complicated even more by the
choice of emphasizing either traditional content or object-oriented content—again,
depending on local curriculum priorities. Additionally, the more iterative
approach to development in general has made choices about sequencing the anal-
ysis and design topics more difficult. For example, with iterative development, a
two-course sequence can’t be divided into analysis and then design as easily.

The objectives, course content, assignments, and projects have many varia-
tions. What we offer below are some suggestions for using this textbook in vari-
ous approaches to the course.

Object-Oriented Analysis and Design Course
This is the course we designed the printed textbook to support, so all the
printed chapters but none of the online chapters are included. Note that object-
oriented design is included in detail. The course covers object-oriented analysis
and design, user and system interface design, database design, controls and secu-
rity, and implementation and testing. It is usually assumed that the projects will
use custom development, including Web development. The course emphasizes
iterative development with three-layer architecture, project management, infor-
mation gathering, and management reporting. One-semester courses are usually
limited to completing some prototypes of the user interface to give students clo-
sure. Sometimes, this course is spread over two semesters, with some implemen-
tation of an actual system in the second semester for a more complete
development experience. Iterative development is emphasized.

A suggested outline for a course emphasizing object-oriented development is:

Chapter 1: From Beginning to End: An Overview of Systems Analysis
and Design

Chapter 2: Investigating System Requirements

Chapter 3: Use Cases

Chapter 4: Domain Modeling

Chapter 5: Extending the Requirements Models

Chapter 6: Essentials of Design and the Design Activities

Chapter 7: Designing the User and System Interfaces

Chapter 8: Approaches to System Development

Chapter 9: Project Planning and Project Management

Chapter 10: Object-Oriented Design: Principles

Chapter 11: Object-Oriented Design: Use Case Realizations

Chapter 12: Databases, Controls, and Security (combine)

Chapter 13: Making the System Operational

Chapter 14: Current Trends in System Development

PREFACE xxi

Traditional Analysis and Design Course
A traditional systems analysis and design course provides coverage of activities and
tasks by using structured analysis, user and system interface design, database
design, controls and security, and implementation and testing. It is usually assumed
that the project will use custom development, including Web development. The
course emphasizes the SDLC, project management, information gathering, and
management reporting. One-semester courses are usually limited to completing
some prototypes of the user interface to give students closure. Sometimes, this
course is spread over two semesters, with some implementation of an actual system
in the second semester for a more complete development experience.

For this approach to the analysis and design course, a reasonable outline
would omit chapters and sections detailing object orientation and possibly cur-
rent trends but include the online chapters on the role of the systems analyst
and on traditional structured analysis. However, object-oriented concepts are
introduced throughout the text, so students will still be familiar with them.
Additionally, because of the amount of material to cover, the online chapter
detailing project management, financial feasibility, and scheduling might
be omitted.

A suggested outline for a course emphasizing the traditional structured
approach is:

Chapter 1: From Beginning to End: An Overview of Systems Analysis
and Design

Online Chapter A: The Role of the Systems Analyst

Chapter 2: Investigating System Requirements

Chapter 3: Use Cases

Chapter 4: Domain Modeling

Online Chapter B: The Traditional Approach to Requirements

Chapter 6: Essentials of Design and the Design Activities

Chapter 7: Designing the User and System Interfaces

Chapter 8: Approaches to System Development

Chapter 9: Project Planning and Project Management

Chapter 12: Databases, Controls, and Security (combine)

Chapter 13: Making the System Operational

In-Depth Analysis and Project Management
Some courses cover object-oriented systems analysis methods in more depth and
briefly survey structured analysis—with not much about object-oriented design—
while emphasizing project management. Sometimes, these courses are graduate
courses; sometimes, they assume design and implementation are covered in more
technical courses. In some cases, it might be assumed that packages are likely
solutions rather than custom development, so defining requirements and manag-
ing the process are more important than design activities. The online chapters
covering the role of the systems analyst, the traditional approach to structured
analysis, and project management would be included.

A suggested outline for a course emphasizing object-oriented analysis, with
in-depth coverage of project management, is:

Chapter 1: From Beginning to End: An Overview of Systems Analysis
and Design

Online Chapter A: The Role of the Systems Analyst

Chapter 2: Investigating System Requirements

Chapter 3: Use Cases

xxii PREFACE

Chapter 4: Domain Modeling

Chapter 5: Extending the Requirements Models

Online Chapter B: The Traditional Approach to Requirements

Chapter 6: Essentials of Design and the Design Activities

Chapter 7: Designing the User and System Interfaces

Chapter 8: Approaches to System Development

Chapter 9: Project Planning and Project Management

Online Chapter C: Project Management

Chapter 14: Current Trends in System Development

Available Support
Systems Analysis and Design in a Changing World, Sixth Edition, includes
teaching tools to support instructors in the classroom. The ancillary materials
that accompany the textbook include an Instructor’s Manual, solutions, test
banks and test engine, PowerPoint presentations, and figure files. Please contact
your Cengage Course Technology sales representative to request the Teaching
Tools CD-ROM if you haven’t already received it. Or go to the Web page for
this book at login.cengage.com to download all these items.

The Instructor’s Manual
The Instructor’s Manual includes suggestions and strategies for using the text,
including course outlines for instructors that emphasize the traditional struc-
tured approach or the object-oriented approach. The manual is also helpful for
those teaching graduate courses on analysis and design.

Solutions
We provide instructors with answers to review questions and suggested solu-
tions to chapter exercises and cases. Detailed traditional and UML object-
oriented models are included for all exercises and cases that ask for modeling
solutions.

ExamView
This objective-based test generator lets the instructor create paper, LAN, or
Web-based tests from test banks designed specifically for this Course
Technology text. Instructors can use the QuickTest Wizard to create tests in
fewer than five minutes by taking advantage of Course Technology’s question
banks or instructors can create customized exams.

Plug and Play!
Jumpstart your course with customizable, text-specific content within your
Course Management System!

■ Jumpstart—Instructors simply load a WebTutor cartridge or e-Pack into
their Course Management System.

■ Content—Text-specific content, media assets, quizzing, Web links, discus-
sion topics, interactive games and exercises, and more.

■ Customizable—Instructors can easily blend, add, edit, reorganize, or delete
content.

Whether you want to Web-enable your class or put an entire course online,
WebTutor delivers! Visit academic.cengage.com/webtutor to learn more.

PREFACE xxiii

Product Description
WebTutor and WebTutor Toolbox products are Course Cartridges and e-Packs
that provide content natively on a Course Management System (WebCT,
BlackBoard, Angel, D2L, and eCollege). The purpose of the product is to pro-
vide electronic solutions in an easy-to-use format with little upfront costs to
instructors.

For more information on how to bring WebTutor to your course, instruc-
tors should contact their Cengage Learning sales representative.

PowerPoint Presentations
Microsoft PowerPoint slides are included for each chapter. Instructors might use
the slides in a variety of ways, such as teaching aids during classroom presenta-
tions or as printed handouts for classroom distribution. Instructors can add
their own slides for additional topics they introduce to the class.

Figure Files
Figure files allow instructors to create their own presentations by using figures
taken directly from this text.

Credits and Acknowledgments
We have been very gratified as authors to receive so many supportive and
enthusiastic comments about Systems Analysis and Design in a Changing
World. Students and instructors in the United States and Canada have found
our text to be the most up-to-date and flexible book available. The book has
also been translated into many languages and is now used productively in
Europe, Australia, New Zealand, India, China, and elsewhere. We truly thank
everyone who has been involved in all the editions of our textbook.

This sixth edition was managed by Kate Mason, who was charged with
recruiting a new developmental editor, negotiating with the production depart-
ment for an accelerated writing and editing schedule, and dealing with numer-
ous author uncertainties and scheduling conflicts. Our developmental editor,
Kent Williams, was charged with the daunting task of pulling together material
that had been completely reorganized and submitted in what probably seemed
like a random order by what probably seemed like mad professors.

Last but certainly not least, we want to thank all the reviewers who worked
so hard for us—beginning with an initial proposal and continuing throughout
the completion of all six editions of this text. We were lucky enough to have
reviewers with broad perspectives, in-depth knowledge, and diverse preferences.
We listened very carefully, and the text is much better as a result of their input.
Reviewers for the various editions include:

Rob Anson, Boise State University
Marsha Baddeley, Niagara College
Teri Barnes, DeVry Institute—Phoenix
Robert Beatty, University of Wisconsin—Milwaukee
James Buck, Gateway Technical College
Anthony Cameron, Fayetteville Technical Community College
Genard Catalano, Columbia College
Paul H. Cheney, University of Central Florida
Kim Church, Oklahoma State University
Jung Choi, Wright State University
Jon D. Clark, Colorado State University
Mohammad Dadashzadeh, Oakland University
Lawrence E. Domine, Milwaukee Area Technical College
Gary Garrison, Belmont University
Cheryl Grimmett, Wallace State Community College

xxiv PREFACE

Jeff Hedrington, University of Phoenix
Janet Helwig, Dominican University
Susantha Herath, St. Cloud State University
Barbara Hewitt, Texas A&M University
Ellen D. Hoadley, Loyola College in Maryland
Jon Jasperson, Texas A&M University
Norman Jobes, Conestoga College—Waterloo, Ontario
Gerald Karush, Southern New Hampshire University
Robert Keim, Arizona State University
Michael Kelly, Community College of Rhode Island
Rajiv Kishore, The State University of New York—Buffalo
Rebecca Koop, Wright State University
Hsiang-Jui Kung, Georgia Southern University
James E. LaBarre, University of Wisconsin—Eau Claire
Ingyu Lee, Troy University
Terrence Linkletter, Central Washington University
Tsun-Yin Law, Seneca College
David Little, High Point University
George M. Marakas, Indiana University
Roger McHaney, Kansas State University
Cindi A. Nadelman, New England College
Bruce Neubauer, Pittsburgh State University
Michael Nicholas, Davenport University—Grand Rapids
Mary Prescott, University of South Florida
Alex Ramirez, Carleton University
Eliot Rich, The State University of New York—Albany
Robert Saldarini, Bergen Community College
Laurie Schatzberg, University of New Mexico
Deborah Stockbridge, Quincy College
Jean Smith, Technical College of the Lowcountry
Peter Tarasewich, Northeastern University
Craig VanLengen, Northern Arizona University
Bruce Vanstone, Bond University
Haibo Wang, Texas A&M University
Terence M. Waterman, Golden Gate University

All of us involved in the development of this text wish you all the best as
you take on the challenges of analysis and design in a changing world.

—John Satzinger
—Robert Jackson

—Steve Burd

PREFACE xxv

This page intentionally left blank

PART 1

An Introduction to Systems
Development

Chapter 1
From Beginning to End:
An Overview of Systems
Analysis and Design

Optional Online Chapter A
The Role of the Systems
Analyst

1

This page intentionally left blank

1
From Beginning to End:
An Overview of Systems
Analysis and Design

Chapter Outline

■ Software Development and Systems Analysis and Design

■ Systems Development Life Cycle

■ Introduction to Ridgeline Mountain Outfitters

■ Iterative Development

■ Developing RMO’s Tradeshow System

■ Where You Are Headed—The Rest of This Book

Learning Object ives

After reading this chapter, you should be able to:

■ Describe the purpose of systems analysis and design in the development of
information systems

■ Describe the characteristics of iterative systems development

■ Explain the six core processes of the Systems Development Life Cycle

■ Identify key documents that are used in planning a project

■ Identify key diagrams used in systems analysis and systems design

■ Explain the utility of identifying use cases in systems development

■ Explain the utility of identifying object classes in systems development

3

Software Development and
Systems Analysis and Design
Computers are everywhere today, and microchips impact every part of our lives.
We live in a world not only of ubiquitous computing but of pervasive communi-
cation and connectivity. An incredibly large part of our everyday lives depends
on computer chips, connection links, and application software.

You have grown up in this world of high technology. You use smartphones,
laptops, iPads, notepads, electronic game equipment, and so on. Your mobile
devices provide daily (if not hourly) text messages, tweets, videos, snapshots,
Internet access, games, and much more. Many of you have already developed
your own application software or you have a friend who has written applica-
tions for laptops, smartphones, iPads, or Facebook. Some of you have taken
programming classes; others of you have taught yourself how to write computer
application programs. Given that we live in this world of high-tech gadgets, we
might ask, “What is systems analysis and design, and why is it important?”
How does the development of new technology and new application software
utilize systems analysis and design? In other words, what role does systems anal-
ysis and design play in the development of high-tech solutions and applications?

First, let us provide two important definitions. A computer application
is a computer software program that executes on a computing device to carry
out a specific function or set of related functions. Sometimes, computer applica-
tion is shortened to app (such as an iPhone app or a Facebook app). An
information system is a set of interrelated computer components that collects,
processes, stores (usually in a database), and provides as output the information
needed to complete business tasks. Although these terms are sometimes used
synonymously, an application usually refers to only the computer software
involved, whereas an information system may include the software, the data-
base, and even the related manual processes. Examples of computer applications
include browsers that access the Internet to play games or calendaring apps.
Figure 1-1 shows a typical mobile digital device.

Why is systems analysis and design important in the development of infor-
mation systems? To answer that question, let us consider an analogous

FIGURE 1-1
Typical mobile digital device

computer application (app) a com-
puter software program that executes on a
computing device to carry out a specific
function or set of related functions

information system a set of interre-
lated computer components that collects,
processes, stores, and provides as output the
information needed to complete business tasks

4 PART 1 ■ An Introduction to Systems Development

situation: the art and science of creating a beautiful building. In this scenario,
there is the buyer who has the vision, the builder who will construct the build-
ing, and the architect who serves as the bridge between the buyer and the
builder. The architect helps the buyer develop the vision but must also commu-
nicate the building’s specifications to the builder. In doing so, the architect uses
various tools to first capture the vision from the buyer and then provide the
builder with instructions—including such tools as line drawings, blueprints, to-
scale models, detail specifications, and even on-site inspections.

Just as a builder doesn’t start construction without plans, programmers
don’t just sit down and start writing program code. They need someone (maybe
themselves) to function like an architect—planning, capturing the vision, under-
standing details, specifying needs—before writing the code and verifying that it
satisfies the vision. The software architect has to be able to understand and cap-
ture the vision of the persons funding the project. Usually, we call this person a
systems analyst. In situations where you are the programmer as well as the ana-
lyst, it might be easy to keep track of the details without writing them down.
However, in today’s world, with some system development teams distributed
worldwide, you may only be responsible for part of the programming, with the
rest handled by team members around the world. In a distributed team situa-
tion, it is much more important to have written documents to assist in under-
standing, capturing, explaining, and specifying the software application.

In a nutshell, systems analysis and design (SA&D) is about providing the
tools and techniques to you, the developer, so you can understand the need
(business need), capture the vision, define a solution, communicate the vision
and the solution, build the solution and direct others in building the solution,
confirm that the solution meets the need, and launch the solution application.

Included in SA&D are all the skills, steps, guidelines, and tools that support
and lead up to the actual programming of the system. SA&D includes such
“soft” skills as interviewing and talking to users as well as such “hard” (more
technical) skills as detailing specifications and designing solutions. Many of the
technical skills are associated with creating models that capture specifications or
define solutions. In this book, you will learn all these skills as well as how they
work together to develop an information system.

Let us conclude this section with a few more definitions. Systems analysis
consists of those activities that enable a person to understand and specify what
the new system should accomplish. The operative words here are “understand”
and “specify.” Systems analysis is much more than simply a brief statement of
the problem. For example, a customer management system must keep track of
customers, register products, monitor warranties, and keep track of service
levels, among many other functions—all of which have myriad details. Systems
analysis describes in detail the “what” that a system must do to satisfy the need
or to solve the problem.

Systems design consists of those activities that enable a person to describe
in detail the system that solves the need. The operative word in this case is
“solves.” In other words, systems design describes “how” the system will work.
It specifies in detail all the components of the solution system and how they
work together to provide the desired solution.

Systems Development Life Cycle
Initial development of a new system is usually done as a project. What this
means is that the activities required to develop a new system are identified,
planned, organized, and monitored. We can think of a project as a planned
undertaking that has a beginning and an end and produces some definite result.
Some projects are very formal, whereas others are so informal they can barely
be recognized as projects.

systems analysis those activities that
enable a person to understand and specify what
the new system should accomplish

systems design those activities that
enable a person to define and describe in detail
the system that solves the need

project a planned undertaking that has a
beginning and an end, and that produces some
definite result

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 5

To manage a project with analysis, design, and other development activities,
you need a project management framework to guide and coordinate the work of
the project team. The Systems Development Life Cycle (SDLC) identifies all
the activities required to build, launch, and maintain an information system.
Normally, the SDLC includes all the activities that are part of systems analysis,
systems design, programming, testing, and maintaining the system as well as
other project management processes that are required to successfully launch and
deploy the new information system.

There are many approaches to the SDLC and many variations for projects
that have various needs. However, there is a core set of processes that is always
required, even though there is also an incredible number of variations of these
core processes—in how each process is planned and executed and in how the
processes are combined into a project. Here are six core processes required in
the development of any new application:

1. Identify the problem or need and obtain approval to proceed.
2. Plan and monitor the project—what to do, how to do it, and who does it.
3. Discover and understand the details of the problem or the need.
4. Design the system components that solve the problem or satisfy the need.
5. Build, test, and integrate system components.
6. Complete system tests and then deploy the solution.

There are many ways to implement these six core processes of the SDLC.
An information systems development process is the actual approach used
to develop a particular information system. Most information systems you will
develop are conceived and built to solve organizational problems, which are
usually very complex, thus making it difficult to plan and execute a develop-
ment project. In fact, many projects end up being much larger than expected—
often resulting in late deliveries that are over budget. During the last 10 years,
several new information systems development processes have been developed to
enhance project success. One of the newer and more effective ones is called
Agile Development. The basic philosophy of Agile Development is that neither
team members nor the user completely understands the problems and complexi-
ties of a new system, so the project plan and the execution of the project must
be responsive to unanticipated issues. It must be agile and flexible. It must have
procedures in place to allow for, anticipate, and even embrace changes and new
requirements during the development process.

Maybe the best way to understand these concepts is to see the way they
play out in a complete example. That is the objective of this chapter, “From
Beginning to End: An Overview of Systems Analysis and Design.” Here, we will
use a fairly small information system application to show you all six core pro-
cesses (as much as is feasible in a textbook, anyway). We will illustrate one way
to organize the various activities into an actual working project; in other words,
we will show you one version of an information system development process.
By going all the way through a very simple project, you will more easily learn
and understand the complex concepts provided in the rest of the text. Our proj-
ect involves Ridgeline Mountain Outfitters, a retailer and manufacturer of cloth-
ing for all types of outdoor activities.

Introduction to Ridgeline
Mountain Outfitters
Ridgeline Mountain Outfitters (RMO) is a large retail company that specializes
in clothing and related accessories for all types of outdoor and sporting activi-
ties. By the 2010s, the Rocky Mountain and Western states had seen tremen-
dous growth in recreation activities, and with the increased interest in outdoor
sports, the market for winter and summer sports clothes had exploded. Skiing,
snowboarding, mountain biking, water skiing, jet skiing, river running, jogging,

Systems Development Life Cycle
(SDLC) the entire process consisting of all
the activities required to build, launch, and
maintain an information system

information systems development
process the actual approach used to
develop a particular information system

Agile Development an information
systems development process that emphasizes
flexibility to anticipate new requirements during
development

6 PART 1 ■ An Introduction to Systems Development

hiking, ATV biking, camping, mountain climbing, rappelling—all had seen a
tremendous increase in interest in these states. People needed appropriate sports
clothes for these activities, so RMO expanded its line of sportswear to respond
to this market. It also added a line of high-fashion activewear and accessories
to round out its offerings to the expanding market of active people.

The company’s growth charted an interesting history of mail-order, brick-
and-mortar, and online sales. RMO got its start by selling to local clothing
stores in the Park City, Utah, area. In the late-1980s and early-1990s, it began
selling directly to customers by using catalogs with mail-in and telephone
orders. It opened its first store in 1994 and soon expanded to 10 retail outlets
throughout the West. Last year, retail store revenue was $67 million, telephone
and mail-order revenues were $10 million, and Web-based sales were $200 mil-
lion. Most sales continue to be in the West, although the market in several areas
of the eastern United States and Canada is growing.

RMO produces its own line of outdoor and sportswear clothing. However,
in order to offer a complete range of outdoor clothing in its retail outlets, it
also sells other brands of outdoor and sportswear clothing. In addition, other
types of clothing and accessories, such as footwear, leather apparel, and spe-
cialty sportswear, are available in the retail stores and through the online store.

Figure 1-2 shows a sample of the catalogs that RMO mails out. Although
mail-order and telephone sales are small, receiving the catalog encourages custo-
mers to go online to make purchases, so RMO continues to produce and mail
abbreviated versions of its catalogs.

Figure 1-3 illustrates a typical order page from the online system.

Trade Shows
In order to keep its product line current and popular, RMO’s purchasing agents
attend apparel and fabric trade shows around the world. RMO purchasers have
a good track record of predicting what products will be good sellers. In addi-
tion, RMO is always watching for new products and accessories that will enable
it to expand its product line appropriately.

When purchasing agents attend a trade show, they frequently find various
products that they want to add to the spring, summer, or winter apparel offering.

2012 WINTER CATALOG

2012 W
IN

TER CATALOG

FIGURE 1-2
RMO winter catalog

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 7

In the past, when RMO buyers wanted to place an order, they would exchange
contact information with the seller at the trade show and upon returning to the
home office would then follow up via e-mails and phone calls to formulate a con-
tract and make a purchase order. However, to expedite orders, RMO has now
initiated a project to develop a system for collecting and tracking information
about its suppliers and the new products it adds to its merchandise offerings.

Iterative Development
Iterative development is an approach to system development in which the sys-
tem is “grown” in an almost organic fashion. Core components are developed
first and then additional components are added. It is called “iterative” because
the six core development processes are repeated over and over again to add
additional functionality to the overall system. In other words, there is one big
project, which consists of many mini-projects, and the information system is
grown piece by piece.

Figure 1-4 illustrates how an iterative Agile project might be executed. This
is a sample diagram. Real projects might be quite different. Across the figure,
you see six iterations. An iteration is like a mini-project in that it has a com-
pleted result and a constrained time frame. Often, it will last two to four weeks.
Down the left side of the figure, you see the six core processes. The rounded

FIGURE 1-3
RMO sample online ordering page

Core

Processes
1 2 3 4 5 6

Identify problem and obtain
approval

Plan and monitor the project

Discover and understand details

Design system components

Build, test, and integrate system

components

Complete system tests and deploy
solution

Iterations
FIGURE 1-4
The six core processes, with iterations
for a typical project

iterative development an approach to
system development in which the system is
"grown" piece by piece through multiple
iterations

8 PART 1 ■ An Introduction to Systems Development

mounds inside the graph represent the amount of effort for that core process
during that iteration. The amount of area under a curve is an approximate indi-
cation of the amount of effort expended within an iteration with regard to a
particular core process. For example, in Figure 1-4, Iteration 1 appears to pri-
marily focus on identifying the problem and planning the project. Lesser
amounts of discovery, design, and build and test may also be done. For this iter-
ation, nothing is done with regard to deploying the system.

There are several benefits to iterative development. For one, portions of the
often system can sometimes be deployed sooner. If there are core functions that
provide basic support, these can be deployed in an early iteration. A second bene-
fit is that by taking a small portion and developing it first, many tough problems
can be addressed early in the project. Many of today’s systems are so large and
complex that it is impossible to remember and understand everything. By focusing
on only a small portion, the requirements are fewer and easier to grasp and solve.
Finally, developing a system in iterations makes the entire development process
much more flexible and able to address new requirements throughout the project.

A key element of iterative development is choosing a part of the solution
system that can be done in two to four weeks. During one iteration, often all
the core development processes are involved, including programming and
system-wide testing, so the result is a part of the working system, even though
it may only have a portion of the functionality that is ultimately required.

Developing RMO’s Tradeshow System
We will organize our sample project—the RMO Tradeshow System—for the
first iteration, and our goal is to have the iteration last six days. However, our
primary objective is to introduce you to the concepts and techniques of the six
core processes. Therefore, in some instances, we may go a little deeper into a
core process than we might do on the first iteration of a real project. It is a little
unrealistic to complete an entire iteration with all the necessary details in only
six days, but it should be a good learning experience. There will not be a one-
to-one correspondence with the six SDLC core processes and the six days of the
project, but we will include all the SDLC core processes within the project.

At the end of this chapter, we have provided a small case project that has
also been divided into a six-day project. Each day of the project has several pos-
sible assignments that can be completed to help you solidify your understanding
of systems analysis and design and the six core processes.

Most new applications require a project with several iterations. In the first
iteration, there are usually three major objectives. The first objective is to get proj-
ect approval. The second objective is to get a clear picture of the system’s overall
vision—all the major functions and data requirements. The third objective is to
determine the detail specifications and develop a solution for one portion of the
system (i.e., actually analyze, design, build, and test one part of the system).

In our project, we will touch on all these objectives. We will show an exam-
ple of a System Vision Document and then develop one portion of the overall
system. We have constrained the scope of the new system so we can complete it
in one iteration. It should be noted that the division of this project into days and
daily activities is somewhat arbitrary. There are numerous ways to partition and
organize the work. The following organization is quite workable, but it is not
the only way to organize the project.

Pre-Project Activities
Before the project actually begins, the head of RMO’s purchasing department
works with a systems analyst to identify and document the specific business
need as well as define a specific project objective. RMO’s management reviews
the primary project objective and provides budget approval. Every organization
has to give budget approval before a project can start. Some organizations have

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 9

a formal process to get a project approved; other organizations have a less for-
mal process. Normally, there are two goals an organization must decide on to
get a project off the ground:

■ Identify the problem and document the objective of the solution system.
(Core Process 1)

■ Obtain approval to commence the project. (Core Process 1)

System Vision Document
As with all new projects within RMO, a System Vision Document is developed to
identify the benefits to the company and the functional capabilities that will be
included in the system. Frequently, this is done in two steps: developing a prelimi-
nary statement of benefits and then adding estimates of specific dollar costs and
dollar benefits. Figure 1-5 is the System Vision Document for this project.

Problem Description

Trade shows have become an important information source for new products, new

fashions, and new fabrics. In addition to the large providers of outdoor clothing and

fabrics, there are many smaller providers. It is important for RMO to capture information

about these suppliers while the trade show is in progress. It is also important to obtain

information about specific merchandise products that RMO plans to purchase.

Additionally, if quality photographs of the products can be obtained while at the trade

show, then the creation of online product pages is greatly facilitated.

It is recommended that a new system be developed and deployed so field purchasing

agents can communicate more rapidly with the home office about suppliers and specific

products of interest. This system should be deployed on portable equipment.

System Vision Document

RMO Tradeshow System

System Capabilities

The new system should be capable of:

• Collecting and storing information about the manufacturer/wholesaler (suppliers)

• Collecting and storing information about sales representatives and other key

 personnel for each supplier

• Collecting information about products

• Taking pictures of products (and/or uploading stock images of products)

• Functioning as a stand-alone without connection

• Connecting via Wi-Fi (Internet) and transmitting data

• Connecting via telephone and transmitting data

Business Benefits

It is anticipated that the deployment of this new system will provide the following

business benefits to RMO:

• Increase timely communication between trade show attendees and home office,

 thereby improving the quality and speed of purchase order decisions

• Maintain correct and current information about suppliers and their key personnel,

 thereby facilitating rapid communication with suppliers

• Maintain correct and rapid information and images about new products, thereby

 facilitating the development of catalogs and Web pages

• Expedite the placing of purchase orders for new merchandise, thereby catching

 trends more rapidly and speeding up product availability

FIGURE 1-5
Tradeshow System Vision Document

10 PART 1 ■ An Introduction to Systems Development

As described earlier, RMO needs a portable system that can be used by its
purchasing agents as they attend various product and clothing fabric trade
shows. The system needs to fulfill two major requirements. First, it has to have
the functionality to capture information about suppliers and products. Second,
it needs to be able to communicate with the home office systems, and because
these trade shows are held in various venues around the world, various methods
of connectivity are needed.

Preliminary investigation considered various equipment options, including
laptop computers, iPad computing devices, and smartphones. Even though
smartphones appeared to have the best connection options, the small size made
viewing the details of photographs somewhat difficult; the iPad and other simi-
lar portable devices with advanced technology also appear to be viable options.
However, due to the similarity of the smartphones and tablets, it seems feasible
to develop an application that will execute on either device. Each purchasing
agent could use his or her preferred device.

Toward the end of the pre-project activities, a meeting is held involving all
the key persons, including a representative of executive management. The deci-
sion is made to move ahead with the project and budget the necessary funds.

Day 1 Activities
RMO—Supplier Information Subsystem
The project actually begins with Day 1, which is essentially a planning day.
Usually, the first activity is the project team reviewing the System Vision
Document and verifying that the preliminary work is still valid. It reviews the
scope of the project to become familiar with the problem to be solved, then it
plans the iterations and activities for the remainder of the project. The second
SDLC core process—planning the project—includes business analysis and proj-
ect management activities. All these topics will be treated in depth in later chap-
ters. These activities are completed on Day 1:

■ Determine the major components (functional areas) that are needed. (Core
Process 2)

■ Define the iterations and assigning each functional area to an iteration.
(Core Process 2)

■ Determine team members and responsibilities. (Core Process 2)

Planning the Overall Project and the Project Iterations
Myriad details need to be considered in a project plan. For our project, we will
only focus on the bare essentials. We will describe project planning more elabo-
rately in later chapters.

The project team meets with the users to review the overall business need
and the objectives of the new system. The System Vision Document serves as
the starting point for these discussions. As is often the case, the list of System
Capabilities provides the foundation information for determining the overall
project plan. The first step is to divide the system into several subsystems or
components. A subsystem is simply a portion of the overall system. Based on
the list of System Capabilities, the project team identifies these functional
subsystems:

■ Supplier Information subsystem
■ Product Information subsystem

The Supplier Information subsystem will collect and maintain information
about the manufacturers or wholesalers and the contract people that work for
them. The Product Information subsystem will capture information about the
various products, including detailed descriptions and photographs.

The next step is to identify which subsystems will be developed in which
order. Many issues are considered, such as dependencies between the various

subsystem an identifiable and partitioned
portion of an overall system

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 11

tasks, sequential versus parallel development, project team availability, and proj-
ect urgency. In our case, the team decides that the project will proceed in a serial
fashion, with the Supplier Information subsystem scheduled as the first iteration.

Planning the First Iteration
Each iteration is like a systems development mini-project. The core processes
described earlier can all be applied, with the scope limited to the component
that is to be developed during the iteration. The planning process for an itera-
tion consists of these three steps:

■ Identify the tasks required for the iteration.
■ Organize and sequence these tasks into a schedule.
■ Identify required resources (especially people) and assign people to tasks.

The first step is to identify—or attempt to identify—all the individual tasks
that need to be done. As these tasks are identified, they are compiled and orga-
nized. Sometimes, this organized list of tasks is called a Work Breakdown
Structure. Figure 1-6 shows the Work Breakdown Structure for this iteration.

Part of the effort is trying to estimate how long each task will take. Because
this project has a very limited scope (only six days), all the estimates will be in
hours. These estimates do not include the time expended by those who are not
on the team. However, of those on the team, the estimates include the time for
the original work, the time for discussion, and the time for reviewing and check-
ing the Work Breakdown Structure for accuracy and correctness.

The next step is to get these tasks organized into a schedule. Again, we can
be very formal and use a sophisticated project-scheduling tool or we can just
list the tasks in the order we think they need to be done. An important part of
building the schedule is identifying any dependencies between the tasks. For

FIGURE 1-6
Sample handwritten Work Breakdown
Structure

12 PART 1 ■ An Introduction to Systems Development

example, it does not make sense to try to design the database before we have
identified the information requirements. But many tasks can be done in parallel.

Again, the great benefit of a single iteration is that we can make the sched-
ule informal, and we will be able to adjust the work day by day to respond to
specific complexities that occur.

For our project, we will not build a complete schedule. You will learn how
to do that in a later chapter. However, in order to organize our six-day project,
we have taken the tasks from the Work Breakdown Structure and placed them
on a day-by-day sequence that we call a work sequence draft, as shown in
Figure 1-7. To develop a formal schedule, the project leader will use this dia-
gram to assign people to the tasks as well as put the tasks on a specific schedule
chart with calendar dates.

You should be aware that the sequence of activities and the dependencies of
those activities are represented in this diagram with only partial accuracy. For
example, we show that programming does not start until design has finished.
However, in reality, there may be some overlap between the two activities.

0-1

Develop project plan
Day 1: Plan

project

Day 2: 12 hours

Day 3: 14 hours

Day 6: 12 hours

Start

I-1 3 hrs

Meet with purchasing manager

I-2 4 hrs

Meet with purchasing agents

I-3 3 hrs

Define use cases

I-5 6 hrs

Develop workflows

I-4 2 hrs

Define information requirements

II-1 8 hrs

Design screens

Day 5: 28 hours

IV-1 5 hrs

Perform functional tests

IV-2 7 hrs

Perform user acceptance test

II-2 4 hrs

Design and build database

II-3 4 hrs

Design overall architecture

II-4 6 hrs

Design program

details

III-1 14 hrs

Code and test
GUI layer

III-2 8 hrs

Code and test logic
layer

Morning of Day 4: 8

hours

FIGURE 1-7
Work sequence draft

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 13

The benefit of a work sequence draft is threefold. First, it helps the team orga-
nize its work so there is enough time set aside to think through the critical
design issues before programming begins. Second, it provides a measuring rod
to see if the iteration is on schedule. For example, if meetings with the purchas-
ing agents take all day or more than a day, the team will know early on that
this iteration will take longer than expected. Third, the project leader can see
that programming may require more resources if the project is going to stay on
this schedule. Hence, the project leader can begin lining up resources early on
to help with that part of the project. It should be obvious that even this simple
dependency diagram can help a project manager plan and organize the work.

Day 2 Activities
Day 1 involved planning and organizing the project. Day 2 involves systems anal-
ysis activities that help us understand and document requirements. On Day 2, we
will specify the functions in more detail. These activities are included:

■ Do preliminary fact-finding tasks to understand the requirements. (Core
Process 3)

■ Develop a preliminary list of use cases and a use case diagram. (Core
Process 3)

■ Develop a preliminary list of classes and a class diagram. (Core Process 3)

Fact Finding and User Involvement
Before the project commenced, a preliminary, broad definition of functions was
developed. It is now time to examine the specifics of those functions and deter-
mine exactly what the user needs the system to do. The first step is to identify
the key users that will help define these details. Obviously, the manager of the
purchasing department will be one of the first ones to meet with. She will proba-
bly designate one or two knowledgeable purchasing agents who can work with
the team on an ongoing basis to develop the specifications and to verify that the
system performs as required. All successful projects depend on heavy user involve-
ment. In Chapter 2, you will learn more about identifying key stakeholders.

There are various techniques to ensure that the fact finding is complete and
thorough. These include interviewing the key users, observing existing work
processes, reviewing existing documentation and existing systems, and even
researching other companies and other systems.

Identifying Use Cases
A use case documents a single user-triggered business event and the system’s
response to that event. For example, let us say a purchasing agent goes to a
trade show and finds some new lightweight sports jackets that will work well
for RMO’s fall merchandise offerings. Maybe the first task the purchasing
agent needs to do is find out if this supplier has worked with RMO before.
Thus, the business event that requires the Tradeshow System might be “Look
up a supplier.” Activities leading up to the event of using the system are impor-
tant, but we do not identify them as business events until the Tradeshow System
is used—hence, the term use case—a case or situation where the system is used.
One good way to help you identify use cases is to say, “The purchasing agent
‘uses’ the system to ‘Look up a supplier.’”

There are multiple methods used to identify use cases, which you will learn
about later in this book. Figure 1-8 is a preliminary list of use cases for the
entire Tradeshow System. When the project team meets with the purchasing
agents in brainstorming sessions, they together identify every business event
in which a purchasing agent might use the system. However, because this first
iteration is focusing only on the Supplier Information subsystem, the project
team will also focus its attention on only the first four use cases on the list.

14 PART 1 ■ An Introduction to Systems Development

Identifying Object Classes
Object classes identify those things in the real world that the system needs to
know about and keep track of. In order to find object classes, we look for all
the objects, or things, that the system uses or captures. Objects come in all
types and variations, from tangible items (such as merchandise products that
you can see and touch) to more abstract concepts that you cannot touch (such
as an order), which, though intangible, definitely exist.

Object classes are identified in the discussions with purchasing agents by
looking for the nouns that describe categories of things. For example, the agents
will often talk about suppliers, merchandise products, or inventory items. More
details about how to identify object classes and their attributes are provided
later in this book.

Figure 1-9 illustrates which nouns have been determined to be fundamental
object classes for the Tradeshow System. The attributes are descriptors that help
define and describe an object class.

In addition to just providing a list of object classes, systems analysts often
develop a visual diagram of the classes, their attributes, and their relationships
to other classes. This diagram is called a class diagram. Figure 1-10 illustrates
a class diagram for the Tradeshow System.

Each box is a class and can be thought of as a particular set of objects that
are important to the system. Important attributes of each class are also included
in each box. These represent the detailed information about each object that will
be maintained by the system. Note that some classes have lines between them.
These represent relationships between the classes that need to be captured in
the system. For example, a contact is a person who works for a particular sup-
plier. A specific example might be that Bill Williams is the contact person for

FIGURE 1-9
List of object classes

Object Classes Attributes

Supplier supplier name, address, description, comments

Contact name, address, phone(s), e-mail address(es),
position, comments

Product category, name, description, gender, comments

ProductPicture ID, image

FIGURE 1-8
List of use cases

Use Case Description

Look up supplier Using supplier name, find supplier information and
contacts

Enter/update supplier
information

Enter (new) or update (existing) supplier information

Look up contact Using contact name, find contact information

Enter/update contact
information

Enter (new) or update (existing) contact information

Look up product
information

Using description or supplier name, look up product
information

Enter/update product
information

Enter (new) or update (existing) product information

Upload product image Upload images of the merchandise product

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 15

the South Pacific Sportswear Company. Thus, the system needs to associate Bill
Williams and the South Pacific Sportswear Company. The relationship line
documents that requirement.

Class diagrams are a powerful and frequently used way to understand and
document the information requirements of a system. The Tradeshow System is
extremely simple, with only four classes identified—two of which belong to the
Supplier Information subsystem. Most real-life systems are much larger and
have dozens of classes.

Day 3 Activities
The purpose of Day 3 activities is to analyze in detail those use cases and classes
that were selected to be implemented in this first iteration. During Day 3, we are
still performing processes that are considered systems analysis. We are still try-
ing to understand the requirements at a detailed level for the system. Included
are these activities:

■ Perform in-depth fact finding to understand details. (Core Process 3)
■ Understand and document the detailed workflow of each use case. (Core

Process 3)
■ Define the user experience with screens and reports. (Core Processes 3 and 4)

It is important to note that the use cases help the project team organize its
work. These drill-down activities are done for each use case. As mentioned ear-
lier, these use cases pertain to the Supplier Information subsystem:

■ Look up supplier.
■ Enter/update supplier information.
■ Look up contact information.
■ Enter/update contact information.

The project team will develop a workflow for each use case to better under-
stand how it works and to identify what screens and possibly what reports will
need to be developed. As the team gets more into the details, it may discover
that some of the initial analysis is incomplete, if not incorrect. This is a good
time to make such discoveries—much better than after the programs have been
written.

Figure 1-11 illustrates a simple use case diagram. It shows the four afore-
mentioned use cases identified and the user who will be the primary person

name
address
description
comments

Supplier

productCategory
name
description
gender
comments

Productltem

1..*

1

1 1..*
name
address
phone(s)
emailAddress(es)
position
comments

Contact

pictureID
image

ProductPicture

1 0..*

FIGURE 1-10
Preliminary class diagram for the
Tradeshow System

16 PART 1 ■ An Introduction to Systems Development

performing that function. What the diagram means in detail and how to develop
one will be discussed in a later chapter.

Developing Use Case Descriptions and Workflow Diagrams
There are various methods for documenting the details of a use case. One that
you will learn later in this text is called a use case description. Another method
is developing a workflow diagram, which shows all the steps within the use
case. The purpose with either method is to document the interactions between
the user and the system (i.e., how the user interacts and uses the system to
carry out a specific work task for a single use case).

Let us develop a workflow for one use case. To develop a workflow, we
will use a simple type of diagram called an activity diagram. Figure 1-12 illus-
trates the workflow for the Look up supplier use case. The ovals in the diagram
represent the tasks, the diamonds represent decision points, and the arrows rep-
resent the sequence of the flow. The columns represent who performs which
tasks. Usually, workflow diagrams are quite easy to understand.

The arrows that cross the center line represent the interactions between the
system and the user. These are critically important because the developers must
provide a screen or Web page that either captures or displays information. The
arrows that cross the center line identify the data elements that become part of
the user interface.

Looking at Figure 1-12, we see that the top arrow indicates that the sup-
plier name enters into the system. Thus, we infer that the user must have an
online form in order to enter the supplier name for the initial lookup. The next
arrow indicates that there must be a form that displays all the details for an
individual supplier, including a list of existing contacts. The user may also want
to see more details about a specific contact person for this supplier, so the user
may request detailed information for a particular person. Because the user can
select one of the displayed results, it appears that we must design the form so
each entry on the list is either a hotlink or has some mechanism to select it.

Defining Screen Layout
User-interface design includes all those tasks that describe the look and feel of
the system to the user. Because the user interface is the window that the users

Look up supplier

Enter/update
supplier

information

Look up contact

Enter/update
contact

information

ManagerPurchasing
agent

FIGURE 1-11
Use case diagram

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 17

work with to utilize the functionality of the system, the user interface is essen-
tially the system. If the interface is poorly designed, users will not be able to
take full advantage of the system; they may even consider the system to be less
than optimal. On the other hand, a well-designed user interface—one that is
intuitive and easy to use, with a full range of features to facilitate navigation,
and that provides good information—will enhance the utility of the system
tremendously.

Figure 1-13 illustrates the layout of the first screen used for the workflow in
the use case Look up supplier. The top portion of the screen provides the loca-
tions for the user to enter the supplier information, and the bottom portion of
the screen shows the results. When results are provided, the search box for data
entry will remain visible to allow the user to enter another search. Each entry in
the results will be built as a hotlink, so the user can click on any particular sup-
plier to retrieve more detailed information. This drill-down technique is a com-
mon method used in today’s systems and will be intuitively easy for the users.

Searches are conducted on the RMO database, resulting in such RMO
information as name, address, and contact information. An Internet-wide search
is also possible. This allows the purchasing agents to look for and view the sup-
pliers’ own Web sites, which can be helpful, as can looking at forums and dis-
cussions about the supplier. Note that this tangential activity is not captured in
the workflow of Figure 1-12. It is intended to assist in screen design, not docu-
ment everything the user can or will do.

Purchasing Agent Tradeshow System

Start

Enter supplier name

Return supplier information

not found

found

View supplier and
contact names

done

look up contact

Select contact name

Retrieve contact information

View contact information

End

FIGURE 1-12
Workflow diagram for the Look up
supplier use case

18 PART 1 ■ An Introduction to Systems Development

Day 4 Activities
The primary focus of Day 4 activities is to design the various components of the
solution system. Up to now, we have mostly been trying to understand the user
requirements. On Day 4, we carry out design activities that direct programming
efforts. In that sense, design activities can be considered somewhat of a bridge.
During analysis activities, the project team’s objective is to understand user
needs. During programming, the objective is to produce the solution. Thus,
design is the bridge between understanding and construction. It provides the
outline for how the solution will be structured and how it is to be programmed.
System design also tends to involve the technical people, with less need for user
participation.

Design can be a complex process. In our small project, we will limit
our design examples to only a few models and techniques. Later in this text-
book, you will learn additional design techniques. Day 4 Activities include the
following:

■ Design the database structure (schema). (Core Process 4)
■ Design the system’s high-level structure. (Core Process 4)

Database design is a fairly straightforward activity that uses the class dia-
gram as input and develops the detailed database schema that can be directly
implemented by a database management system. Such elements as table design,
key and index identification, attribute types, and other efficiency decisions are
made during this activity.

Designing the high-level system structure and the individual programs can
be an intricate and complex process. First, the overall structure of the system is
designed, including identifying the subsystems and connections to other systems.
Within each subsystem, decisions are made about individual programs, such as
user-interface programs, business logic programs, and database access programs.
Then, at the lowest level, the login within each program is defined, including
what program functions are required and what variables are used.

It is not uncommon for developers to begin writing program code as they
develop portions of the design. It is a good idea to complete most of the

Web Search

RMO Database Search

Supplier Name

Product Category

Product

Country

Contact Name

Supplier Name

Search Results

Contact PositionContact Name

GO

GO
Logo

FIGURE 1-13
Draft of screen layout for the Look up
supplier use case

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 19

structural design before writing code. But as the lower levels of the system are
being designed, programming often begins. However, in the RMO Tradeshow
System project, we will list them as separate activities.

Designing the Database
Designing the database uses the information provided by the class diagram to
determine the tables, the columns in the tables, and other components. Sometimes,
the database design is done for the entire system or subsystem. At other times, it is
built piecemeal—use case by use case. To keep our project simple, we will just
show the database design for the two classes that are required for the Supplier
Information subsystem. Figure 1-14 shows the database schema for the Supplier
Information subsystem. Two tables are defined: Supplier and Contact.

Approaching High-Level Systems Design
There are fundamental design principles that will guide you through systems
and program design; they will be explained in detail later in this book. For
now, we will describe the general approach to design.

One of the first questions encountered in systems design is how and where
to start. So far, we have three types of documents that can provide specifications
to help answer that question. We have use cases, with their accompanying docu-
mentation, such as use case workflow diagrams. We have a class diagram that
will help us identify some of the object-oriented classes that will be needed in
the system. (In the previous section, we used the class diagram as the basis for
the database design. Those same classes are important in developing object-
oriented program classes.) Finally, we have screens and reports that also provide
specifications for program logic and display logic.

Before we jump into design, let us briefly discuss the objective of systems
design and what we expect to have as the output or result. Object-oriented pro-
grams are structured as a set of interacting classes. Therefore, in order to pro-
gram, we need to know what those programming classes are, what the logic is
within each class (i.e., the functions), and which programming classes must
interact together. That is the final objective of systems design: to define the clas-
ses, the methods within those classes, and the interactions between classes.

Supplier SupplierID: integer {key}

Name: string {index}
Address1: string
Address1: string

City: string

State-province: string
Postal-code: string
Country: string

SupplierWebURL: string

Comments: string

ContactID: integer {key}

SupplierID: integer {foreign key}
Name: string {index}
Title: string

WorkAddress1: string

WorkAddress2: string
WorkCity: string
WorkState: string

WorkPostal-code: string
WorkCountry: string

WorkPhone: string
MobilePhone: string
EmailAddress1: string

EmailAddress2: string
Comments: string

Contact

Table Name Attributes
FIGURE 1-14
Database schema for Supplier
Information subsystem

20 PART 1 ■ An Introduction to Systems Development

We perform this design by starting at the very highest level and then drilling
down to the lowest level until we have defined all the functions within each
class. Detailed design is the thought process of how to program each use case.
Later in the text, you will learn techniques to carry out detailed design. For
Day 4, we will focus only on the overall design.

Designing the Overall Architecture
Figure 1-15 shows the overall architecture or structure of the new system.
Although the figure itself appears rather simple, some important decisions have
been involved in the development of this design. First, note that the decision
was made to build this application as a browser-based system. A different and
very popular approach would have been to build smartphone or tablet applica-
tions. Browser-based systems sometimes do not provide the same connectivity
speed and control as smartphone or tablet applications, but they are more versa-
tile in that they can be more easily deployed on different equipment, such as
laptops, without modification.

These high-level design decisions will determine the detailed structure of the
system. A browser-based system is structured and constructed differently than
an application system that runs on a smartphone or a tablet computer.

Defining the Preliminary Design Class Diagram
Given that the Tradeshow System will be built by using object-oriented pro-
gramming (OOP) techniques, an important component of the design is develop-
ing the set of object classes and functions that will be needed for the system.
This process can become quite detailed, and we will not try to explain it for
this project. You will learn those techniques later in this book.

Figure 1-16 is a preliminary design class diagram for the Tradeshow
System. A design class diagram (DCD) identifies the OOP classes that will be
needed for the system. The set of design classes includes problem domain clas-
ses, view layer classes, sometimes separate data access classes, and utility classes.
In Figure 1-16, we show only the problem domain classes and the view layer
classes. Problem domain classes are usually derived from those classes that were
identified during analysis activities—hence, the name: problem (user need)
domain classes. You will also notice that they very closely correspond to the

Supplier
Information
subsystem

Product
Information
subsystem

Browser
Internet

Tradeshow System

Internet server

FIGURE 1-15
Tradeshow System architectural con-
figuration diagram

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 21

database tables; in fact, in this simple project, they are almost exactly the same
as the database tables. On more complex systems, they will be similar but not
exactly the same. However, remember that programming classes are distinct
from database tables.

Other classes are required for the graphical user interface (GUI). In a
dynamic Web system, such as the Tradeshow System, they are the classes that
receive the input from the browser and format the output HTML files to be dis-
played by the browser.

The design classes in Figure 1-16 include the class-level variables that are
needed for the class. These classes also show method names of the important meth-
ods within each class. These methods are identified and specified during high-level
design and detailed design. One final element in the design class diagram are
arrows that show which classes can access the methods of which other classes.

Designing Subsystem Architecture
Once we have an overall structure and an overall approach for implementing
the new system, we begin to drill down to the subsystem design. Figure 1-17
illustrates the architectural design of the Supplier Information subsystem. Notice
that this subsystem is further divided into layers: a view layer and a model layer.
You will learn much more about multilevel design later in this textbook. One of
the advantages of partitioning the system into layers is that the system is much
easier to build and maintain with this kind of structure. For example, the system
will be browser based, but different browsers require different techniques. It is
better not to get these complexities mixed in with the basic program functions.
Hence, they are separated out into a distinct layer.

lookupSupplier ()
displaySupplier ()

SupplierView

lookUpContact ()
displayContact ()

ContactView

supplierID {key}
name: string
address: string
address2: string
city: string
state: string
country: string
URL: string

comments: string

Supplier

contactID {key}
name: string {index}
title: string
waddress1: string
waddress2: string
wcity: string
wstate: string
wpostal: string

wcountry: string

wphone: string

mobilephone: string

email1: string

email2: string

comments: string

Contact

getSupplierInfo () getContactInfo ()

FIGURE 1-16
Preliminary design class diagram

22 PART 1 ■ An Introduction to Systems Development

Figure 1-17 shows that the view layer has two PHP classes that process user
inputs from the browser and format output HTML files. It also contains various
JavaScript functions that will execute within the browser itself. The model layer
classes are those classes that perform the business logic as well as access the
database. Sometimes, the data layer and the business logic layer are further
divided.

Managing the Project
Design is a complex activity with multiple levels—from high-level structural
design to low-level detailed program design. In our project, we have separated
the tasks for designing the overall system structure from detailed design of the
programs themselves. However, these activities are often done concurrently.
The basic high-level architectural structure is defined first, but mid-level and
low-level design are often done concurrently with programming.

In Figure 1-17, we can see that detailed design and programming are quite
time-consuming activities. A project manager must decide whether to extend the
project or bring on additional programmers to help write the code. In our proj-
ect, we have elected to insert a half-day of free time to bring in two additional
programmers and train them. Of course, we could go ahead and begin Day 5’s
activities to ensure that we keep the project on schedule.

Day 5 Activities
Even though detailed design and programming may frequently begin earlier in
the project, we have identified it as a separate day’s activities. We do this for a
couple of very important reasons. First, we want to emphasize that it is not a
good practice to begin programming before critical information is obtained and
decisions are made. Often, novice programmers will begin to program before

lookUpSupplier ()
displaySupplier ()

SupplierView

getSupplierInfo ()

Supplier

lookUpContact ()
displayContact ()

validateSupplierInput ()

validateContactInput ()

php

html/css

javascript

php

sql

Javascript
Functions

View layer

Supplier Subsystem

Model layer

ContactView

getContactInfo ()

Contact

FIGURE 1-17
Supplier subsystem architectural
design diagram

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 23

the users’ needs are adequately understood or even before the structure of the
overall system has been determined. But a much better approach is to under-
stand, design, and build small chunks of the system at a time. Agile Development
anticipates and plans for the expected changes and refinements to the problem
requirements that happen during detailed design and programming.

As the programmers write the code, they also perform individual testing on
the classes and functions they program. This textbook does not focus on program-
ming activities. However, we include an example of program code so you can see
how systems design relates to the final program code. Figure 1-18 is an example
of a class that receives and processes the request for supplier information.

Day 6 Activities
The focus of Day 6 activities is to do the final testing that is required before the
system is ready to be deployed. There are many types of testing that are
required. In this example, we mention only two types of testing: overall system
functional testing and user acceptance testing. Functional testing is usually a
system-level test of all user functions and is often done by a quality assurance
team. User acceptance tests are similar in nature, but they are done by the
users, who test not only the correctness of the system but its “fitness” to accom-
plish the business requirements.

Each of the various testing activities in Day 6 has a somewhat similar
sequence of tasks to perform. The tasks themselves highly depend on the test
data and on the method for testing a particular test case. In some instances, the
testing may be automated. In others, individuals may need to manually conduct
the tests. Many new systems are interactive systems with user activity. There are
some testing tools that automate that process somewhat, but it tends to be a
rather complex task.

<?php
 class SupplierView
 {
 private Supplier $theSupplier;

 function __construct()
 {
 $this->theSupplier = new Supplier();
 }

 function lookupSupplier()
 {
 include('lookupSupplier.inc.html');
 }

 function displaySupplier()
 {
 include('displaySupplierTop.inc.html');
 extract($_REQUEST); // get Form data
 //Call Supplier class to retrieve the data
 $results = $theSupplier->getSupplierInfo($supplier, $category,
 $product, $country, $contact);

 foreach ($results as $resultItem){
 ?>
 <tr>
 <td style="border:1px solid black">
 <?php echo $resultItem->supplierName?></td>
 <td style="border:1px solid black">
 <?php echo $resultItem->contactName?></td>
 <td style="border:1px solid black">
 <?php echo $resultItem->contactPosition?></td>
 </tr>
 <?php }
 include('displaySupplierFoot.inc.html');
 }
 }
?>

FIGURE 1-18
Code for the SupplierView class

24 PART 1 ■ An Introduction to Systems Development

Figure 1-19 is a generalized workflow for testing the new system. In this
workflow, we have shown the different testing tasks as separate steps. In reality,
they all tend to be carried out together. However, any given test case will follow
this flow.

First Iteration Recap
Figure 1-20 is a screenshot of the browser page that is used in the Tradeshow
System to enter and view suppliers.

As stated previously, this is the first (six-day) iteration of a longer project.
Using Agile techniques and iterations within an overall project allows flexibility
in defining and building a new system. One of the Agile mandates is that the
user should be heavily involved in the development of the new system. In this
six-day project, the users have had major involvement during all days except
Day 4 and Day 5.

A primary problem in developing a new system is that as the project pro-
gresses, new requirements are often identified. This happens because the users
and the project team learn more about how to solve the business need. Agile,
iterative projects are structured to handle these new requirements—often by
adding another iteration to the overall project.

As a final step in a current iteration, or perhaps as part of the planning
process for the next iteration, there should be a review of the processes and
success of the current iteration. The lessons learned and issues to be carried
forward create an environment of continual improvement and refinement.
Iterative projects tend to improve and become more efficient during the life of
the project.

Start Create test data Conduct tests

End

Document errors
and issues

Fix errors

FIGURE 1-19
Generalized workflow of testing tasks

Web Search

RMO Database Search

Supplier Name

Product Category

Product

Country

Contact Name

Supplier Name

Search Results

Contact PositionContact Name

GO

GO

FIGURE 1-20
Screen capture for Look up supplier
use case

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 25

Where You Are Headed—The Rest of
This Book
This sixth edition of Systems Analysis and Design in a Changing World includes
the printed textbook and supporting online chapters. The current printed text-
book provides a compact, streamlined, and focused presentation of those topics
that are essential for information systems developers. The online chapters extend
those concepts and provide a broader presentation of several topics. The online
chapters may be integrated into the course or simply used as additional reading
as prescribed by the instructor.

Part 1: Introduction to Systems Development
Part 1—comprising Chapter 1 and Online Chapter A—presents an overview of
systems development. The introductory chapter provides a detailed, concrete
example of what is required in a typical software development project. Of
course, many details had to be left out to keep this chapter at a reasonable
length. However, this chapter does present many processes, techniques, and dia-
grams. You are not expected to understand all the elements from this brief
introduction. However, you should have a general idea of the approach to
developing systems. You may want to refer back to this chapter from time to
time to help understand the big picture.

This first chapter begins by briefly explaining the objectives of systems anal-
ysis and systems design. Many students who take a programming class think
that programming is all you need to develop software and deploy a system.
This chapter and the rest of this book should dispel that myth.

Online Chapter A, “The Role of the Systems Analyst,” describes the many
skills required of a systems analyst. It also discusses the various career options
available to information systems majors. For those of you who are new to the
discipline of information systems, this chapter will provide interesting and help-
ful knowledge about information systems careers.

There are three major subject areas discussed in this book: systems analysis,
systems design, and project management. There is also one minor subject area,
which is no less important but not discussed in as much depth, and that is sys-
tems implementation, testing, and deployment. In addition, we have taken an
approach that is quite different from other texts. Because you already have a
basic understanding of systems analysis and design from Chapter 1, we can
immediately present in-depth concepts about systems analysis and design. We
present project management topics later in this text. This will allow you to
learn those project management concepts after understanding the elements of
systems analysis and design. We think it will be more meaningful for you at
that point in the course.

Part 2: Systems Analysis Tasks
Chapters 2 through 5 cover systems analysis in detail. Chapter 2 discusses tech-
niques for gathering information about the business problem. Developing the
right system solution is possible only if the problem is accurately understood.
The various people who are affected by the system (the stakeholders) are also
included in the development of the solution. Chapter 2 also explains how to
identify and involve the stakeholders and introduces the concept of models and
modeling. Chapters 3 and 4 present methods for capturing the detailed require-
ments for the system in a useful form. When discussing an information system,
two key concepts are particularly useful: use cases, which define what the end
users need the system to do, and the things, called data entities or classes, that
users work with while carrying out their tasks. These two concepts—use cases
and data entities/classes—are important no matter what approach to system

26 PART 1 ■ An Introduction to Systems Development

development is being used. Chapter 5 presents more in-depth models, such as
use case descriptions, use case diagrams, and system sequence diagrams.

Online Chapter B, “The Traditional Approach to Requirements,” presents
the traditional, structured approach to developing systems. To those instructors
and students who desire to learn about data flow diagrams, this chapter pro-
vides an in-depth presentation.

All these modeling techniques provide in-depth analysis of the user’s needs
and allow the analyst to develop requirements and specifications. Again, the
purpose of systems analysis is to thoroughly understand and specify the user’s
needs and requirements.

Part 3: Essentials of Systems Design
Chapters 6 and 7 provide the fundamental concepts related to systems design
and to defining and designing the user experience. Chapter 6 provides broad
and comprehensive coverage of important principles of systems design. It serves
not only as a broad overview of design principles but as a foundation for later
chapters that explain the detailed techniques, tasks, skills, and models used to
carry out design.

Chapter 7 presents additional design principles related to designing the user
interface and the system interfaces. Designing the user interface is a combination
of analysis and design. It is related to analysis because it requires heavy user
involvement and includes specifying user activities and desires. On the other
hand, it is a design activity because it is creating specific final components that
are used to drive the programming effort. The screens and reports and other
user interaction components must be precisely designed so they can be pro-
grammed as part of the final system. System interfaces occur when one informa-
tion system communicates or interacts with another information system without
human intervention. System interfaces are becoming increasingly important
because of Web services and cloud computing.

Part 4: Projects and Project Management
By this point, you will have a basic understanding of all the elements of systems
development.

Part 4 brings together all these concepts by explaining more about the pro-
cess of organizing and managing development projects. Chapter 8 describes dif-
ferent approaches to systems development in today’s environment, including
several important System Development Life Cycle models. It is an important
chapter to help you understand how projects actually get executed.

Chapter 9 extends these concepts by teaching foundation principles of proj-
ect management. Every systems analyst is involved in helping organize, coordi-
nate, and manage software development projects. In addition, almost all of you
will become team leaders and project managers. The principles presented in
Chapter 9 are essential to a successful career.

Online Chapter C, “Project Management Techniques,” goes into more
detail regarding the tools and techniques used by systems analysts and project
managers to plan and monitor development projects. For those instructors and
students who would like to learn specific project management skills, this is an
important chapter.

Part 5: Advanced Design and Deployment Concepts
Part 5 goes into more depth with respect to systems design, database design,
and other important issues related to effective and successful system develop-
ment and deployment.

Chapters 10 and 11 explain in detail the models, skills, and techniques used
to design software systems. As mentioned earlier in this chapter, systems design
is a fairly complex activity, especially if it is done correctly. The objective of

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 27

these two chapters is to teach you the various techniques—from simple to
complex—that can be used to effectively design software systems.

Chapter 12 explains how to design the database from the information
gleaned during analysis and the identification of the object classes. Other related
concepts, such as controls and security, are also presented in this chapter.
Chapter 13 describes the final elements in systems development: final testing,
deployment, maintenance, and version control. Chapter 14 concludes this book
by looking toward the future of software development and assessing the current
trends that may eventually enhance and improve the approaches to software
development.

Chapter Summary
This chapter provided a quick overview of a particular
software system development project called the
Tradeshow System. The six core processes that control
software development were presented. Then, the various
activities that support the execution of these six core pro-
cesses were explained as we went through an implementa-
tion of the Tradeshow System. The six core processes are:

1. Identify the problem or need and obtain approval to
proceed.

2. Plan and monitor the project—what to do, how to do
it, and who does it.

3. Discover and understand the details of the problem
or the need.

4. Design the system components that solve the problem
or satisfy the need.

5. Build, test, and integrate system components.
6. Complete system tests and then deploy the solution.

In order to facilitate learning and to help you remember
the core processes and related activities, we divided the
project into pre-project activities and then six other
groupings, which we called project days. It should be
noted that there is nothing magical or mandatory about
this way of organizing a project. It was done in this man-
ner simply to help you understand the various activities
related to the core processes.

Key Terms

Agile Development 6

computer application (app) 4

information system 4

information systems development
process 6

iterative development 8

project 5

subsystem 11

systems analysis 5

systems design 5

Systems Development Life
Cycle (SDLC) 6

Review Questions
1. What is the difference between an information sys-

tem and a computer application?

2. What is the purpose of systems analysis? Why is it
important?

3. What is the difference between systems analysis and
systems design?

4. What is a project?

5. What are the six core processes for software systems
development?

6. What is meant by Agile Development?

7. What is the purpose of a System Vision Document?

8. What is the difference between a system and a
subsystem?

9. What is the purpose of a Work Breakdown
Structure?

10. What are the components of a Work Breakdown
Structure? What does it show?

11. What information is provided by use cases or a use
case diagram?

12. What information is provided by a class diagram?

13. How do a use case diagram and a class diagram
drive the system development process?

28 PART 1 ■ An Introduction to Systems Development

14. What is another way to describe an activity
diagram? What does it show?

15. How does an activity diagram help in user-interface
design?

16. What is the purpose of architectural design?

17. What new information is provided in a design class
diagram (more than a class diagram)?

18. What are the steps of system testing?

19. What is the purpose of user acceptance testing?

20. Why is it a good practice to divide a project into
separate iterations?

21. What should be the objective or result of an
iteration?

CHAPTER CASE

Keeping Track of Your Geocaching Outings

When Wayne Johansen turned 16, his dad bought him
a new Garmin handheld GPS system. His family had
always enjoyed camping and hiking, and Wayne was
usually the member of the family who monitored their
hikes with his dad’s GPS system. He always liked to
carry the GPS because he really enjoyed monitoring
the routes, distances, and altitudes of their hikes.
More recently, though, he had found a new hobby
by using his GPS system: geocaching.

Geocaching is akin to the treasure hunts that most
of us did when we were kids. The difference is that
geocaching is a high-tech version of a treasure hunt
that uses GPS but also calls on one’s basic treasure-
hunting skills.

As Wayne became more involved with his hobby,
he discovered that there are many different kinds of
activities for geocaching enthusiasts. The simplest
ones are those that involve caches that can be found
by using GPS coordinates, although even some of these
can be difficult if the caches are well hidden and well
camouflaged. Some of the activities involve multipoint
drops in which there is a set of clues at multiple loca-
tions that must be followed in order to arrive at the
final cache point. Some activities involve puzzles that
must be solved in order to determine the coordinates
and location of the final cache.

Before long, Wayne wanted to make his own
caches and post them for people to find. He discovered
that there were several Web sites, including individuals’
blogs, with geocaching information, caches, and mem-
berships. He joined one of the geocaching Web sites and
used it to log his finds. It was fun to log and publish his
finds and to post the geocaches that he created. But he
decided he would like his own little system for keeping
track of all the information he wanted to maintain
about his caches. Conveniently, Wayne’s older brother
Nick, a college student majoring in information sys-
tems, was looking for a semester project for one of
his programming classes. The two of them decided to

work together and develop a system to help Wayne
keep track of all his geocaching activities.

In this end-of-chapter case, you will go through
the various core processes of an SDLC and perform
some of the activities of a development project. Of
course, this is a very small project with very limited
requirements. The project and various assignments
are divided into days, as was our Tradeshow project.
You have not learned all the skills required to effec-
tively produce all the documents illustrated in the
chapter. Hence, the daily assignments for this case
should be considered as preliminary efforts and
rough drafts. The objective of these assignments is sim-
ply to help you remember the overall approach to soft-
ware development. Several assignments have been
listed for each day to allow your instructor to select
those that best meet the objectives of the course.

Day 0: Define the Vision
The primary purpose of pre-project activities is to
define a vision for the new system. Either by yourself
or with another class member, brainstorm all the neat
functions this geocaching system might do. Keep it at a
very high level. You just want to think of the major
functions that Wayne might want the system to do
for him. These activities closely relate to Core Process
1: Identify the problem or need and obtain approval to
proceed.

Assignment D0-1: Write a rough draft of the System Vision
Document based on your brainstorming ideas. [Hint: Think of
what Wayne wants the system to do and why this is a benefit
to him.]

Day 1: Plan the Project
Obviously, this is a small project and does not require
an elaborate project plan. Based on the scope and vision
you described in the System Vision Document, divide
the project into at least two separate subsystems or

(continued on page 30)

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 29

sets of functions that can be done in two different itera-
tions. For example, perhaps a first version can run on a
laptop, with a second version that includes mobile com-
ponents for a smartphone. Or perhaps the first version
can maintain a history of past geocache hunts, and the
second version can allow Wayne to record geocaches
that he creates. Or the first version can create a simple
database system, and the second version can enhance it
by linking to photo albums and/or blog posts. As you
can see, there are often many different ways that a proj-
ect can be partitioned. These activities are related to
Core Process 2: Plan and monitor the project—what
to do, how to do it, and who does it.

Assignment D1-1: Divide the system into at least two separate
components or subsystems, which can be supported with two
iterations. Briefly describe each.

Assignment D1-2: Create a Work Breakdown Structure that lists
all the steps to complete the first iteration. Put a time estimate on
each step. [Hint: Use the one in this chapter as a model.]

Day 2: Define and Understand the
Requirements
We often describe the activities on Day 2 and Day 3
with the word understanding. On Day 2, we want to
get an overall view of what the system needs to do for
Wayne. As you learned in this chapter, there are two
primary areas we focus on to obtain this high-level
understanding of the system: a list of use cases and a
list of object classes. We could document this informa-
tion in lists, but diagrams provide a visual representa-
tion that is often easier to remember and understand.
These activities support Core Process 3: Discover and
understand the details of the problem or the need.

Assignment D2-1: Identify a few use cases that apply to one
subsystem. [Hint: Think of what Wayne plans to do with the
system. He will use the system to “do what”?]

Assignment D2-2: Try to identify the classes that apply to the
first project iteration. [Hint: Think of "information things" that
Wayne wants the system to “remember.”]

Assignment D2-3: Create a simple use case diagram from the
list of use cases. [Hint: Drawing by hand is fine. Use the one in
this chapter as a model.]

Assignment D2-4: Create a simple class diagram from the list
of classes. [Hint: Drawing by hand is fine. Use the one in this
chapter as a model. Think of some other pieces of information
that apply to each class.]

Day 3: Define the User Experience
These activities are a continuation of what we began in
Day 2. The objective here is to further understand
what Wayne will need and how he will actually use
the system. We will determine exactly how each use
case works—what steps and options are available
with the use case and even what the display and data
entry screens will look like. Unfortunately, this often
requires a lot of work. For this case, though, let us
keep it simple. These activities primarily support
Core Process 3: Discover and understand the details
of the problem or the need.

Assignment D3-1: Select a single use case and then identify
the individual steps required to perform the use case. [Hint:
Think of what Wayne does and how the system responds.]

Assignment D3-2: Make a workflow diagram of the selected
use case. [Hint: Drawing by hand is fine. Each step from D3-1
goes in an oval. Connect the ovals with arrows.]

Assignment D3-3: Sketch out one of the screens that will be
required to support a use case. The screen should allow for data
entry and display of information. [Hint: Don’t make it elaborate.
Focus only on the input and output data fields that apply to only
one use case.]

Day 4: Develop the Architectural Design
The high-level architectural design of the system gener-
ally includes decisions about how the system will be
built and what the database will look like. Design is
a technical activity that requires experience in pro-
gramming, database development, and system archi-
tecture. These activities support Core Process 4:
Design the system components that solve the problem
or satisfy the need.

Assignment D4-1: Design a preliminary database schema for
the classes in this iteration. [Hint: Each class becomes a table.
The attributes become table columns.]

Assignment D4-2: Decide whether you will build a desktop
system or a browser-based system. Write a couple of para-
graphs listing the pros and cons of each alternative in order to
defend your decision. [Hint: Either option is valid. Think of rea-
sons to support your decision.]

Day 5: Develop the Detailed Design and
Program the System
You have learned how to do these activities in your pro-
gramming classes. You probably have had many class
projects where you designed a system and then

(continued from page 29)

(continued on page 31)

30 PART 1 ■ An Introduction to Systems Development

programmed it. These kind of activities support Core
Process 5: Build, test, and integrate system components.

Assignment D5-1: Write a paragraph describing what program-
ming language(s) you would recommend and what development
environment you prefer. For this answer, draw on your previous
programming and development experiences. [Hint: There are
many valid solutions. Give reasons for your preference.]

Day 6: Test and Deploy the System
You may have had opportunities to perform compre-
hensive testing of your programming class projects,
especially if you have developed systems that inte-
grated with other systems. These activities support
Core Process 6: Complete system tests and then deploy
the solution. Obviously, you can only do this if you
have programmed the system.

Assignment D6-1: Write a paragraph describing the difference
between programmer testing and user testing. [Hint: Why is it
hard to test your own work? What do the users know that you
don’t know?]

Assignment D6-2: Write a paragraph describing all the issues
that might need to be addressed to deploy this system. [Hint:
You might want to search the Internet to learn about deploy-
ment issues.]

Assignment D6-3: Look at www.geocaching.com, which is a
commercial Web site. What other issues need to be addressed
to deploy this type of Web site? [Hint: Think about all the issues
related to security, robustness, financial protection, high
volumes, up-time, different browsers, and so forth.]

(continued from page 30)

CHAPTER 1 ■ From Beginning to End: An Overview of Systems Analysis and Design 31

www.geocaching.com

This page intentionally left blank

PART 2

Systems Analysis Activities

Chapter 2
Investigating System
Requirements

Chapter 3
Use Cases

Chapter 4
Domain Modeling

Chapter 5
Extending the Requirements
Models

Optional Online Chapter B
The Traditional Approach
to Requirements

33

This page intentionally left blank

2
Investigating System
Requirements

Chapter Outline

■ The RMO Consolidated Sales and Marketing System Project

■ Systems Analysis Activities

■ What Are Requirements?

■ Models and Modeling

■ Stakeholders

■ Information-Gathering Techniques

■ Documenting Workflows with Activity Diagrams

Learning Object ives

After reading this chapter, you should be able to:

■ Describe the activities of systems analysis

■ Explain the difference between functional and nonfunctional requirements

■ Describe the role of models in systems analysis

■ Identify and understand different kinds of stakeholders and their contributions
to requirements definition

■ Describe information-gathering techniques and determine when each is best
applied

■ Develop activity diagrams to model workflows

35

OPENING CASE

Mountain Vista Motorcycles

Amanda Lamy, president and majority stockholder of
Mountain Vista Motorcycles (MVM), is an avid motorcycle
enthusiast and businesswoman. MVM is headquartered in
Denver and has locations throughout the western United
States and Canada. Since the late-1990s, the market for
motorcycles has grown tremendously. Amanda expects
that the market will continue to be strong throughout the
2010s, although she is concerned about the “graying” of a
significant portion of MVM’s customer base.

The demographics of the motorcycle market are an
interesting study in contrasts. At present, the majority of
customers are over 50 years of age, male professionals or
businesspeople, and partly or fully retired. They have sub-
stantial disposable income, lots of free time, and tend to
own multiple expensive motorcycles from such manufac-
turers as Harley-Davidson, Honda, Ducati, and Moto Guzi.
Older customers are generally comfortable with Internet
and Web technology but are not significant users of social
media technology. Although many own smartphones, they
tend to use them primarily for voice, e-mail, and texting.

Male customers under 30 years of age tend to buy
sport and dirt bikes, typically from such manufacturers as
Suzuki and Kawasaki. They buy less expensive bikes than
older customers and are more likely to buy parts and sup-
plies from MVM to service their own bikes. Female custo-
mers under 30 years of age tend to buy motor scooters
and smaller “commuter” motorcycles. Customers in the
30–50 age range include men and women who buy bikes
of many types from many manufacturers. Comfort with
and use of Internet technology, social media, and portable
computing devices such as smartphones and iPads is very
high with customers under 50 years of age, especially with
customers under age 30.

Amanda is convinced that the key to long-term suc-
cess in the motorcycle market is to build an active commu-
nity of motorcycle enthusiasts at each MVM location that
includes a broad spectrum of customers. In essence, each
location needs to be seen as a hub of local motorcycle-
related activity and information in physical and virtual
terms. On the physical side, MVM has added activity and
event-oriented pages to its Web sites, sponsored rallies
and clubs, added meeting rooms and small coffee shops
in some locations, and colocated with bars and restaurants
that feature motorcycle-related themes and entertainment.
These efforts have yielded good results with older custo-
mers but less so with younger customers.

Amanda is concerned about the lack of participation by
younger customers and is sure that MVM’s lack of pres-
ence in social media and virtual relationships is a signifi-
cant factor. She and her senior staff, most of whom are
older, are unsure how to attract younger customers. They
have little knowledge of and no experience creating mod-
ern technology-based virtual communities.

MVM’s chief information officer is starting to develop
a project plan for a virtual community oriented toward
younger customers. If the plan were for developing a tradi-
tional information system, she would use such standard
approaches as interviewing internal users and managers
and having her development staff write specifications,
generate storyboards and screen layouts, and develop pro-
totypes. But few of the intended virtual community users
are MVM employees, and none of her staff members fully
comprehends how to successfully use social media and
other techniques for building virtual societies. Traditional
methods of defining and refining requirements seem inad-
equate to the task.

Overview
In Chapter 1, you saw the System Development Life Cycle (SDLC) being
employed by Ridgeline Mountain Outfitters (RMO) for a small information
system application called the Tradeshow System. Development of that system
followed the six core processes of the SDLC:

1. Identify the problem or need and obtain approval to proceed.
2. Plan and monitor the project—what to do, how to do it, and who does it.
3. Discover and understand the details of the problem or the need.
4. Design the system components that solve the problem or satisfy the need.
5. Build, test, and integrate system components.
6. Complete system tests and then deploy the solution.

In this chapter, we start expanding the scope and detail of the SDLC pro-
cesses to cover a wider range of concepts, tools, and techniques. The extra
depth and detail are needed to tackle larger and more complex projects. This
chapter concentrates on systems analysis activities (the third core process listed),
and the next few chapters follow up on that with detailed discussions of models

36 PART 2 ■ Systems Analysis Activities

developed during those systems analysis activities. Subsequent chapters expand
the discussion of other core SDLC processes.

The RMO Consolidated Sales
and Marketing System Project
Ridgeline Mountain Outfitters has an elaborate set of information systems
applications developed over the years to support operations and management.
However, there is a growing gap between customer expectations, modern tech-
nological capabilities, and existing RMO systems that support sales and cus-
tomer interaction. This section reviews the existing system inventory and
introduces the proposed Consolidated Sales and Marketing System that will
update and enhance sales and marketing.

Existing RMO Information Systems and Architecture
RMO’s Information Systems Department has always been forward looking. In
past years, the department, in conjunction with corporate strategic plans, has
developed five-year plans for development and deployment of new technology
and information systems. The planning process has been an excellent tool to
help the organization stay current with new trends and technology capabilities.
However, the plans themselves have had mixed success. One of the complexities
with long-range IT and software development plans is that technology changes
rapidly and moves in unexpected directions. For example, the Tradeshow
System described in Chapter 1 was made possible by the availability of powerful
and flexible handheld devices and the widespread availability of Wi-Fi and
Internet connections. Both technologies reached a fairly mature level in just a
couple of years, which created an opportunity for RMO to optimize this impor-
tant business process.

Historically, RMO has adopted new technology as soon as it became cost-
effective. Past examples include adoption of smaller servers and desktop comput-
ing, interconnection of locations with dedicated telecommunications links, and
such Web-based technologies as customer-oriented Web sites and browser-based
user interfaces for internal systems. At present, RMO has a disparate collection
of computers dispersed across home offices, retail stores, telephone centers, order
fulfillment/shipping centers, and warehouses—everything connected by a complex
set of local area networks (LANs), wide area networks (WANs), and virtual pri-
vate networks (VPNs). The term technology architecture describes the set of
computing hardware, network hardware and topology, and system software—
such as operating and database management systems—employed by an organiza-
tion. RMO’s technology architecture is modern but not state of the art, which is
consistent with its goal of adopting only cost-effective technology.

The term application architecture describes how software resources are
organized and constructed to implement an organization’s information systems.
It describes the organization of software into modules and subsystems and
includes supporting technologies (such as programming languages and develop-
ment environments), architectural approaches (such as service-oriented architec-
ture), and user-interface technologies (such as mobile computing displays, touch
screen technology, and voice recognition).

Currently, the major RMO systems consist of:

■ Supply Chain Management (SCM)—This application was deployed five
years ago as a client/server application using Java and Oracle. Currently, it
supports inventory control, purchasing, and distribution, although integra-
tion of functions needs improvement. The new Tradeshow System will
interface with this system.

■ Phone/Mail Order System—A modest client/server application developed
12 years ago by using Visual Studio and Microsoft SQL Server as a quick

technology architecture a set of
computing hardware, network hardware and
topology, and system software employed by
an organization

application architecture the organiza-
tion and construction of software resources to
implement an organization’s information
systems

CHAPTER 2 ■ Investigating System Requirements 37

solution to customer demand for catalog phone and mail orders. It is
integrated with the SCM and has reached capacity.

■ Retail Store System (RSS)—A retail store package with point-of-sale proces-
sing. It was upgraded eight years ago from overnight batch to real-time
inventory updates to/from the SCM.

■ Customer Support System (CSS)—This system was first deployed 15 years ago
as a Web-based catalog to support customer mail and phone orders. Four
years later, it was upgraded to an Internet storefront, supporting customer
inquiries, shopping cart, order tracking, shipping, back orders, and returns.

All organizations—including RMO—face a difficult challenge keeping all
their information systems current and effective. Because development resources
are limited, an organization’s technology and application architecture and its
information system inventory will include a mix of old and new. Older systems
were often designed for outdated operational methods and typically lack mod-
ern technologies and features that some competitors have adopted to improve
efficiency or competitiveness. Such is the case with RMO’s existing customer-
facing systems, which have several shortcomings, including:

■ Treating phone, Web, and retail sales as separate systems rather than as
an integrated whole

■ Employing outdated Web-based storefront technology
■ Not supporting modern technologies and customer interaction modes,

including mobile computing devices and social networking

Rather than incrementally update the existing sales systems, RMO plans to
replace them, as shown in Figure 2-1.

FIGURE 2-1 Proposed application architecture for RMO

Supply Chain Management (SCM) Consolidated Sales and Marketing System (CSMS)

Suppliers

Customers

Buyers

Retail Stores

Retail Sales

Phone Sales

CustomersTrade Show System (TSS)

Warehouses

Shipments

Orders
Shipments

Orders

Shipments

Online Sales

38 PART 2 ■ Systems Analysis Activities

The New Consolidated Sales and Marketing System
The goals of the Consolidated Sales and Marketing System (CSMS) are to modern-
ize the technology and functionality of the CSS and to add more customer-oriented
functionality. On the technology side, the CSMS will incorporate current Web
standards and be built under the assumption of high-bandwidth customer Internet
connections and high-resolution displays. Updating the technology will enable a
higher degree of interactivity, richer graphics, and a streamlined interface.

Key additions to system functionality will be support for mobile computing
devices, incorporation of customer feedback and comments into product informa-
tion, and integration of social networking functions. Unlike the CSS, the CSMS
will support smartphones and tablet computers with interfaces specifically designed
for each platform and with downloadable apps. Customer feedback will be
captured directly through the Internet storefront, from RMO-supported comment
forums and blogs, and mined from Facebook and Twitter. RMO will develop a
complete presence in each social networking venue and enable system users to
share purchases, recommendations, coupons, and store credits using those venues.

The new CSMS will also have four subsystems:

■ The Sales subsystem provides such basic functions as searching the online
catalog and purchasing items and paying for them online. However, it has
many new capabilities to assist the shopper making purchases. The system
will provide specific suggestions about accessories that go with the pur-
chased item. Images and videos of animated models will be available to help
the customer see how various items and accessory packages will look
together. The system will also provide information to shoppers about
related purchases made by other shoppers. Customer ratings and comments
are available for viewing. Finally, key social networking components will
permit shoppers to network with their friends by sending messages to ask
their opinions about particular merchandise items.

■ The Order Fulfillment subsystem will perform all the normal tasks of ship-
ping items and allowing customers to track the status of their orders as well
as the shipments. In addition, as part of order fulfillment, customers can rate
and make comments about particular merchandise and their overall shopping
experience. They may also make suggestions directly to RMO about the
attractiveness of the Web site and the quality of the service they received.

■ The Customer Account subsystem provides all those services that enhance the
customer experience. Customers can view and maintain their account informa-
tion. They also can “link up” with friends who are also customers to share
experiences and opinions on merchandise. The system will keep track of
detailed shipping addresses as well as payment preferences and information.
RMO also instituted a Mountain Bucks program wherein customers accumu-
late credits that can be used to redeem prizes as well as purchase merchandise.
Customers may use these Mountain Bucks for themselves or they may transfer
them to other people in their family/friends group. This is a great opportunity
to combine accumulated bucks to obtain expensive merchandise.

■ The Marketing subsystem is primarily for employees to set up the informa-
tion and services for customers. In this subsystem, employees can enter
information about all the merchandise offered by RMO. This subsystem is
also fed by the SCM system to maintain accurate data on the inventory in
stock and anticipated arrival dates of items on order. Employees also set up
the various promotional packages and seasonal catalogs by using the func-
tions of this subsystem. RMO is experimenting with a new idea to enhance
customer satisfaction: It is building partner relationships with other retailers
so that customers can earn “combined” points with RMO purchases or a
partner retailer purchase. These points can be used at RMO or transferred
and used at the partner. For example, because RMO sells outdoor and
sporting clothing, it has partnered with various sporting goods stores.

CHAPTER 2 ■ Investigating System Requirements 39

That way, a person can buy sporting equipment at the sporting equipment
store and get promotional discounts for clothing at RMO. The success of
this new venture has yet to be proven, but RMO anticipates that it will
enhance the shopping experience of all its customers.

In later chapters, more details will be given about the capabilities of the new
CSMS system. Detailed explanations will also describe the information that
must be maintained in the database to support these functions.

Systems Analysis Activities
The callout on the left side of Figure 2-2 lists the activities of the third core
process, which is to discover and understand the details. This core process also
goes by the name systems analysis. By completing these activities, the analyst
defines in great detail what the information system needs to accomplish to pro-
vide the organization with the desired benefits. In essence, analysis activities are a
second and more thorough pass at defining the problem and need. The first pass
generates only enough detail to decide whether a new or upgraded system is war-
ranted and feasible. The second (analysis) pass assumes that the organization is
committed to the project. Thus, considerably more time and resources are
invested to produce a much more detailed description of what the system will do.

Although we concentrate only on analysis activities in this chapter, keep in
mind that they are usually intermixed with design, implementation, and other activ-
ities during the system development life cycle. For example, as shown in Figure 2-2,
analysis activities are most intensive in the second iteration but occur in varying
degrees during all project iterations except the last. This pattern is typical because
an analyst will often concentrate on one part of a system, defining requirements
only for that part and simultaneously designing and implementing software to sat-
isfy those requirements. Organizing development activities in this iterative manner
enables development to be broken into smaller steps and enables users to validate
requirements by testing and observing a functional system. The following sections
briefly describe analysis activities, and the remainder of this chapter expands the
discussion of information gathering and defining system requirements.

Gather Detailed Information
Systems analysts obtain information from people who will be using the system,
either by interviewing them or by watching them work. They obtain additional
information by reviewing planning documents and policy statements. Analysts
also study existing systems, including their documentation. They also frequently
obtain additional information by looking at what other companies (particularly
vendors) have done when faced with a similar business need. They try to

FIGURE 2-2 Analysis activities

Analysis activities

Gather detailed information

Define requirements

Prioritize requirements

Develop user-interface dialogs

Evaluate requirements with users

Core
Processes

1 2 3 4 5 6

Identify problem and obtain

approval

Plan and monitor the project

Discover and understand details

Design system components

Build, test, and integrate system

components

Complete system tests and deploy
solution

Iterations

40 PART 2 ■ Systems Analysis Activities

understand an existing system by identifying and understanding the activities of
all the current and future users and by identifying all the present and future loca-
tions where work occurs and all the system interfaces with other systems, both
inside and outside the organization. In short, analysts need to talk to nearly every-
one who will use the new system or has used similar systems, and they must read
nearly everything available about the existing system. Later in this chapter, we
discuss how to identify and extract information from all these people.

Beginning analysts often underestimate how much there is to learn about the
work the user performs. The analyst must become an expert in the business area
the system will support. For example, if you are implementing an order-entry
system, you need to become an expert on the way orders are processed (including
related accounting procedures). If you are implementing a loan-processing
system, you need to become an expert on the rules used for approving credit. If
you work for a bank, you need to think of yourself as a banker. The most
successful analysts become experts in their organization’s main business.

Define Requirements
The analyst uses information gathered from users and documents to define
requirements for the new system. System requirements include the functions the
system must perform (functional requirements) and such related issues as user-
interface formats and requirements for reliability, performance, and security
(nonfunctional requirements). We further discuss the distinction between func-
tional and nonfunctional requirements a bit later in this chapter.

Defining requirements is not just a matter of writing down facts and figures.
Instead, the analyst creates models to record requirements, reviews the models
with users and others, and refines and expands the models to reflect new or
updated information. Building and refining requirements models occupies much
of the analyst’s time. This chapter and the next two chapters explain in consid-
erable depth how to create requirements models.

Prioritize Requirements
Once the system requirements are well understood, it is important to establish
which requirements are most crucial for the system. Sometimes, users suggest
additional system functions that are desirable but not essential. However, users
and analysts need to ask themselves which functions are truly important and
which are fairly important but not absolutely required. Again, an analyst who
understands the organization and the work done by the users will have more
insight toward answering these questions.

Why prioritize the functions requested by the users? Resources are always
limited, and the analyst must always be prepared to justify the scope of the system.
Therefore, it is important to know what is absolutely required. Unless the analyst
carefully evaluates priorities, system requirements tend to expand as users make
more suggestions (a phenomenon called scope creep). Requirements priorities also
help to determine the number, composition, and ordering of project iterations.
High-priority requirements are often incorporated into early project iterations so
analysts and users have ample opportunity to refine those parts of the system. Also,
a project with many high-priority requirements will typically have many iterations.

Develop User-Interface Dialogs
When a new system is replacing an old system that does similar work, users are usu-
ally quite sure about their requirements and the desired form of the user interface.
But many system development projects break new ground by automating functions
that were previously performed manually or by implementing functions that were
not performed in the past. In either case, users tend to be uncertain about many
aspects of system requirements. Such requirements models as use cases, activity dia-
grams, and interaction diagrams can be developed based on user input, but it is
often difficult for users to interpret and validate such abstract models.

CHAPTER 2 ■ Investigating System Requirements 41

In comparison, user validation of an interface is much simpler and more reli-
able because the user can see and feel the system. To most users, the user interface
is all that matters. Thus, developing user-interface dialogs is a powerful method of
eliciting and documenting requirements. Analysts can develop user interfaces via
abstract models, such as storyboards (covered in more detail in Chapter 7), or
they can develop user-interface prototypes on the actual input/output devices that
users will use (e.g., a computer monitor, iPad, or cell phone). A prototype interface
can serve as a requirement and a starting point for developing a portion of the sys-
tem. In other words, a user-interface prototype developed in an early iteration can
be expanded in later iterations to become a fully functioning part of the system.

Evaluate Requirements with Users
Ideally, the activities of evaluating requirements with users and documenting the
requirements are fully integrated. But in practice, users generally have other responsi-
bilities besides developing a new system. Thus, analysts usually use an iterative
process in which they elicit user input, work alone to model requirements, return to
the user for additional input or validation, and then work alone to incorporate the
new input and refine the models. Prototypes of user interfaces and other parts of the
system may also be developed when “paper” models are inadequate or when users
and analysts need to prove that chosen technologies will do what they are supposed
to do. Also, if the system will include new or innovative technology, the users may
need help visualizing the possibilities available from the new technology when defin-
ing what they require. Prototypes can fill that need. The processes of eliciting require-
ments, building models and prototypes, and evaluating them with users may repeat
many times until requirements models and prototypes are complete and accurate.

What Are Requirements?
As you can see from the previous section, requirements and models that repre-
sent them are a key focus of analysis phase activities. Most of the analyst’s time
is devoted to requirements: gathering information about them, formalizing them
by using models and prototypes, refining and expanding them, prioritizing
them, and generating and evaluating alternatives. But to fully understand those
activities, you need to answer a fundamental question: What are requirements?

System requirements are all the activities the new system must perform
or support and the constraints that the new system must meet. Generally, ana-
lysts divide system requirements into two categories: functional and nonfunc-
tional requirements. Functional requirements are the activities that the system
must perform (i.e., the business uses to which the system will be applied). For
example, if you are developing a payroll system, the required business uses
might include such functions as “generate electronic fund transfers,” “calculate
commission amounts,” “calculate payroll taxes,” “maintain employee-dependent
information,” and “report tax deductions to the IRS.” The new system must
handle all these functions. Identifying and describing all these business uses
require a substantial amount of time and effort because the list of functions and
their relationships can be very complex.

Functional requirements are based on the procedures and rules that the
organization uses to run its business. Sometimes, they are well documented and
easy to identify and describe. An example might be the following: “All new
employees must fill out a W-4 form to enter information about their tax with-
holding in the payroll system.” Other business rules might be more obtuse or
difficult to find. An example from RMO might be the following: “Air shipping
charges are reduced by 50 percent for orders over $200 that weigh less than
two pounds.” Discovering such rules is critical to the final design of the system.
If this rule were not discovered, customers that had relied on it in the past might
become angry. Modifying the system after customers start complaining would
be much more difficult and expensive than building in the rule from the start.

system requirements the activities a
system must perform or support and the
constraints that the system must meet

functional requirements the activities
that the system must perform

42 PART 2 ■ Systems Analysis Activities

Nonfunctional requirements are characteristics of the system other than
those activities it must perform or support. It is not always easy to distinguish
functional from nonfunctional requirements. One way to do so is to use a
framework for identifying and classifying requirements. There have been many
such frameworks developed over time; the most widely used today is called
FURPS+ (see Figure 2-3). FURPS is an acronym that stands for functionality,
usability, reliability, performance, and security. The “F” in FURPS is equivalent
to the functional requirements defined previously. The remaining FURPS catego-
ries describe nonfunctional requirements:

■ Usability requirements describe operational characteristics related to
users, such as the user interface, related work procedures, online help, and
documentation. For example, the user interface for a smartphone app
should behave similarly to other apps when responding to such gestures as
two-finger slides, pinching, and expanding. Additional requirements might
include menu format, color schemes, use of the organization’s logo, and
multingual support.

■ Reliability requirements describe the dependability of a system—how
often a system exhibits such behaviors as service outages and incorrect
processing and how it detects and recovers from those problems.

■ Performance requirements describe operational characteristics related to
measures of workload, such as throughput and response time. For example,
the client portion of a system might be required to have a one-half-second
response time to all button presses, and the server might need to support
100 simultaneous client sessions (with the same response time).

■ Security requirements describe how access to the application will be
controlled and how data will be protected during storage and transmission.
For example, the application might be password protected, encrypt locally
stored data with 1024-bit keys, and use secure HTTP for communication
among client and server nodes.

FURPS+ is an extension of FURPS that adds additional categories, includ-
ing design constraints as well as implementation, interface, physical, and sup-
portability requirements—all these additional categories summarized by the plus
sign. Here are short descriptions of each category:

■ Design constraints describe restrictions to which the hardware and soft-
ware must adhere. For example, a cell phone application might be required
to use the Android operating system, consume no more than 30MB of flash
memory storage, consume no more than 10MB of system memory while
running, and operate on CPUs rated at 1 GHz or higher.

User interface, ease of use

Failure rate, recovery methods

Response time, throughput

Access controls, encryption

Hardware and support software

Development tools, protocols

Data interchange formats

Size, weight, power consumption

Installation and updates

Functional

Requirement
categories

FURPS +
categories

Nonfunctional Usability

Reliability

Performance

Security

+ Design constraints

 Implementation

 Interface

 Physical

 Support

Functions Business rules and processes

Example
requirements

FIGURE 2-3
FURPS+

nonfunctional requirements system
characteristics other than the activities it must
perform or support

FURPS a requirements classification
framework (acronym stands for functionality,
usability, reliability, performance, and security)

usability requirements operational
characteristics related to users, such as the
user interface, related work procedures, online
help, and documentation

reliability requirements requirements
that describe system dependability

performance requirements opera-
tional characteristics related to measures
of workload, such as throughput and
response time

security requirements requirements
that describe how access to the application will
be controlled and how data will be protected
during storage and transmission

FURPS+ an extension of FURPS that
includes design constraints as well as
implementation, interface, physical, and
supportability requirements

design constraints restrictions to which
the hardware and software must adhere

CHAPTER 2 ■ Investigating System Requirements 43

■ Implementation requirements describe constraints such as required
programming languages and tools, documentation method and level
of detail, and a specific communication protocol for distributed
components.

■ Interface requirements describe interactions among systems. For
example, a financial reporting system for a publicly traded company
in the United States must generate data for the Securities and Exchange
Commission (SEC) in a specific XML format. The system might also
supply data directly to stock exchanges and bond rating agencies and
automatically generate Twitter messages, RSS feeds, and Facebook
updates.

■ Physical requirements describe such characteristics of hardware as size,
weight, power consumption, and operating conditions. For example, a sys-
tem that supports battlefield communications might have such requirements
as weighing less than 200 grams, being no larger than 5 centimeters cubed,
and operating for 48 hours on a fully charged 1200 milliwatt lithium ion
battery.

■ Supportability requirements describe how a system is installed, config-
ured, monitored, and updated. For example, requirements for a game
installed on a home PC might include automatic configuration to maximize
performance on existing hardware, error reporting, and download of
updates from a support server.

As with any set of requirements categories, FURPS+ has some gray areas
and some overlaps among its categories. For example, is a requirement that a
battlefield communications device survive immersion in water and operate
across a temperature range of –20°C to 50°C a performance or physical require-
ment? Is a restriction to use no more than 100 MB of memory a performance
or design requirement? Is a requirement to secure communication between
workstations and servers with 1024-bit encryption a performance, design, or
implementation requirement? The answers to such questions are not important.
What is important is that all requirements be identified and precisely stated
early in the development process and that inconsistencies or trade-offs among
them be resolved.

Models and Modeling
Modeling is an important part of analysis and design. Analysts build models to
describe system requirements and use those models to communicate with users
and designers. By developing a model and reviewing it with a user, an analyst
demonstrates an understanding of the user’s requirements. If the user spots
errors or omissions, they are incorporated into the model before it becomes the
basis for subsequent design and implementation activities. Figure 2-4 summarizes
the key reasons for building and using models.

Designers construct high-level and detailed models to describe system com-
ponents and their interactions. Design models serve as a scratch pad for evaluat-
ing design alternatives and as a way to communicate the final design to
programmers, vendors, and others who will build, acquire, and assemble com-
ponents to create the final system. In general, models built during one SDLC
activity are “consumed” during other activities.

A model is a representation of some aspect of the system being built. There
are dozens of different models that an analyst or designer might develop and use
(see Figure 2-5). Although this book emphasizes models and techniques for
creating models, it is important to remember that system projects vary in the
number of models required and in their formality. Smaller, simpler system
projects will not need models showing every system detail, particularly when

implementation requirements
constraints such as required programming
languages and tools, documentation method
and level of detail, and a specific communica-
tion protocol for distributed components

interface requirements required
interactions among systems

physical requirements characteristics
of hardware such as size, weight, power con-
sumption, and operating conditions

supportability requirements how a
system is installed, configured, monitored, and
updated

model representation of some aspect
of a system

44 PART 2 ■ Systems Analysis Activities

the project team has experience with the type of system being built. Sometimes,
the key models are created informally in a few hours. Although models are
often created by using specialized software tools, useful and important models
are sometimes drawn quickly over lunch on a paper napkin or in an airport
waiting room on the back of an envelope! As with any development activity, an
iterative approach is used for creating models. The first draft of a model has
some but not all details worked out. The next iteration might fill in more details
or correct previous misconceptions.

Analysis and design models can be grouped into three generic types:

■ Textual models—Analysts use such textual models as memos, reports,
narratives, and lists to describe requirements that are detailed and are diffi-
cult to represent in other ways. The event list in Figure 2-5 is one example
of a textual model. Narrative description is often the best way to initially
record information gathered verbally from stakeholders, such as during an
interview. In many cases, narratives and other textual models are later con-
verted into a graphical format.

1 buy new car

2 sell car

3 get car serviced

4 make payment

5 trade in car

Event list Use case
description

Use case
diagram

Sequence
diagram

Communication
diagram

State machine
diagram

Class diagram

Location
diagram

FIGURE 2-5
Some analysis and design models

Learning from the modeling process

Reducing complexity by abstraction

Remembering all the details

Communicating with other development team members

Communicating with a variety of users and stakeholders

Documenting what was done for future maintenance/enhancement

FIGURE 2-4
Reasons for modeling

textual models text-based system mod-
els such as memos, reports, narratives, and lists

CHAPTER 2 ■ Investigating System Requirements 45

■ Graphical models—Graphical models make it easier to understand com-
plex relationships that are difficult to follow when described as a list or
narrative. Recall the old saying that a picture is worth a thousand words.
In system development, a carefully constructed graphical model might be
worth a million words! Some graphical models actually look similar to a
real-world part of the system, such as a screen design or a report layout
design. However, the graphical models developed during analysis activities
typically represent more abstract things, such as external agents, processes,
data, objects, messages, and connections.

■ Mathematical models—Mathematical models are one or more formulas
that describe technical aspects of a system. Analysts often use mathematical
models to represent functional requirements for scientific and engineering
applications and occasionally use them to describe business system require-
ments in areas such as accounting and inventory control. Analysts and
designers use mathematical models to describe requirements and operational
parameters such as network throughput or database query response time.

Many graphical models used in system development are drawn according to the
notation specified by the Unified Modeling Language (UML). In Figure 2-5, the
use case diagram, class diagram, sequence diagram, communication diagram, and
state machine diagram are UML graphical models. UML is the standard set of
model constructs and notations defined by the Object Management Group (OMG),
a standards organization for system development. By using UML, analysts and end
users are able to depict and understand a variety of specific diagrams used in a
system development project. Prior to UML, there was no standard, so diagrams
could be confusing, and they varied from company to company (and from book
to book).

We expand the discussion of models later in this chapter with a detailed
look at one type of graphical model: the workflow diagram. In later chapters,
you learn how to develop many of other types of analysis and design models.

Stakeholders
Stakeholders are your primary source of information for system requirements.
Stakeholders are all the people who have an interest in the successful imple-
mentation of the system. Depending on the nature and scope of the system, this
can be a small or a large, diverse group. For example, when implementing a
comprehensive accounting system for a publicly traded corporation in the
United States, the stakeholders include bookkeepers, accountants, managers and
executives, customers, suppliers, auditors, investors, the SEC, and the Internal
Revenue Service (IRS). Each stakeholder group interacts with the system in dif-
ferent ways, and each has a unique perspective on system requirements. Before
gathering detailed information, the analyst identifies every type of stakeholder
who has an interest in the new system and ensures that critical people from
each stakeholder category are available to serve as the business experts.

One useful way to help identify all the interested stakeholders is to con-
sider two characteristics by which they vary: internal stakeholders versus exter-
nal stakeholders and operational stakeholders versus executive stakeholders
(see Figure 2-6). Internal stakeholders are those within the organization who
interact with the system or have a significant interest in its operation or suc-
cess. You may be tempted to define internal stakeholders as employees of an
organization, but some organizations—such as nonprofits and educational
institutions—have internal users (e.g., volunteers and students) who are not
employees. External stakeholders are those outside the organization’s control
and influence, although this distinction can also be fuzzy, such as when an
organization’s strategic partners (e.g., suppliers and shipping companies) inter-
act directly with internal systems.

graphical models system models that
use pictures and other graphical elements

mathematical models system models
that describes requirements numerically or as
mathematical expressions

Unified Modeling Language (UML)
standard set of model constructs and notations
defined by the Object Management Group

stakeholders persons who have an
interest in the successful implementation
of the system

internal stakeholders persons within
the organization who interact with the system
or have a significant interest in its operation or
success

external stakeholders persons outside
the organization’s control and influence who
interact with the system or have a significant
interest in its operation or success

46 PART 2 ■ Systems Analysis Activities

Operational stakeholders are those who regularly interact with a system in
the course of their jobs or lives. Examples include bookkeepers interacting with
an accounting or billing system, factory workers interacting with a production
scheduling system, customers interacting with an Internet storefront, and patients
who interact with a health care Web site, Facebook page, or Twitter newsfeed.
Operational users are a key source of requirements information, especially as it
pertains to user interfaces and related functionality. Executive stakeholders
are those who do not interact directly with the system but who either use infor-
mation produced by the system or have a significant financial or other interest in
its operation and success. Examples include an organization’s senior managers
and board of directors, regulatory agencies, and taxing authorities.

Including such stakeholders in analysis activities is critical because the
requirements information they possess may not be obvious or widely known in
the organization. In addition, system requirements imposed by executive stake-
holders, especially external ones, often have significant legal and financial impli-
cations. For example, consider the potential effects of IRS regulations on an
accounting system or the effects of federal and state privacy laws on a social
networking system.

Two other stakeholder groups that do not neatly fall into the categories just
described deserve special attention. The client is the person or group that pro-
vides the funding for the project. In many cases, the client is senior management.
However, clients may also be a separate group, such as a corporation’s board of
directors, executives in a parent company, or the board of regents of a university.
The project team includes the client in its list of important stakeholders because
the team must provide periodic status reviews to the client throughout develop-
ment. The client or a direct representative on a steering or oversight committee
also usually approves stages of the project and releases funds.

An organization’s technical and support staff are also stakeholders in any
system. The technical staff includes people who establish and maintain the com-
puting environment of the organization. Support staff provide user training,
troubleshooting, and related services. Both groups should provide guidance in
such areas as programming language, computer platforms, network interfaces,
and existing systems and their support issues. Any new system must fit within
an organization’s existing technology architecture, application architecture, and
support environment. Thus, technical and support representatives are important
stakeholders.

Regulators

Partner organizations

Bookkeepers

Operational Executive

Accountants

Internal auditors

Internal

External

Customers

Investors

Board of directors

Senior managers

External
auditors

Operational
managers

FIGURE 2-6
Stakeholders of a comprehensive
accounting system for a publicly traded
company

operational stakeholders persons
who regularly interact with a system in the
course of their jobs or lives

executive stakeholders persons who
don’t interact directly with the system but who
either use information produced by the system
or have a significant financial or other interest
in its operation and success

client person or group that provides the
funding for a system development project

CHAPTER 2 ■ Investigating System Requirements 47

The Stakeholders for RMO
As a starting point for identifying CSMS stakeholders, it is helpful to develop a
list of CSS stakeholders, which include:

■ Phone/mail sales order clerks
■ Warehouse and shipping personnel
■ Marketing personnel who maintain online catalog information
■ Marketing, sales, accounting, and financial managers
■ Senior executives
■ Customers
■ External shippers (e.g., UPS and FedEx)

Because the CSMS will take over existing functions of the CSS, the list of
CSMS stakeholders includes all the stakeholders in the CSS list. However, there
are some subtle differences. For example, the inclusion of social networking
functions in the CSMS and the planned ability to share Mountain Bucks
expands the concept of who is a customer. While the old CSS was intended for
use by potential customers visiting the Web site, the new system potentially
interacts with a much larger group of external stakeholders, including friends
and family of existing customers and potentially all users of popular social net-
working sites. In essence, the stakeholder group “Customers” is much larger,
more diverse, and includes people who have not purchased from RMO.
Ensuring that the viewpoints and requirements of this diverse group are repre-
sented during analysis activities will be a considerable challenge.

Expanded functionality for sales promotions with partner organizations
creates an entirely new group of external stakeholders within those partner
organizations. At this point, it is unclear whether that group will include oper-
ational stakeholders, executive stakeholders, or both and exactly how those
stakeholders will interact with the system. Once again, ensuring adequate
input from those stakeholders will be a significant challenge, especially because
the portions of the system used by those stakeholders will not be based on an
existing system.

RMO is a privately held company; John and Liz Blankens are the owners,
and they hold two senior management positions. This is significant because the
key operational systems of any publicly traded company “inherit” many exter-
nal stakeholders due to the flow of information from those systems to the orga-
nization’s financial reports. RMO is audited by an external accounting firm,
primarily to ensure access to bank loans and other private financing.

As owners and senior managers, John and Liz are the primary clients,
but so are other senior executives who form a collaborative decision-making
body. In addition, existing technical and support staff are key stakeholders.
Figure 2-7 summarizes the internal managerial stakeholders in the form of
an organization chart.

Information-Gathering Techniques
Techniques for gathering detailed requirements information include:

■ Interviewing users and other stakeholders
■ Distributing and collecting questionnaires
■ Reviewing inputs, outputs, and documentation
■ Observing and documenting business procedures
■ Researching vendor solutions
■ Collecting active user comments and suggestions

All these methods have proven to be effective, although some are more efficient
than others. In most cases, analysts combine methods to increase their effectiveness
and efficiency and to provide a comprehensive fact-finding approach.

48 PART 2 ■ Systems Analysis Activities

Interview Users and Other Stakeholders
Interviewing users and other stakeholders is an effective way to understand busi-
ness functions and business rules. Unfortunately, it is also the most time-
consuming and resource-expensive option. In this method, systems analysts:

■ Prepare detailed questions.
■ Meet with individuals or groups of users.
■ Obtain and discuss answers to the questions.
■ Document the answers.
■ Follow up as needed in future meetings or interviews.

Obviously, this process may take some time, so it usually requires multiple
sessions with each of the users or user groups.

Jason Nadold

Manager

Warehousing/Shipping

John Blankens
President CEO

William Mcdougal
VP Marketing

and Sales

Genny Monson
AVP Retail

Sales

Brian Haddock

Director of

Operations

Karen Hansen

Director of

New Design

Henry Manwaring

Director of U.S.

Purchasing

Nathan Brunner
AVP

Production

Maryann Whitehead
Director of International

Purchasing

Elizabeth Blankens
VP Merchandising

and Distribution

Joann White
VP Finance and

Systems

April Sterling
AVP Accounting

and Finance

Joe Jones
AVP

Marketing/Advertising

Robert Schneider

Director of

Catalog Sales

Christine Roundy

Manager of Telephone

Sales

Mac Preston
Chief Information

Officer

John Macmurty

Director of System

Development

Ann Hamilton

Director of System

Support

FIGURE 2-7
RMO management stakeholders
involved in the CSS requirements
definition

CHAPTER 2 ■ Investigating System Requirements 49

Question Themes
Whether in informal meetings, formal interviews, or as part of a questionnaire
or survey, analysts ask questions. But which questions should analysts ask?
Figure 2-8 shows three major themes that guide the analysts when they are ask-
ing questions to define system requirements; it also shows sample questions that
arise from those themes.

What Are the Business Processes? The analyst must obtain a comprehensive list of
all the business processes. In most cases, the users provide answers in terms of the
current system, so the analyst must carefully discern which of those functions are
fundamental (i.e., which will remain and which may possibly be eliminated with an
improved system). For example, sales clerks might indicate that the first task they
perform when a customer places an order is to check the customer’s credit history.
In the new system, sales clerks might never need to perform that function; the system
might perform the check automatically. The function remains a system requirement,
but the method of carrying out the function and its timing are changed.

How Are the Business Processes Performed? Again, the focus starts with the
current system but gradually moves to the new system. The goal is to determine
how the new system should support the function rather than how it supports it
now. The analyst must be able to help the user visualize new and more efficient
approaches to performing the business processes made possible by new technology
or processes.

What Information Is Required? Some information inputs are formal; others are
informal. When questioning the user, the analyst should specifically ask about
exceptions or unusual situations in order to identify additional (nonroutine) infor-
mation requirements. In this theme and the previous one, detail is the watchword.
An analyst must understand the nitty-gritty detail to develop a correct solution.

Question Types
Questions can be roughly divided into two types:

■ Open-ended questions—questions such as “How do you do this function?”
that encourage discussion and explanation

■ Closed-ended questions—questions such as “How many forms a day do
you process?” that are used to get specific facts

Generally, open-ended questions help to start a discussion and enable a
large number of requirements to be uncovered fairly quickly. Note that all the
questions in the previous section are open ended. A discussion that starts with
open-ended questions usually shifts gradually to closed-ended questions that
elicit or confirm specific details of a business process.

Focus of Questions—Current System or New?
A significant question that faces all analysts is how much effort to expend
studying and documenting the existing system (if one exists). Excess attention to

Theme Questions to users

What are the business operations and processes? What do you do?

What information is needed to perform those
operations?

How should those operations be performed? How do you do it?
What steps do you follow?
How could they be done differently?

What information do you use?
What inputs do you use?
What outputs do you produce?

FIGURE 2-8
Themes for information-gathering
questions

open-ended questions questions that
encourage discussion or explanation

closed-ended questions questions
that elicit specific facts

50 PART 2 ■ Systems Analysis Activities

an existing system can consume considerable time and can result in simply
updating that system with newer technology. As a result, no matter how ineffi-
cient the current system is, system developers simply reimplement the procedures
that are already in place. On the other hand, if a new system inherits many or
all of the requirements of an existing system, then an analyst risks missing
important requirements through insufficient study of the existing system.

To minimize both risks, analysts must balance the review of current busi-
ness functions with discovery of new system requirements. It is still critical to
have a complete correct set of system requirements, but in today’s fast-paced
world, there is no time or money to review all the old systems and document
all the inefficient procedures. In fact, in today’s development environment, one
of the most valuable capabilities that a good system developer can bring is a
new perspective to the problem.

Interview Preparation, Conduct, and Follow-Up
Figure 2-9 is a sample checklist that summarizes the major points to be covered;
it is useful in preparing for, conducting, and following up an interview.

Preparing for the Interview Every successful interview requires preparation. The
first and most important step in preparing for an interview is to establish its
objective. In other words, what do you want to accomplish with this interview?
Write down the objective so it is firmly established in your mind. The second
step is to determine which stakeholders should be involved in the interview. A
small number of interviewees is generally best when the objective is narrow or
of a fact-finding nature. Larger groups are better if the objective is more open
ended, such as when generating and evaluating new ideas. However, it can be
difficult to manage a large group meeting to ensure high-quality input from all
participants. If possible, have at least two analysts involved in every interview,
and have them compare notes afterward to ensure accuracy.

The next step is to prepare detailed questions to be used in the interview.
Write down a list of specific questions, and prepare notes based on the forms
or reports received earlier. Usually, you should prepare a list of questions that
are consistent with the objective of the interview. Open-ended questions and
closed-ended questions are appropriate. Generally, open-ended questions help

Establish the objective for the interview.
Determine correct user(s) to be involved.
Determine project team members to participate.
Build a list of questions and issues to be discussed.
Review related documents and materials.
Set the time and location.
Inform all participants of objective, time, and locations.

Checklist for Conducting an Interview

Before

During

Review notes for accuracy, completeness, and understanding.
Transfer information to appropriate models and documents.
Identify areas needing further clarification.
Thank the participants.
Follow up on open and unanswered questions.

Arrive on time.
Look for exception and error conditions.
Probe for details.
Take thorough notes.
Identify and document unanswered items or open questions.

After

FIGURE 2-9
Sample checklist to prepare for user
interviews

CHAPTER 2 ■ Investigating System Requirements 51

get the discussion started and encourage the user to explain all the details of the
business process and the rules.

The last step is to make the final interview arrangements and then communi-
cate those arrangements to all participants. A specific time and location should be
established. If possible, a quiet location should be chosen, to avoid interruptions.
Each participant should know the objective of the meeting and, when appropri-
ate, should have a chance to preview the questions or materials to be used.
Interviews consume a substantial amount of time, and they can be made more
efficient if each participant knows beforehand what is to be accomplished.

Conducting the Interview The usual rules of workplace meetings apply during
stakeholder interviews: plan ahead, arrive early, and ensure that the room is
prepared and that needed resources are available. Limit the time of the interview
for the benefit of the analyst(s) and stakeholder(s); stakeholders have other
responsibilities, and the analysts can absorb only so much information at one
time. It is better to have several shorter interviews than one long interview. A
series of interviews provides an opportunity to absorb the material and then go
back to get clarification later.

Look for exception and error conditions. Look for opportunities to ask
“what if” questions. “What if it doesn’t arrive? What if the signature is missing?
What if the balance is incorrect? What if two orders are exactly the same?” The
essence of good systems analysis is understanding all the “what ifs.” Make a
conscious effort to identify all the exception conditions and then ask about
them. More than any other skill, the ability to think of the exceptions will help
you discover the detailed business rules. It is a hard skill to teach from a text-
book; experience will hone this skill. You will teach yourself this skill by consci-
entiously practicing it.

Probe for details. In addition to looking for exception conditions, the ana-
lyst must probe to ensure a complete understanding of all procedures and rules.
One of the most difficult skills to learn as a new systems analyst is how to get
enough details. Frequently, it is easy to get a general overview of how a process
works. But do not be afraid to ask detailed questions until you thoroughly
understand how the process works and what information is used. You cannot
do effective systems analysis by glossing over the details.

Take careful notes. It is a good idea to take handwritten notes. Usually,
tape recorders make users nervous. However, taking notes signals that you
think the information you are obtaining is important, and the user is compli-
mented. If two analysts conduct each interview, they can compare notes later.
Identify and document in your notes any unanswered questions or outstanding
issues that were not resolved. A good set of notes provides the basis for building
the analysis models as well as establishing a basis for the next interview session.

Figure 2-10 is a sample agenda for an interview session. Obviously, you do
not need to conform exactly to a particular agenda. However, as with the inter-
view checklist shown in Figure 2-9, this figure will help prod your memory on
issues and items that should be discussed in an interview. Make a copy and use
it. As you develop your own style, you can modify the checklist to the way you
like to work.

Following Up the Interview Follow-up is an important part of each interview.
The first task is to absorb, understand, and document the information that was
obtained. Generally, analysts document the details of the interview by construct-
ing models of the business processes and writing textual descriptions of non-
functional requirements. These tasks should be completed as soon after the
interview as possible and the results distributed to the interview participants for
validation. If the modeling methods are complex or unfamiliar to the users, the
analyst should schedule follow-up meetings to explain and verify the models, as
described in the last section of this chapter.

52 PART 2 ■ Systems Analysis Activities

During the interview, you probably asked some “what if” questions that the
users could not answer. They are usually policy questions raised by the new sys-
tem that management has not considered before. It is extremely important that
these questions not get lost or forgotten. Figure 2-11 shows a sample table for
tracking outstanding or unresolved issues for RMO. The table includes ques-
tions posed by users or analysts and responsibilities assigned for resolving the
issues. If several teams are working, a combined list can be maintained. Other
columns that might be added to the list are an explanation of the problem’s res-
olution and the date resolved.

FIGURE 2-11 Sample open-items list

ID Issue title Date identified Target
end date

Responsible
project person User contact Comments

1 Partial
shipments

6-12-2012 7-15-2012 Jim Williams Jason Nadold Ship partials or wait
for full shipment?

2 Returns and
commissions

7-01-2012 9-01-2012 Jim Williams William
McDougal

Are commissions
recouped on
returns?

3 Extra
commissions

7-01-2012 8-01-2012 Mary Ellen Green William
McDougal

How to handle com-
missions on special
promotions?

Discussion and Interview Agenda

Setting

Objective of Interview
Determine processing rules for sales commission rates

Date,Time, and Location
April 21, 2012, at 9:00 a.m. in William McDougal’s office

User Participants (names and titles/positions)
William McDougal, vice president of marketing and sales, and
several of his staff

Project Team Participants
Mary Ellen Green and Jim Williams

Interview/Discussion

1. Who is eligible for sales commissions?
2. What is the basis for commissions? What rates are paid?
3. How is commission for returns handled?
4. Are there special incentives? Contests? Programs based on time?
5. Is there a variable scale for commissions? Are there quotas?
6. What are the exceptions?

Follow-Up

Important decisions or answers to questions
See attached write-up on commission policies

Open items not resolved with assignments for solution
See Item numbers 2 and 3 on open items list

Date and time of next meeting or follow-up session
April 28, 2012, at 9:00 a.m.

FIGURE 2-10
Sample interview session agenda with
follow-up information

CHAPTER 2 ■ Investigating System Requirements 53

Finally, make a list of new questions based on areas that need further elabo-
ration or that are missing information. This list will prepare you for the next
interview.

Distribute and Collect Questionnaires
Questionnaires enable analysts to collect information from a large number of
stakeholders. Even if the stakeholders are widely distributed geographically, they
can still help define requirements through questionnaires. Questionnaires are often
used to obtain preliminary insight into stakeholder information needs, which helps
to determine areas that need further research by using other methods.

Figure 2-12 is a sample questionnaire showing three types of questions. The
first part has closed-ended questions to determine quantitative information.

FIGURE 2-12 Sample questionnaire

RMO Questionnaire

This questionnaire is being sent to all telephone-order sales personnel. As you know, RMO is developing a new
customer support system for order taking and customer service.

The purpose of this questionnaire is to obtain preliminary information to assist in defining the requirements for
the new system. Follow-up discussions will be held to permit everybody to elaborate on the system requirements.

Part I. Answer these questions based on a typical four-hour shift.
1. How many phone calls do you receive?___
2. How many phone calls are necessary to place an order for a product?_______________________________
3. How many phone calls are for information about RMO products, that is, questions only?_________________
4. Estimate how many times during a shift customers request items that are out of stock.__________________
5. Of those out-of-stock requests, what percentage of the time does the customer desire to put the item
 on back order?______________%
6. How many times does a customer try to order from an expired catalog?______________________________
7. How many times does a customer cancel an order in the middle of the conversation?___________________
8. How many times does an order get denied due to bad credit?______________________________________

Part II. Circle the appropriate number on the scale from 1 to 7 based on how strongly you
agree or disagree with the statement.

Question Strongly Agree Strongly Disagree

It would help me do my job better to have longer 1 2 3 4 5 6 7
descriptions of products available while talking
to a customer.

It would help me do my job better if I had the 1 2 3 4 5 6 7
past purchase history of the customer available.

I could provide better service to the customer if I 1 2 3 4 5 6 7
had information about accessories that were
appropriate for the items ordered.

The computer response time is slow and causes 1 2 3 4 5 6 7
difficulties in responding to customer requests.

Part III. Please enter your opinions and comments.

Please briefly identify the problems with the current system that you would like to see resolved in a new system.

54 PART 2 ■ Systems Analysis Activities

The second part consists of opinion questions in which respondents are asked
whether they agree or disagree with the statement. Both types of questions are
useful for tabulating and determining quantitative averages. The third part
requests an explanation of a procedure or problem. Questions such as these are
good as a preliminary investigation to help direct further fact-finding activities.

Questionnaires are not well suited to helping you learn about processes, work-
flows, or techniques. Open-ended questions such as “How do you do this process?”
are best answered by using interviews or observation. Although a questionnaire can
contain a very limited number of open-ended questions, stakeholders frequently do
not return questionnaires that contain many open-ended questions.

Review Inputs, Outputs, and Procedures
There are two sources of information about inputs, outputs, and procedures.
One source is external to the organization—industry-wide professional organiza-
tions and other companies. It may not be easy to obtain information from other
companies, but they are a potential source of important information.
Sometimes, industry journals and magazines report the findings of “best prac-
tices” studies. The project team would be negligent in its duties if its members
were not familiar with best practice information.

The second source of inputs, outputs, and procedures is existing business
documents and procedure descriptions within the organization. Reviewing inter-
nal documents and procedures serves two purposes. First, it is a good way to
get a preliminary understanding of the processes. Second, existing inputs, out-
puts, and documents can serve as visual aids for the interview and as the work-
ing documents for discussion (see Figure 2-13). Discussion can focus on a
specific input or output, its objective, its distribution, and its information con-
tent. The discussion should also include specific business events that initiate the
use of an input or generation of an output. Several different business events

FIGURE 2-13 RMO mail-order form used as a visual aid during an interview

Ridgeline Mountain Outfitters—Customer Order Form

Name and address of person placing order.
(Please verify your mailing address and make correction below.)
Order Date

Description

Name

Address Apt. No

City State Zip

Phone: Day () Evening ()

Item No. Style Color Size
Sleeve
Length Qty Monogram Style

Price
Each Total

Method of Payment

Check/Money Order Gift Certificate(s) AMOUNT ENCLOSED $

Account Number

American Express MasterCard VISA

Signature

Other

Expiration Date

MO YR

Delivery Phone ()

MERCHANDISE TOTAL

Regular FedEx shipping $4.50 per U.S. delivery address
(Items are sent within 24 hours for delivery in 2 to 4 days)

Please add $4.50 per each additional U.S. delivery address

FedEx Standard Overnight Service

Any additional freight charges

International Shipping (see shipping information on back)

Gift Order or Ship To: (Use only if different from address at left.)

Name

Address Apt. No

City State Zip

Gift Card Message

Gift Address for this Shipment Only Permanent Change of Address

CHAPTER 2 ■ Investigating System Requirements 55

might require the same form, and specific information about the event and the
business process is critical. It is always helpful to have screens and forms that
have been filled out with real information to ensure that the analyst obtains a
correct understanding of the data content.

Reviewing the documentation of existing procedures helps identify business
rules that may not come up in the interviews. Analyzing formal procedure docu-
mentation also helps reveal discrepancies and redundancies in the business pro-
cesses. However, procedure documents frequently are not kept up to date, and
they commonly include errors. To ensure that the assumptions and business
rules that derive from the existing documentation are correct, analysts should
review them with the users.

Observe and Document Business Processes
Firsthand experience is invaluable to understand exactly what occurs within
business processes. More than any other activity, observing a business process
in action will help you understand the business functions. However, while
observing existing processes, you must also be able to visualize the new system’s
associated business processes. That is, as you observe the current business pro-
cesses to understand the fundamental business needs, you should never forget
that the processes could and often should change to be made more efficient. Do
not get locked into believing there is only one way of performing the process.

You can observe a business process in many ways, ranging from a quick
walk-through of an office or plant to doing the work yourself. A quick walk-
through gives a general understanding of the layout of the office, the need for
and use of computer equipment, and the general workflow. Spending several
hours observing users at their jobs helps you understand the details of using the
computer system and carrying out business functions. Being trained as a user
and actually doing the job enables you to discover the difficulties of learning
new procedures, the importance of a system that is easy to use, and the stum-
bling blocks and bottlenecks of existing procedures and information sources.

It is not necessary to observe all processes at the same level of detail. A
quick walk-through may be sufficient for one process, whereas a process that is
critical or more difficult to understand might require an extended observation
period. If you remember that the objective is a complete understanding of the
business processes and rules, you can assess where to spend your time to gain
that understanding. As with interviewing, it is usually better if two analysts
combine their efforts in observing procedures.

Observation often makes the users nervous, so you need to be as unobtru-
sive as possible. You can put users at ease in several ways, such as by working
alongside a user or observing several users at once. Common sense and sensitiv-
ity to the needs and feelings of the users will usually result in a positive
experience.

Research Vendor Solutions
Many of the problems and opportunities that companies want to address with
new information systems have already been solved by other companies. In addi-
tion, consulting firms often have experience with the same problems, and soft-
ware firms may have already packaged solutions for a particular business need.
Taking advantage of existing knowledge or solutions can avoid costly mistakes
and save time and money.

There are three positive contributions and one danger in exploring existing
solutions. First, researching existing solutions will frequently help users generate
new ideas for how to better perform their business functions. Seeing how some-
one else solved a problem and applying that idea to the culture and structure of
the existing organization will often provide viable alternative solutions for busi-
ness needs.

56 PART 2 ■ Systems Analysis Activities

Second, some of these solutions are excellent and state of the art. Without
this research, the development team may create a system that is obsolete even
before it is designed. Companies need solutions that not only solve basic busi-
ness problems but that are up to date with competitive practices.

Third, it is often cheaper and less risky to buy a solution rather than to
build it. If the solution meets the needs of the company and can be purchased,
then that is usually a safer, quicker, and less expensive route.

The danger in exploring existing solutions is that the users and even the sys-
tems analysts may want to buy one of the alternatives immediately. But if a
solution, such as a packaged software system, is purchased too early in the pro-
cess, the company’s needs may not be thoroughly investigated. Too many com-
panies have purchased systems only to find out later that they only support half
the functions that were needed. Do not rush into a purchase decision until
requirements are fully defined and all viable alternatives have been thoroughly
investigated.

Collect Active User Comments and Suggestions
As discussed in Chapter 1 and earlier in this chapter, system development nor-
mally proceeds with analysis, design, and other activities spread across multiple
iterations. Portions of the system are constructed and tested during each itera-
tion. Users and other stakeholders perform the initial testing of system functions
during the iteration in which those functions are implemented. They also test
and use those same functions during later iterations.

User feedback from initial and later testing is a valuable source of require-
ments information. Interviews, discussions, and model reviews are an imperfect
way of eliciting complete and accurate requirements. The phrase “I’ll know it
when I see it” applies well to requirements definition. Users often cannot
completely or accurately state their requirements until they can interact with a
live system that implements those requirements. Based on those interactions,
users can develop concrete suggestions for improvement and identify missing or
poorly implemented requirements.

Documenting Workflows with Activity
Diagrams
As you gather information about business processes, you will need to document
your results. One effective way to capture this information is with diagrams.
Eventually, you may want to use diagrams to describe the workflows of the
new system, but for now, let us focus on how we would document the current
business workflows.

A workflow is the sequence of processing steps that completely handles one
business transaction or customer request. Workflows may be simple or complex.
Complex workflows can be composed of dozens or hundreds of processing steps
and may include participants from different parts of an organization.

An activity diagram describes the various user (or system) activities, the
person who does each activity, and the sequential flow of these activities.

Figure 2-14 shows the basic symbols used in an activity diagram. The ovals
represent the individual activities in a workflow. The connecting arrows repre-
sent the sequence between the activities. The black circles denote the beginning
and the ending of the workflow. The diamond is a decision point at which the
flow of the process will either follow one path or another. The heavy solid line
is a synchronization bar, which either splits the path into multiple concurrent
paths or recombines concurrent paths. The swimlane heading represents an
agent who performs the activities. Because it is common in a workflow to have
different agents (i.e., people) performing different steps of the workflow process,

workflow sequence of processing steps
that completely handles one business transac-
tion or customer request

activity diagram describes user (or sys-
tem) activities, the person who does each
activity, and the sequential flow of these
activities

synchronization bar activity diagram
component that either splits a control path into
multiple concurrent paths or recombines
concurrent paths

swimlane heading activity diagram col-
umn containing all activities for a single agent
or organizational unit

CHAPTER 2 ■ Investigating System Requirements 57

the swimlane symbol divides the workflow activities into groups showing which
agent performs which activity.

Figure 2-15 is an activity diagram that describes the order fulfillment pro-
cess for the current RMO CSMS. Processing begins when the customer has com-
pleted the order checkout process. The diagram describes the back-and-forth
flow of information and control between the Order subsystem, Inventory sub-
system, warehouse(s), and shipper. The diagram is simplified because it omits
many error-handling pathways, including what happens if enough item stock is
on hand to fulfill part of an order.

Figure 2-16 illustrates another workflow diagram, which demonstrates
some new concepts. In this example, a customer is ordering a product that has
to be manufactured specifically to match customer specifications. The salesper-
son sends the order to Engineering, and the diagram uses a new symbol to
emphasize the transmission of the document between Sales and Engineering.
After Engineering develops the specifications, two concurrent activities happen:
Purchasing orders the materials, and Production writes the program for the
automated milling machines. These two activities are completely independent
and can occur at the same time. Notice that one synchronization bar splits the
path into two concurrent paths and that another synchronization bar reconnects
them. Finally, Scheduling puts the order on the production schedule.

Creating activity diagrams to document workflows is straightforward. The
first step is to identify the agents to create the appropriate swimlanes. Next, fol-
low the various steps of the workflow and then make appropriate ovals for the
activities. Connect the activity ovals with arrows to show the workflow. Here
are a couple guidelines:

■ Use a decision symbol to represent an either/or situation—one path or the
other path but not both. As a shorthand notation, you can merge an activ-
ity (by using an oval) and a decision (by using a diamond) into a single oval
with two exit arrows, as indicated on the right in Figure 2-14. This notation
represents a decision (either/or) activity. Wherever you have an activity that
reads “verify” or “check,” you will probably require a decision—one for
the “accept” path and one for the “reject” path.

■ Use synchronization bars for parallel paths—situations in which both paths
are taken. Include a beginning and an ending synchronization bar. You can
also use synchronization bars to represent a loop, such as a “do while” pro-
gramming loop. Put the bar at the beginning of the loop and then describe
it as “for every.” Put another synchronization bar at the end of the loop
with the description “end for every.”

Ending activity
(Pseudo)

Activity

Transition arrow

Starting activity
(Pseudo)

Decision
activity

Another way
to show decision

Synchronization
bar (Split)

Synchronization
bar (Join)

Manager

Review
financials

Prepare
report

[yes][no]

Swimlane
heading

FIGURE 2-14
Activity diagram symbols

58 PART 2 ■ Systems Analysis Activities

FIGURE 2-15 Simple activity diagram for online checkout

Order subsystem

Order Fulfillment

Pick item from

stock

Prepare shipment Generate tracking

record

Store shipment

record

Transmit shipment Receive shipment

Decrement item

stock count

Update order

status

Transmit

shipping details

Update order

shipment status

Inventory
subsystem

Warehouses
Shipping
company

Find location with
sufficient stock

Stock
found?

For each item in
completed order

No

Yes

End

for each

item

End for each item

Create back

order record

CHAPTER 2 ■ Investigating System Requirements 59

Chapter Summary
There are five primary activities of systems analysis:

■ Gather detailed information.
■ Define requirements.
■ Prioritize requirements.
■ Develop user-interface dialogs.
■ Evaluate requirements with users.

Functional requirements are those that explain the
basic business functions that the new system must sup-
port. Nonfunctional requirements involve the system’s
objectives with regard to technology, performance,
usability, reliability, and security.

Mathematical, descriptive, and graphical models are
developed to document requirements and as an aid in
evaluating requirements with users and other stake-
holders. Stakeholders include internal and external users

of the system and other persons or organizations that
have a vested interest in the system.

Analysts use many techniques to gather information
about requirements, including:

■ Interviews
■ Questionnaires
■ Documentation, input, and output reviews
■ Process observation and documentation
■ Vendor solution research
■ Active comments and suggestions from users

Workflow diagrams are a key modeling technique
often used as an early requirements model. Workflow
diagrams graphically model the steps of a business pro-
cess and the participants who perform them. Other mod-
els and diagrams are covered in later chapters.

FIGURE 2-16 Activity diagram showing concurrent paths

Salesperson Engineering Purchasing Production

Accept
order

Make
specifications

Buy

materials
Program

computer

Schedule

production

Scheduling

Order

60 PART 2 ■ Systems Analysis Activities

Key Terms

activity diagram 57

application architecture 37

client 47

closed-ended questions 50

design constraints 43

executive stakeholders 47

external stakeholders 46

functional requirements 42

FURPS 43

FURPS+ 43

graphical models 46

implementation requirements 44

interface requirements 44

internal stakeholders 46

mathematical models 46

model 44

nonfunctional requirements 43

open-ended questions 50

operational stakeholders 47

performance requirements 43

physical requirements 44

reliability requirements 43

security requirements 43

stakeholders 46

supportability requirements 44

swimlane heading 57

synchronization bar 57

system requirements 42

technology architecture 37

textual models 45

unified modeling
language (UML) 46

usability requirements 43

workflow 57

Review Questions
1. List and briefly describe the five activities of systems

analysis.

2. What are three types of models?

3. What is the difference between functional require-
ments and nonfunctional requirements?

4. Describe the steps in preparing for, conducting, and
following up an interview session.

5. What are the benefits of doing vendor research
during information-gathering activities?

6. What types of stakeholders should you include in
fact finding?

7. Describe the open-items list and then explain why it
is important.

8. List and briefly describe the six information-
gathering techniques.

9. What is the purpose of an activity diagram?

10. Draw and explain the symbols used on an activity
diagram.

Problems and Exercises
1. Provide an example of each of the three types of

models that might apply to designing a car, a house,
and an office building.

2. One of the toughest problems in investigating system
requirements is to make sure they are complete and
comprehensive. How would you ensure that you get
all the right information during an interview session?

3. One of the problems you will encounter during
your investigation is “scope creep” (i.e., user
requests for additional features and functions).
Scope creep happens because users sometimes have
many unsolved problems and the system investiga-
tion may be the first time anybody has listened to

their needs. How do you keep the system from
growing and including new functions that should
not be part of the system?

4. What would you do if you got conflicting answers for
the same procedure from two different people you
interviewed?What would you do if one was a clerical
person and the other was the department manager?

5. You have been assigned to resolve several issues on
the open-items list, and you are having a hard time
getting policy decisions from the user contact. How
can you encourage the user to finalize these policies?

6. In the running case of RMO, assume that you have
set up an interview with the manager of the

CHAPTER 2 ■ Investigating System Requirements 61

shipping department. Your objective is to determine
how shipping works and what the information
requirements for the new system will be. Make a list
of questions—open ended and closed ended—that
you would use. Include any questions or techniques
you would use to ensure you find out about the
exceptions.

7. Develop an activity diagram based on the following
narrative. Note any ambiguities or questions that
you have as you develop the model. If you need to
make assumptions, also note them.

The purchasing department handles purchase
requests from other departments in the company.
People in the company who initiate the original
purchase request are the “customers” of the pur-
chasing department. A case worker within the
purchasing department receives the request and
monitors it until it is ordered and received.

Case workers process requests for the purchase
of products under $1,500, write a purchase order,
and then send it to the approved vendor. Purchase
requests over $1,500 must first be sent out for bid
from the vendor that supplies the product. When
the bids return, the case worker selects one bid and
then writes a purchase order and sends it to the
vendor.

8. Develop an activity diagram based on the following
narrative. Note any ambiguities or questions that
you have as you develop the model. If you need to
make assumptions, also note them.

The shipping department receives all shipments
on outstanding purchase orders. When the clerk in
the shipping department receives a shipment, he or
she finds the outstanding purchase order for those
items. The clerk then sends multiple copies of the
shipment packing slip. One copy goes to

Purchasing, and the department updates its records
to indicate that the purchase order has been ful-
filled. Another copy goes to Accounting so a pay-
ment can be made. A third copy goes to the
requesting in-house customer so he or she can
receive the shipment.

After payment is made, the accounting depart-
ment sends a notification to Purchasing. After the
customer receives and accepts the goods, he or she
sends notification to Purchasing. When Purchasing
receives these other verifications, it closes the pur-
chase order as fulfilled and paid.

9. Conduct a fact-finding interview with someone
involved in a procedure that is used in a business
or organization. This person could be someone at
the university, in a small business in your neigh-
borhood, in the student volunteer office at the
university, in a doctor’s or dentist’s office, or in a
volunteer organization. Identify a process that is
done, such as keeping student records, customer
records, or member records. Make a list of ques-
tions and then conduct the interview. Remember,
your objective is to understand that procedure
thoroughly (i.e., to become an expert on that single
procedure).

10. Using RMO and the CSMS as your guide, develop
a list of all the procedures that may need to be
researched. You may want to think about the
exercise in the context of your experience with
such retailers as L.L. Bean, Lands’ End, or
Amazon.com. Check out the Internet marketing
done on the retailers’ Web sites and then think
about the underlying business procedures that are
required to support those sales activities. List the
procedures and then describe your understanding
of each.

Case Study

John and Jacob, Inc.: Online Trading System

John and Jacob, Inc. is a regional brokerage firm that has
been successful over the last several years. Competition for
customers is intense in this industry. The large national firms
have very deep pockets, with many services to offer clients.
Severe competition also comes from discount and Internet
trading companies. However, John and Jacob has been
able to cultivate a substantial customer base from upper-
middle-income clients in the northeastern United States. To
maintain a competitive edge with its customers, John and
Jacob is in the process of modernizing its online trading sys-
tem. The modernization will add new features to the existing
system and expand the range of interfaces beyond desktop
and laptop computers to include tablet computers and

smartphones. The system will add Twitter messaging in addi-
tion to continued support for traditional e-mail.

Edward Finnigan, the project manager, is in the pro-
cess of identifying all the groups of people who should
be included in the development of the system require-
ments. He is not quite sure exactly who should be
included. Here are the issues he is considering:

■ Users: The trading system will be used by customers
and by staff in each of the company’s 30 trading
offices. Obviously, the brokers who are going to use
the system need to have input, but how should this be
done? Edward also is not sure what approach would be
best to ensure that the requirements are complete yet
not require tremendous amounts of time. Including all

62 PART 2 ■ Systems Analysis Activities

the offices would increase enthusiasm and support for
the system, but it would take a lot of time. Involving
more brokers would bring divergent opinions that
would have to be reconciled.

■ Customers: The trading system will also include trade
order entry, investment analysis reports, trade confir-
mations, standard and customized reporting, and
customer statements. Edward wonders how to
involve John and Jacob customers in the develop-
ment of system requirements. Edward is sensitive to
this issue because many brokers have told him that
many customers are unhappy with the current sys-
tem, and customer complaints are sometimes posted
to the public comments area of the current Web site.
He would like to involve customers, but he does not
know how.

■ Other stakeholders: Edward knows he should involve
other stakeholders to help define system require-
ments. He is not quite sure whom he should contact.
Should he go to senior executives? Should he contact
middle management? Should he include such back-
office functions as accounting and investing? He is

not quite sure how to get organized or how to decide
who should be involved.

Answer the following questions:

1. What is the best method for Edward to involve the
brokers (users) in the development of the updated
online trading system? Should he use a questionnaire?
Should he interview the brokers in each of the com-
pany’s 30 offices or would one or two brokers repre-
senting the entire group be better? How can Edward
ensure that the information about requirements is
complete yet not lose too much time doing so?

2. Concerning customer input for the new system, how
can Edward involve customers in the process? How
can he interest them in participating? What methods
can Edward use to ensure that the customers he
involves are representative of John and Jacob’s entire
customer group?

3. As Edward considers what other stakeholders he should
include, what are some criteria he should use? Develop
some guidelines to help him build a list of people to
include.

RUNNING CASES

Community Board of Realtors

The real estate business relies on an extensive amount of
information used in the buying and selling of real prop-
erty. Most communities of real estate agents and brokers
have formed cooperative organizations to help consoli-
date and distribute information on the real estate profes-
sion, real estate trends, properties in the community,
historical records of property sales, and current listings
of properties for sale. These organizations are usually
referred to as the Community Board of Realtors.

Research your local Community Board of Realtors
to answer these questions:

1. Who are the stakeholders for the issues related to
real estate in your community, and what are their
main interests?

2. What types of information does the board collect
and make available to its members and to the
community?

3. Research the real estate industry in at least two
countries other than the United States. For each of
these countries, what are some of the cultural and
legal issues that differ from those in the United
States? If you were working on support for an
international real estate cooperative system, in
what ways would the information collection
activity process be complicated?

The Spring Breaks ‘R’ Us Travel Service

Spring Breaks ‘R’ Us (SBRU) is an online travel
service that books spring break trips to resorts for
college students. Students have booked spring break
trips for decades, but changes in technology have
transformed the travel business in recent years.

SBRU moved away from having campus reps with
posted fliers and moved to the Web early on. The
basic idea is to get a group of students to book a
room at a resort for one of the traditional spring
break weeks. SBRU contracts with dozens of resorts

(continued on page 64)

CHAPTER 2 ■ Investigating System Requirements 63

in key spring break destinations in Florida, Texas, the
Caribbean, and Mexico. Its Web site shows informa-
tion on each resort and includes prices, available
rooms, and special features. Students can research
and book a room, enter contract information, and
pay deposits and final payments through the system.
SBRU provides updated booking information, resort
information updates, and travel information for
booked students when they log in to the site.

The resorts also need access to information from
SBRU. They need to know about their bookings for
each week, the room types that are booked, and so
forth. Before the spring break booking season starts,
they need to enter information on their resorts, includ-
ing prices and special features. Resorts need to be paid
by SBRU for the bookings, and they need to be able to
report and collect for damages caused by spring-
breakers during their stay.

SBRU has recently decided to upgrade its system
to provide social networking features for students. It
is currently researching possibilities and collecting
information from prospective customers about desir-
able features and functions. From the business stand-
point, the idea is to increase bookings by enhancing
the experience before, during, and after the trip.

1. Who are the stakeholders for SBRU? For each type
of stakeholder, what aspects of the SBRU booking
system are of particular interest?

2. What are the main functional requirements for the
major subsystem areas (i.e., resort relations, stu-
dent booking, accounting and finance, and social
networking)?

3. Describe some usability requirements for students,
booking interactions, and social networking
interactions.

4. Assuming that social networking at the resorts will
require wireless communication and connection to
the Internet, what are some reliability requirements
that resorts might be asked to maintain? What are
some performance requirements? Is this a bigger
issue because resorts are in international locations?

5. What are some security requirements? Is there any
reason why students in Europe, Asia, or other
locations could not book rooms through SBRU?
What issues might be anticipated?

6. To collect information on functional requirements
for the social networking subsystem, what are
some techniques that might be used? Be specific
and include some sample questions you might ask
by using various techniques.

On the Spot Courier Services

As an employee of a large international courier and
shipping service, Bill Wiley met almost every day with
many companies that shipped and received packages.
He was frequently asked if his company could deliver
local packages on the same day. Over several months,
he observed that there appeared to be a substantial need
for courier services in the city in which he lived. He
decided that he would form his own courier delivery
company called On the Spot to fill this need.

Bill began by listing his mobile telephone number
in the Yellow Pages. He also sent letters to all those
companies that had requested same-day courier service
that his prior company had not been able to serve. He
hoped that, through good service and word-of-mouth
advertising, his business would grow. He also began
other advertising and marketing activities to promote
his services.

At first, Bill received delivery requests on his busi-
ness mobile phone. However, it was not long before
his customers were asking if he had a Web site where
they could place orders for shipments. He knew that if
he could get a Web presence he could increase his
exposure and help his business grow.

After he had been in business only a few short
months, Bill discovered he needed to have additional
help. He hired another person to help with the delivery
and pickup of packages. It was good to see the business
grow, but another person added to the complexity of
coordinating pickups and deliveries. With the addition
of a new person, he could no longer “warehouse” the
packages out of his delivery van. He now needed a cen-
tral warehouse where he could organize and distribute
packages for delivery. He thought that if his business
grew enough to add one more delivery person he
would also need someone at the warehouse to coordi-
nate the arrival and distribution of all the packages.

1. Who are the stakeholders for On the Spot? How
involved should On the Spot’s customers be in
system definition? As the business grows, who else
might be potential stakeholders and interested in
system functions?

2. If you were commissioned to build a system for
Bill, how would you determine the requirements?
Be specific in your answer. Make a list of the
questions you need answered.

(continued from page 63)

(continued on page 65)

64 PART 2 ■ Systems Analysis Activities

3. What technology and communication requirements
do you see?What are the hardware requirements, and
what kind of equipment will provide viable options to
the system? What would you recommend to Bill?

4. What are the primary functional requirements for
the system as described so far in the case?

Sandia Medical Devices

Medical monitoring technology has advanced signifi-
cantly in the last decade. Monitoring that once
required a visit to a health-care facility can now be
performed by devices located in a patient’s home or
carried or worn at all times. Examples include glucose
level (blood sugar), pulse, blood pressure, and electro-
cardiogram (EKG). Measurements can be transmitted
via telephone, Internet connection, and wireless data
transmission standards, such as Bluetooth. A particu-
larly powerful technology combination is a wearable
device that records data periodically or continuously
and transmits it via Bluetooth to a cell phone app.
The cell phone app can inform the patient of problems
and can automatically transmit data and alerts to a
central monitoring application (see Figure 2-17).

Health-care providers and patients incur signifi-
cant costs when glucose levels are not maintained
within acceptable tolerances. Short-term episodes of
very high or very low glucose often result in expensive
visits to urgent care clinics or hospitals. In addition,
patients with frequent but less severe episodes of high
or low glucose are more susceptible to such expensive

long-term complications as vision, circulatory, and
kidney problems.

Sandia Medical Devices (SMD), an Albuquerque
manufacturer of portable and wearable medical moni-
toring devices, has developed a glucose monitor
embedded in a wristband. The device is powered by
body heat and senses glucose levels from minute quan-
tities of perspiration. SMD is developing the Real-Time
Glucose Monitoring (RTGM) device in partnership
with New Mexico Health Systems (NMHS), a compre-
hensive health delivery service with patients through-
out New Mexico, The system’s vision statement reads
as follows:

RTGM will enable patients and their healthcare
providers to continuously monitor glucose levels,
immediately identify short- and long-term medical
dangers, and rapidly respond to those dangers in
medically appropriate ways.

SMD will develop the initial prototype software
for smartphones with Bluetooth capability running
the Google Android operating system. If successful,

(continued from page 64)

FIGURE 2-17 Data movement among devices and users

Cell phone app
routes date and

interacts with
patient for alerts

and monitoring

Wristband continuously
measures glucose level

Data sent to/from
server via

wireless Internet

Server archives
data and

generates alerts

Medical personnel
monitor levels/trends

and plan response

Communication with
patient via voice

or text messages

Data transmitted
to cell phone
via Bluetooth

(continued on page 66)

CHAPTER 2 ■ Investigating System Requirements 65

NMHS and its patients will have free use of the soft-
ware and SMD will resell the software to other health
systems worldwide.

1. Who are RTGM’s stakeholders? Should NMHS’s
patients be included in defining the system
requirements? Why or why not? Should RTGM
interact with medical professionals other than
physicians? Why or why not?

2. If you were the lead analyst for RTGM, how would
you determine the requirements? Be specific in your
answer. List several questions you need answered.

3. What are the primary functional requirements for
the system as described so far in the case?

4. Are the parameters for alerting patients and medi-
cal personnel the same for every patient? Can they
vary over time for the same patient? What are the
implications for the system’s functional
requirements?

5. Briefly describe some possible nonfunctional
requirements for RTGM.

Further Resources

Soren Lauesen, Software Requirements: Styles

and Techniques. Addison-Wesley, 2002.

Stan Magee, Guide to Software Engineering

Standards and Specifications. Artech House,
1997.

Suzanne Robertson and James Robertson,
Mastering the Requirements Process, Second
Edition. Addison-Wesley, 2006.

Karl Wiegers, Software Requirements. Microsoft
Press, 2003.

Karl Wiegers, More About Software Requirements:

Thorny Issues and Practical Advice. Microsoft
Press, 2006.

Ralph Young, The Requirements Engineering

Handbook. Artech House, 2003.

(continued from page 65)

66 PART 2 ■ Systems Analysis Activities

3
Use Cases

Chapter Outline

■ Use Cases and User Goals

■ Use Cases and Event Decomposition

■ Use Cases and CRUD

■ Use Cases in the Ridgeline Mountain Outfitters Case

■ User Case Diagrams

Learning Object ives

After reading this chapter, you should be able to:

■ Explain why identifying use cases is the key to defining functional requirements

■ Describe the two techniques for identifying use cases

■ Apply the user goal technique to identify use cases

■ Apply the event decomposition technique to identify use cases

■ Apply the CRUD technique to validate and refine the list of use cases

■ Describe the notation and purpose for the use case diagram

■ Draw use case diagrams by actor and by subsystem

67

OPENING CASE

Waiters on Call Meal-Delivery System

Waiters on Call is a restaurant meal-delivery service
started in 2008 by Sue and Tom Bickford. The Bickfords
worked for restaurants while in college and always
dreamed of opening their own restaurant. Unfortunately,
the initial investment was always out of reach. The
Bickfords noticed that many restaurants offer takeout
food and that some restaurants—primarily pizzerias—offer
home-delivery service. However, many people they met
seemed to want home delivery with a wider food
selection.

Sue and Tom conceived Waiters on Call as the best
of both worlds: a restaurant service without the high
initial investment. They contracted with a variety of
well-known restaurants in town to accept orders from
customers and to deliver the complete meals. After pre-
paring the meal to order, the restaurant charges Waiters
on Call a wholesale price, and the customer pays retail
plus a service charge and tip. Waiters on Call started
modestly, with only two restaurants and one delivery
driver working the dinner shift. Business rapidly
expanded, and the Bickfords realized they needed a
custom computer system to support their operations.
They hired a consultant, Sam Wells, to help them define
what sort of system they needed.

“What sort of events happen when you are running
your business that make you want to reach for a
computer?” asked Sam. “Tell me about what usually
goes on.”

“Well,” answered Sue, “when a customer calls in
wanting to order, I need to record it and get the informa-
tion to the right restaurant. I need to know which driver to
ask to pick up the order, so I need drivers to call in and tell
me when they are free. Perhaps this could be included as
a smartphone or iPad app. Sometimes, customers call
back wanting to change their orders, so I need to get my
hands on the original order and notify the restaurant to
make the change.”

“Okay, how do you handle the money?” queried
Sam.

Tom jumped in. “The drivers get a copy of the bill directly
from the restaurant when they pick up the meal. The bill
should agree with our calculations. The drivers collect that
amount plus a service charge. When drivers report in at

closing, we add up the money they have and compare it
with the records we have. After all drivers report in, we
need to create a deposit slip for the bank for the day’s total
receipts. At the end of eachweek,we calculatewhatweowe
each restaurant at the agreed-to wholesale price and send
each a statement and check.”

“What other information do you need to get from the
system?” continued Sam.

“It would be great to have some information at the
end of each week about orders by restaurant and orders
by area of town—things like that,” Sue said. “That would
help us decide about advertising and contracts with restau-
rants. Then, we need monthly statements for our
accountant.”

Sam made some notes and sketched some diagrams
as Sue and Tom talked. Then, after spending some time
thinking about it, he summarized the situation for Waiters
on Call. “It sounds to me like you need a system to use
whenever these events occur:

■ A customer calls in to place an order, so you need to
Record an order.

■ A driver is finishedwith a delivery, so you need toRecord
delivery completion.

■ A customer calls back to change an order, so you need
to Update an order.

■ A driver reports for work, so you need to Sign in the
driver.

■ A driver submits the day’s receipts, so you need to
Reconcile driver receipts.

“Then, you need the system to produce information at
specific points in time—for example, when it is time to:

■ Produce an end-of-day deposit slip.
■ Produce end-of-week restaurant payments.
■ Produce weekly sales reports.
■ Produce monthly financial reports.

“Am I on the right track?”
Sue and Tom quickly agreed that Sam was talking

about the system in a way they could understand. They
were confident that they had found the right consultant
for the job.

Overview
Chapter 2 described the systems analysis activities used in system development
and then introduced the many tasks and techniques involved when completing
the first analysis activity—gathering information about the system, its stake-
holders, and its requirements. An extensive amount of information is required

68 PART 2 ■ Systems Analysis Activities

to properly define the system’s functional and nonfunctional requirements. This
chapter, like Chapter 4 and Chapter 5, presents techniques for documenting the
functional requirements by creating a variety of models. These models are cre-
ated as part of the analysis activity Define functional requirements, although
remember that the analysis activities are actually done in parallel and in each
iteration of the project.

Virtually all newer approaches to system development begin the require-
ments modeling process with the concept of a use case. A use case is an
activity the system performs, usually in response to a request by a user. In
Chapter 1, the RMO Tradeshow System example had a list of uses that
included Look up supplier, Enter/update product information, and Upload
product information. Two techniques are recommended for identifying use
cases: the user goal technique and the event decomposition technique. An
additional technique, known as the CRUD technique, is often used to validate
and enhance the list of use cases. These techniques are described in the follow-
ing sections.

Use Cases and User Goals
One approach to identifying use cases, called the user goal technique, is to
ask users to describe their goals for using the new or updated system. The ana-
lyst first identifies all the users and then conducts a structured interview with
each user. By focusing on one type of user at a time, the analyst can systemati-
cally address the problem of identifying use cases.

During the interview, the analyst guides the user to identify specific ways
that a computer system can help the user perform his or her assigned tasks. The
overarching objective is to identify how a system can improve the user’s perfor-
mance and productivity. Subsidiary goals might include streamlining tasks the
user currently performs or enabling the user to perform new tasks that are not
possible or practical with the current system. As these goals are uncovered and
described, the analyst probes for specific requests from the user and desired
responses from the proposed system, which the analyst documents as use cases.
Although the user is the ultimate source of this information, he or she often
requires guidance from the analyst to think beyond the boundaries of the ways
they currently approach their jobs.

Consider various user goals for the RMO Consolidated Sales and
Marketing System (CSMS) introduced in Chapter 2. In an example like this, the
analyst might talk to the people in the shipping department to identify their spe-
cific goals. These might include: Ship items, Track shipment, and Create item
return. When talking with people in the marketing department, goals identified
might include Add/update product information, Add/update promotion, and
Produce sales history report. When considering the goals of the prospective cus-
tomer, the analyst might ask a number of people to think about the system from
the customer’s viewpoint and to imagine the value-added features and functions
that would make RMO appealing and useful to customers. Focus groups might
be formed to uncover the wants and needs of potential customers. Potential cus-
tomer goals identified might include Search for item, Fill shopping cart, and
View product comments and ratings. Figure 3-1 lists a few of the user goals for
potential users of the CSMS.

The user goal technique for identifying use cases includes these steps:

1. Identify all the potential users for the new system.
2. Classify the potential users in terms of their functional role (e.g., shipping,

marketing, sales).
3. Further classify potential users by organizational level (e.g., operational,

management, executive).

use case an activity that the system
performs, usually in response to a request by
a user

user goal technique a technique to
identify use cases by determining what specific
goals or objectives must be completed by a user

CHAPTER 3 ■ Use Cases 69

4. For each type of user, interview them to find a list of specific goals they
will have when using the new system. Start with goals they currently
have and then get them to imagine innovative functions they think would
add value. Encourage them to state each goal in the imperative verb-noun
form, such as Add customer, Update order, and Produce month end
report.

5. Create a list of preliminary use cases organized by type of user.
6. Look for duplicates with similar use case names and resolve

inconsistencies.
7. Identify where different types of users need the same use cases.
8. Review the completed list with each type of user and then with interested

stakeholders.

Use Cases and Event Decomposition
The most comprehensive technique for identifying use cases is the event
decomposition technique. The event decomposition technique begins by
identifying all the business events that will cause the information system to
respond, and each event leads to a use case. Starting with business events
helps the analyst define each use case at the right level of detail. For example,
one analyst might identify a use case as typing in a customer name on a form.
A second analyst might identify a use case as the entire process of adding a
new customer. A third analyst might even define a use case as working with
customers all day, which could include adding new customers, updating cus-
tomer records, deleting customers, following up on late-paying customers, or
contacting former customers. The first example is too narrow to be useful.
The second example defines a complete user goal, which is the right level of
analysis for a use case. Working with customers all day—the third example—
is too broad to be useful.

The appropriate level of detail for identifying use cases is one that focuses
on elementary business processes (EBPs). An EBP is a task that is performed
by one person in one place in response to a business event, adds measurable busi-
ness value, and leaves the system and its data in a stable and consistent state. In
Figure 3-1, the RMO CSMS customer goals that will become use cases are
Search for item, Fill shopping cart, View product ratings and comments, and so
forth. These use cases are good examples of elementary business processes. To fill
a shopping cart is in response to the business event “Customer wants to shop.”
There is one person filling the cart, and there is measurable value for the cus-
tomer as items are added to the cart. When the customer stops adding items and
moves to another task, the system remembers the current cart and is ready to
switch to the new task.

User User goal and resulting use case

Potential customer Search for item

Fill shopping cart

View product rating and comments

Marketing manager Add/update product information

Add/update promotion

Produce sales history report

Shipping personnel Ship items

Track shipment

Create item return

FIGURE 3-1
Identifying use cases with the user
goal technique

event decomposition technique a
technique to identify use cases by determining
the external business events to which the
system must respond

elementary business processes
(EBPs) the most fundamental tasks in a
business process, which leaves the system and
data in a quiescent state; usually performed by
one person in response to a business event

70 PART 2 ■ Systems Analysis Activities

Note that each EBP (and thus each use case) occurs in response to a busi-
ness event. An event occurs at a specific time and place, can be described, and
should be remembered by the system. Events drive or trigger all processing that
a system does, so listing events and analyzing them makes sense when you need
to define system requirements by identifying use cases.

Event Decomposition Technique
As stated previously, the event decomposition technique focuses on identifying
the events to which a system must respond and then determining how a system
must respond (i.e., the system’s use cases). When defining the requirements for
a system, it is useful to begin by asking, “What business events occur that will
require the system to respond?” By asking about the events that affect the
system, you direct your attention to the external environment and look at the
system as a black box. This initial perspective helps keep your focus on a high-
level view of the system (looking at the scope) rather than on the inner workings
of the system. It also focuses your attention on the system’s interfaces with out-
side people and other systems.

Some events that are important to a retail store’s charge account processing
system are shown in Figure 3-2. The functional requirements are defined by
use cases based on six events. A customer triggers three events: “customer pays a bill,”
“customer makes a charge,” and “customer changes address.” The system responds
with three use cases: Record a payment, Process a charge, or Maintain customer
data. Three other events are triggered inside the system by reaching a point in time:
“time to send out monthly statements,” “time to send late notices,” and “time to

FIGURE 3-2 Events in a charge account processing system that lead to use cases

Charge account processing system

event something that occurs at a specific
time and place, can be precisely identified, and
must be remembered by the system

CHAPTER 3 ■ Use Cases 71

produce end-of-week summary reports.” The system responds with use cases that
carry out what it is time to do: Produce monthly statements, Send late notices, and
Produce summary reports. Describing this system in terms of events keeps the focus
of the charge account system on the business requirements and the elementary busi-
ness processes. The next step is to divide the work among developers: One analyst
might focus on the events triggered by people, and another analyst might focus on
events triggered by reaching a point in time. The system is decomposed in a way
that allows it to be understood in detail. The result is a list of use cases triggered by
business events at the right level of analysis.

The importance of the concept of events for defining functional requirements
was first emphasized for real-time systems in the early 1980s. Real-time systems
must react immediately to events in the environment. Early real-time systems
include manufacturing process control systems and avionics guidance systems. For
example, in process control, if a vat of chemicals is full, then the system needs
to Turn off the fill valve. The relevant event is “vat is full,” and the system needs
to respond to that event immediately. In an airplane guidance system, if the
plane’s altitude drops below 5,000 feet, then the system needs to Turn on the
low-altitude alarm.

Most information systems now being developed are so interactive that they
can be thought of as real-time systems. In fact, people expect a real-time
response to almost everything. Thus, use cases for business systems are often
identified by using the event decomposition technique.

Types of Events
There are three types of events to consider when using the event decomposi-
tion technique to identify use cases: external events, temporal events, and
state events (also called internal events). The analyst begins by trying to iden-
tify and list as many of these events as possible, refining the list while talking
with system users.

External Events
An external event is an event that occurs outside the system—usually initi-
ated by an external agent or actor. An external agent (or actor) is a person
or organizational unit that supplies or receives data from the system. To
identify the key external events, the analyst first tries to identify all the exter-
nal agents that might want something from the system. A classic example of
an external agent is a customer. The customer may want to place an order
for one or more products. This event is of fundamental importance to an
order-processing system, such as the one needed by Ridgeline Mountain
Outfitters. But other events are associated with a customer. Sometimes, a
customer wants to return an ordered product or a customer needs to pay the
invoice for an order. External events such as these are the types that the
analyst looks for because they begin to define what the system needs to be
able to do. They are events that lead to important transactions that the system
must process.

When describing external events, it is important to name the event so the
external agent is clearly defined. The description should also include the action
that the external agent wants to pursue. Thus, the event “Customer places an
order” describes the external agent (a customer) and the action that the cus-
tomer wants to take (to place an order for some products) that directly affects
the system. Again, if the system is an order-processing system, the system needs
to create the order for the customer.

Important external events can also result from the wants and needs of
people or organizational units inside the company (e.g., management requests
for information). A typical event in an order-processing system might be

external event an event that occurs
outside the system, usually initiated by an
external agent

actor an external agent; a person or group
that interacts with the system by supplying or
receiving data

72 PART 2 ■ Systems Analysis Activities

“Management wants to check order status.” Perhaps managers want to follow
up on an order for a key customer; the system must routinely provide that
information.

Another type of external event occurs when external entities provide new
information that the system simply needs to store for later use. For example, a
regular customer reports a change in address, phone, or employer. Usually, one
event for each type of external agent can be described to handle updates to data,
such as “Customer needs to update account information.” Figure 3-3 provides a
checklist to help in identifying external events.

Temporal Events
A second type of event is a temporal event—an event that occurs as a result of
reaching a point in time. Many information systems produce outputs at defined
intervals, such as payroll systems that produce a paycheck every two weeks (or
each month). Sometimes, the outputs are reports that management wants to
receive regularly, such as performance reports or exception reports. These events
are different from external events in that the system should automatically pro-
duce the required output without being told to do so. In other words, no exter-
nal agent or actor is making demands, but the system is supposed to generate
information or other outputs when they are needed.

The analyst begins identifying temporal events by asking about the specific
deadlines that the system must accommodate. What outputs are produced at
that deadline? What other processing might be required at that deadline? The
analyst usually identifies these events by defining what the system needs to pro-
duce at that time. In a payroll system, a temporal event might be named “Time
to produce biweekly payroll.” The event defining the need for a monthly sum-
mary report might be named “Time to produce monthly sales summary
report.” Figure 3-4 provides a checklist to use in identifying temporal events.

Temporal events do not have to occur on a fixed date. They can occur after
a defined period of time has elapsed. For example, a bill might be given to a
customer when a sale has occurred. If the bill has not been paid within 15 days,
the system might send a late notice. The temporal event “Time to send late
notice” might be defined as a point 15 days after the billing date.

State Events
A third type of event is a state event—an event that occurs when something
happens inside the system that triggers the need for processing. State events are also
called internal events. For example, if the sale of a product results in an adjustment
to an inventory record and the inventory in stock drops below a reorder point, it is

External events to look for include:
√ External agent wants something resulting in a transaction
√ External agent wants some information
√ Data changed and needs to be updated
√ Management wants some information

FIGURE 3-3
External event checklist

Temporal events to look for include:
√ Internal outputs needed
 √ Management reports (summary or exception)
 √ Operational reports (detailed transactions)
 √ Internal statements and documents (including payroll)
√ External outputs needed
 √ Statements, status reports, bills, reminders

FIGURE 3-4
Temporal event checklist

temporal event an event that occurs as
a result of reaching a point in time

state event an event that occurs when
something happens inside the system that
triggers some process

CHAPTER 3 ■ Use Cases 73

necessary to reorder. The state event might be named “Reorder point reached.”
Often, state events occur as a consequence of external events. Sometimes, they are
similar to temporal events, except the point in time cannot be defined.

Identifying Events
It is not always easy to define the events that affect a system, but some guide-
lines can help an analyst think through the process.

Events versus Prior Conditions and Responses
It is sometimes difficult to distinguish between an event and part of a sequence of
prior conditions that leads up to the event. Consider a customer buying a shirt
from a retail store (see Figure 3-5). From the customer’s perspective, this pur-
chase involves a long sequence of events. The first event might be that the cus-
tomer wants to get dressed. Then, the customer wants to wear a striped shirt.
Next, the striped shirt appears to be worn out. Then, the customer decides to
drive to the mall. Then, he decides to go into Sears. Then, he tries on a striped
shirt. Then, the customer decides to leave Sears and go to Walmart to try on a
shirt. Finally, the customer wants to purchase the shirt. The analyst has to think
through such a sequence to arrive at the point at which an event directly affects
the system. In this case, the system is not affected until the customer is in the
store, has a shirt in hand ready to purchase, and says “I want to buy this shirt.”

In other situations, it is not easy to distinguish between an external event
and the system’s response. For example, when the customer buys the shirt, the
system requests a credit card number and then the customer supplies the credit
card. Is the act of supplying the credit card an event? In this case, no. It is part
of the interaction that occurs while completing the original transaction.

The way to determine whether an occurrence is an event or part of the interac-
tion following the event is by asking whether any long pauses or intervals occur
(i.e., can the system transaction be completed without interruption?). Or is the sys-
tem at rest again, waiting for the next transaction? After the customer wants to buy
the shirt, the process continues until the transaction is complete. There are no sig-
nificant stops after the transaction begins. After the transaction is complete, the sys-
tem is at rest, waiting for the next transaction to begin. The EBP concept defined
earlier describes this as leaving the system and its data in a consistent state.

On the other hand, separate events occur when the customer buys the shirt
by using his store credit card account. When the customer pays the bill at the

Customer thinks
about getting a

new shirt

Customer drives to
the mall

Customer tries on a
shirt at Sears

Customer goes to
Walmart

Customer tries on a
shirt at Walmart

Customer buys
a shirt

FIGURE 3-5
Sequence of actions that lead up to
only one event affecting the system

74 PART 2 ■ Systems Analysis Activities

end of the month, is the processing part of the interaction involving the pur-
chase? In this case, no. The system records the transaction and then does other
things. It does not halt all processes to wait for the payment. A separate event
occurs later that results in sending the customer a bill. (This is a temporal
event: “Time to send monthly bills.”) Eventually, another external event occurs
(“Customer pays the bill”).

The Sequence of Events: Tracing a Transaction’s Life Cycle
It is often useful in identifying events to trace the sequence of events that might
occur for a specific external agent or actor. In the case of Ridgeline Mountain
Outfitters’ new CSMS, the analyst might think through all the possible trans-
actions that might result from one new customer (see Figure 3-6). First, the
customer wants a catalog or asks for some information about item availability,
resulting in a name and address being added to the database. Next, the cus-
tomer might want to place an order. Perhaps he or she will want to change the
order—for example, correcting the size of the shirt or buying another shirt.
Next, the customer might want to check the status of an order to find out the
shipping date. Perhaps the customer has moved and wants an address change
recorded for future catalog mailings. Finally, the customer might want to return
an item. Thinking through this type of sequence can help identify events.

Technology-Dependent Events and System Controls
Sometimes, the analyst is concerned about events that are important to the sys-
tem but do not directly concern users or transactions. Such events typically
involve design choices or system controls. During analysis, the analyst should
temporarily ignore these events. However, they are important later for design.

Some examples of events that affect design issues include external events
that involve actually using the physical system, such as logging on. Although
important to the final operation of the system, such implementation details
should be deferred. At this stage, the analyst should focus only on the functional
requirements (i.e., the work that the system needs to complete). A functional
requirements model does not need to indicate how the system is actually imple-
mented, so the model should omit the implementation details.

Most of these events involve system controls, which are checks or safety
procedures put in place to protect the integrity of the system. For example,
logging on to a system is required because of system security controls. Other
controls protect the integrity of the database, such as backing up the data every day.

FIGURE 3-6 The sequence of “transactions” for one specific customer resulting in many events

Customer requests a
catalog

Customer wants to check
item availability

Customer places
an order

Customer changes or
cancels an order

Customer wants to
check order status

Customer updates
account information

Customer returns
the item

system controls checks or safety proce-
dures to protect the integrity of the system and
the data

CHAPTER 3 ■ Use Cases 75

These controls are important to the system, and they will certainly be added to
the system during design. But spending time on these controls during analysis
only adds details to the requirements model that users are not typically very
concerned about; they trust the system developers to take care of such details.

One technique used to help decide which events apply to controls is to assume
that technology is perfect. The perfect technology assumption states that events
should be included during analysis only if the system would be required to respond
under perfect conditions (i.e., with equipment never breaking down, capacity for
processing and storage being unlimited, and people operating the system being
completely honest and never making mistakes). By pretending that technology is
perfect, analysts can eliminate events like “Time to back up the database” because
they can assume that the disk will never crash. Again, during design, the project
team adds these controls because technology is obviously not perfect. Figure 3-7
lists some examples of events that can be deferred until the design phase.

Using the Event Decomposition Technique
To summarize, the event decomposition technique for identifying use cases includes
these steps:

1. Consider the external events in the system environment that require a
response from the system by using the checklist shown in Figure 3-3.

2. For each external event, identify and name the use case that the system
requires.

3. Consider the temporal events that require a response from the system by
using the checklist shown in Figure 3-4.

4. For each temporal event, identify and name the use case that the system
requires and then establish the point of time that will trigger the use case.

5. Consider the state events that the system might respond to, particularly if it is
a real-time system in which devices or internal state changes trigger use cases.

6. For each state event, identify and name the use case that the system requires
and then define the state change.

7. When events and use cases are defined, check to see if they are required by
using the perfect technology assumption. Do not include events that involve
such system controls as login, logout, change password, and backup or
restore the database, as these are put in as system controls.

FIGURE 3-7 Events and functions deferred until design

User wants to log on
to the system

User wants to change the
password

User wants to change
preference settings

System crash
requires database

recovery

Time to back up the
database

Time to require the
user to change the

password

Don’t worry much
about these until you are

considering design issues

perfect technology assumption the
assumption that a system runs under perfect
operating and technological conditions

76 PART 2 ■ Systems Analysis Activities

Use Cases and CRUD
Another important technique used to validate and refine use cases is the CRUD
technique. “CRUD” is an acronym for Create, Read or Report, Update, and
Delete, and it is often introduced with respect to database management. The
analyst starts by looking at the types of data stored by the system, which are
modeled as data entities or domain classes, as described in Chapter 4. In the
RMO Tradeshow System discussed in Chapter 1, the types of data included
Supplier, Contact, Product, and ProductPicture. In the RMO CSMS, the types
of data include Customer, Sale, Inventory Item, Promotion, and Shipment. To
validate and refine use cases, the analyst looks at each type of data and verifies
that use cases have been identified that create the data, read or report on the
data, update the data, and delete (or archive) the data.

The CRUD technique is most useful when used as a cross-check along with the
user goal technique. Users will focus on their primary goals, and use cases that
update or archive data will often be overlooked. The CRUD technique makes sure
all possibilities are identified. Sometimes, data entities or domain classes are shared
by a set of integrated applications. For example, RMO has a supply chain manage-
ment application that is responsible for managing inventory levels and adding pro-
ducts. The RMO CSMS will not need to create or delete products, but it will need
to look up and update product information. It is important to identify the other
application that is responsible for creating, updating, or deleting the data to be
clear about the scope of each system. Figure 3-8 shows an example of potential
use cases based on the CRUD technique for RMO Customer data.

Note in Figure 3-8 that the analyst has not blindly added a use case to
create, read/report, update, and delete instances of a customer. The CRUD tech-
nique is best used to take already identified use cases and verify that there are
use cases for create, read, update, and delete as a cross-check.

Another use of the CRUD technique is to summarize all use cases and all data
entities/domain classes to show the connection between use cases and data. In
Figure 3-9, some of the use cases are matched with data entities/domain classes by
including “C,” “R,” “U,” or “D” in the cell corresponding to the role of the use

Data entity/domain class CRUD Verified use case

Customer Create

Read/report Look up customer

Produce customer usage report

Process account adjustment

Update customer account

Create customer account

Update

Delete Update customer account (to archive)

FIGURE 3-8
Verifying use cases with the CRUD
technique

FIGURE 3-9 CRUD table showing use cases and corresponding data entities/domain classes

Use case vs.
entity/domain class

Create customer account

Look up customer

Produce customer usage

report

Process account adjustment

Update customer account

Customer

C

R

R

R

UD (archive)

Account

C

R

R

U

UD (archive)

Adjustment

C

Sale

R

R

CRUD technique an acronym for Create,
Read/Report, Update, and Delete; a technique
to validate or refine use cases

CHAPTER 3 ■ Use Cases 77

case in terms of data. For example, the use case Create customer account actually
creates customer data and account data, so the “C” is included in those two cells.
The use case Process account adjustment reads information about the sale, reads
information about the customer, updates the account, and creates an adjustment.

The CRUD technique for validating and refining use cases includes these steps:

1. Identify all the data entities or domain classes involved in the new system.
Chapter 4 discusses these in more detail.

2. For each type of data (data entity or domain class), verify that a use case
has been identified that creates a new instance, updates existing instances,
reads or reports values of instances, and deletes (archives) an instance.

3. If a needed use case has been overlooked, add a new use case and then
identify the stakeholders.

4. With integrated applications, make sure it is clear which application is
responsible for adding and maintaining the data and which system merely
uses the data.

Use Cases in the Ridgeline Mountain
Outfitters Case
The RMO CSMS involves a variety of use cases, many of them just discussed.
The analysts working on the new system have used all three techniques for identi-
fying, validating, and refining use cases. The initial system vision (discussed in
Chapter 2) identified four subsystems: the Sales subsystem, the Order Fulfillment
subsystem, the Customer Account subsystem, and the Marketing subsystem. As
work progressed, the analysts combined reports required by each subsystem into
a fifth subsystem called the Reporting subsystem. In a system this size, the analyst
should organize the use cases by subsystem to help track which subsystem is
responsible for each use case. The analyst should also identify which use cases
involve more than one type of user.

It is important to recognize that this list of use cases will continue to evolve
as the project progresses. Additional use cases will be added, some might be
eliminated, and some might be combined. It is helpful to immediately describe
some of the details of each use case, preferably in one sentence. This brief
description is usually expanded to record more of the details when the developers
are designing and implementing the use case (see Chapter 5). Some examples of
brief use case descriptions are shown in Figure 3-10. Figures 3-11a through
Figure 3-11e show the initial list of use cases for the RMO CSMS along with the
users. Note that many use cases have more than one user.

Use Case Diagrams
Sometimes, it is useful to create diagrams that more graphically show use cases
and how they are organized. The use case diagram is the UML model used to
graphically show the use cases and their relationship to users. Recall from
Chapter 2 that UML is the standard set of diagrams and model constructs used

Use case

Create customer account

Look up customer

Process account adjustment

Brief use case description

User/actor enters new customer account data, and the system

assigns account number, creates a customer record, and

creates an account record.

User/actor enters customer account number, and the system

retrieves and displays customer and account data.

User/actor enters order number, and the system retrieves

customer and order data; actor enters adjustment amount, and

the system creates a transaction record for the adjustment.

FIGURE 3-10
Use cases and brief descriptions

brief use case description an often
one-sentence description that provides a quick
overview of a use case

use case diagram the UML model used
to graphically show use cases and their rela-
tionships to actors

78 PART 2 ■ Systems Analysis Activities

CSMS sales subsystem

Use cases Users/actors

Search for item Customer, customer service representative, store

sales representative

View product comments and ratings Customer, customer service representative, store

sales representative

View accessory combinations Customer, customer service representative, store

sales representative

Fill shopping cart

Customer

Customer

CustomerEmpty shopping cart

Check out shopping cart

CustomerFill reserve cart

CustomerEmpty reserve cart

Convert reserve cart Customer

Store sales representative

Customer service representativeCreate phone sale

Create store sale

CSMS order fulfillment subsystem

Use cases Users/actors

Ship items Shipping

Manage shippers Shipping

Create backorder Shipping

Create item return

Shipping, customer, marketing

Shipping, customer

Shipping, customer, management Look up order status

Track shipment

CustomerRate and comment on product

CustomerProvide suggestion

Review suggestions Management

Shipping

Shipping Ship items

Manage shippers

FIGURE 3-11A,B
Use cases and users/actors by
CSMS subsystem

CHAPTER 3 ■ Use Cases 79

CSMS Customer account subsystem

Use cases Users/actors

Create/update customer account Customer, customer service representative, store

sales representative

Process account adjustment Management

Send message Customer

Browse messages

Customer

Customer

CustomerRequest friend linkup

Reply to linkup request

CustomerSend/receive points

CustomerView “mountain bucks”

CustomerTransfer “mountain bucks”

CSMS marketing subsystem

Use cases Users/actors

Add/update product information Merchandising, marketing

Add/update promotion Marketing

Add/update accessory package Merchandising

Add/update business partner link Marketing

CSMS reporting subsystem

Use cases Users/actors

Produce daily transaction summary

report

Management

Produce sales history report Management, marketing

Produce sales trends report Marketing

Produce customer usage report Marketing

Produce shipment history report Management, shipping

Produce promotion impact report Marketing

Produce business partner activity report Management, marketing

FIGURE 3-11C,D,E
Use cases and users/actors by
CSMS subsystem (continued)

80 PART 2 ■ Systems Analysis Activities

in system development. You saw an example of a use case diagram in Chapter 1.
The notation is fairly simple.

Use Cases, Actors, and Notation
Implied in most use cases is a person who uses the system, which we have referred
to up to this point as the user. In UML, that person is called an actor. An actor is
always outside the automation boundary of the system but may be part of the
manual portion of the system. Sometimes, the actor for a use case is not a person;
instead, it can be another system or device that receives services from the system.

Figure 3-12 shows the basic parts of a use case diagram. A simple stick
figure is used to represent an actor. The stick figure is given a name that charac-
terizes the role the actor is playing. The use case itself is represented by an oval
with the name of the use case inside. The connecting line between the actor and
the use case indicates that the actor is involved with that use case. Finally, the
automation boundary, which defines the border between the computerized
portion of the application and the people operating the application, is shown as
a rectangle containing the use case. The actor’s communication with the use case
crosses the automation boundary. The example in Figure 3-12 shows the actor
as a shipping clerk and the use case Ship items.

Use Case Diagram Examples
Figure 3-13 shows a more complete use case diagram for a subsystem of the RMO
CSMS: the Customer Account subsystem. The information in Figure 3-11c is
recast as a single use case diagram to visually highlight the use cases and
actors for an individual subsystem. This diagram would be useful to take to a
meeting to review the use cases and actors for the subsystem. In this example,
the customer, customer service representative, and store sales representative
are all allowed to access the system directly. As indicated by the relationship
lines, each actor can use the use case Create/update customer account. The cus-
tomer might do this when checking out online. The customer service represen-
tative might do this when talking to a customer on the phone. The store sales
representative might do this when dealing with the customer in a store. Only a
member of management can process an account adjustment. The other use
cases are included only for the customer.

There are many ways to organize use case diagrams for communicating
with users, stakeholders, and project team members. One way is to show all
use cases that are invoked by a particular actor (i.e., from the user’s view-
point). This approach is often used during requirements definition because
the systems analyst may be working with a particular user and identifying all

Actor is a stick
figure, usually

meaning an

actual person
using the system

Automation

boundary

Ship items

Shipping clerk

Connecting line

to show which
actors participate

in use cases

FIGURE 3-12
A simple use case with an actor

automation boundary the boundary
between the computerized portion of the
application and the users who operate the
application but are part of the total system

CHAPTER 3 ■ Use Cases 81

the functions that user performs with the system. Figure 3-14 illustrates this
viewpoint, showing all the use cases involving the customer for the Sales
subsystem. Figure 3-15 shows use cases involving the customer service repre-
sentative and the store sales representative for the Sales subsystem. Analysts
can expand this approach to include all the use cases belonging to a particu-
lar department regardless of the subsystem or all use cases important to a
specific stakeholder.

,,includes.. Relationships
Frequently during the development of a use case diagram, it becomes appar-
ent that one use case might use the services of another use case. For example,
in the Sales subsystem use case diagram shown in Figure 3-14, the customer
might search for an item, view product comments and ratings, and view
accessory combinations before beginning to fill the shopping cart. However,
while filling the shopping cart, the customer might also search for an item,
view product comments, and view accessories. Therefore, one use case uses,
or “includes,” another use case. Figure 3-16 shows a use case diagram
emphasizing this aspect of these use cases. Fill shopping cart also includes
Search for item, View product comments and ratings, and View accessory
combinations. Thus, the Customer can view comments initially and also
while carrying out the Fill shopping cart use case. The relationship between
these use cases is denoted by the dashed connecting line with the arrow that

Create/update

customer account

Customer Account Subsystem
All Actors

Process account

adjustment

Send message

Browse
messages

Request friend

linkup

Reply to friend

linkup

Send/receive
points

View "mountain

bucks"

Transfer
"mountain bucks"

Customer Store sales
representative

Management

Customer service
representative

FIGURE 3-13
A use case diagram of the Customer
Account subsystem for RMO, showing
all actors

82 PART 2 ■ Systems Analysis Activities

points to the use case that is included. The relationship is read Fill shopping
cart includes Search for item. Sometimes, this relationship is referred to as the
,,includes.. relationship or the �uses� relationship. Note that the word
“includes” is enclosed within guillemets in the diagram; this is the way to refer
to a stereotype in UML. It means that the relationship between one use case and
another use case is a stereotypical �includes� relationship.

Developing a Use Case Diagram
Analysts create a variety of use case diagrams to communicate with users,
stakeholders, management, and team members. The steps to develop use case
diagrams are:

1. Identify all the stakeholders and users who would benefit by having a use
case diagram.

2. Determine what each stakeholder or user needs to review in a use case
diagram. Typically, a use case diagram might be produced for each subsys-
tem, for each type of user, for use cases with the �includes� relationship,
and for use cases that are of interest to specific stakeholders.

3. For each potential communication need, select the use cases and actors to
show and draw the use case diagram. There are many software packages
that can be used to draw use case diagrams.

4. Carefully name each use case diagram and then note how and when the
diagram should be used to review use cases with stakeholders and users.

Search for item

Sales Subsystem
Actor: Customer

Fill reserve cart

Empty reserve

cart

Empty shopping
cart

View product
comments and

ratings

View accessory
combinations

Check out shopping

cart

Fill shopping cart

Convert reserve

cart

Customer

FIGURE 3-14
All use cases involving the customer
actor for the Sales subsystem

,,includes.. relationship a relation-
ship between use cases in which one use case
is stereotypically included within the other use
case

CHAPTER 3 ■ Use Cases 83

Customer

Search for item

Fill shopping cart
View product

comments and
ratings

View accessory
combinations

Sales Subsystem
Fill Shopping Cart <<includes>> Relationships

<<includes>>

<<includes>>

<<includes>>

FIGURE 3-16
A use case diagram of the Fill shopping
cart �includes� relationships

FIGURE 3-15 Use cases involving the customer service representative and store sales
representative for the Sales subsystem

Sales Subsystem
Actors: Service Representative and Store Representative

Customer service
representative

Store sales
representative

View product
comments and

ratings

View accessory
combinations

Create phone sale

Search for item

Create store sale

84 PART 2 ■ Systems Analysis Activities

Chapter Summary
This chapter is the first of three chapters that present tech-
niques for modeling a system’s functional requirements. A
key early step in the modeling process is to identify and
list the use cases that define the functional requirements
for the system. Use cases can be identified by using the
user goal technique and the event decomposition tech-
nique. The user goal technique begins by identifying
types of system end users, called actors. Then, users are
asked to list specific user goals they have when using the
system to support their work. The event decomposition
technique begins by identifying the events that require a
response from the system. An event is something that can
be described, something that occurs at a specific time and
place, and something worth remembering. External
events occur outside the system—usually triggered by
someone who interacts with the system. Temporal events

occur at a defined point in time, such as the end of a
workday or the end of every month. State or internal
events occur based on an internal system change. For
each event, a use case is identified and named. The event
decomposition technique helps ensure that each use case
is identified at the elementary business process (EBP) level
of detail. Use cases are validated and refined by using the
CRUD technique—“CRUD” being an acronym for
Create, Read or Report, Update, and Delete.

Each use case identified by the analyst is further
documented by a brief use case description and by iden-
tifying the actors. UML use case diagrams are drawn to
document use cases and their actors. Many different use
case diagrams are drawn based on the need to review
use cases with various stakeholders, users, and team
members.

Key Terms

actor 72

automation boundary 81

brief use case descriptions 78

CRUD technique 77

elementary business processes (EBPs) 70

event 71

event decomposition technique 70

external event 72

�includes� relationship 83

perfect technology assumption 76

state event 73

system controls 75

temporal event 73

use case 69

use case diagram 78

user goal technique 69

Review Questions
1. What are the six activities of systems analysis, and

which activity is discussed beginning with this
chapter?

2. What is a use case?

3. What are the two techniques used to identify use
cases?

4. Describe the user goal technique for identifying
use cases.

5. What are some examples of users with different
functional roles and at different operational levels?

6. What are some examples of use case names that
correspond to your goals as a student going through
the college registration process? Be sure to use the
verb-noun naming convention.

7. What is the overarching objective of asking users
about their specific goals?

8. How many types of users can have the same user
goals for using the system?

9. Describe the event decomposition technique for
identifying use cases.

10. Why is the event decomposition technique consid-
ered more comprehensive than the user goal
technique?

11. What is an elementary business process (EBP)?

12. Explain how the event decomposition technique
helps identify use cases at the right level of analysis.

13. What is an event?

14. What are the three types of events?

15. Define an external event and then give an example
that applies to a checking account system.

16. Define a temporal event and then give an example
that applies to a checking account system.

CHAPTER 3 ■ Use Cases 85

17. What are system controls, and why are they not
considered part of the users’ functional
requirements?

18. What is the perfect technology assumption?

19. What are three examples of events that are system
controls in a typical information system that should
not be included as a use case because of the perfect
technology assumption?

20. What are the four operations that make up the
CRUD acronym?

21. What is the main purpose of using the CRUD
technique?

22. What is a brief use case description?

23. What is UML?

24. What is the purpose of UML use case diagrams?

25. What is another name for “actor” in UML, and
how is it represented on a use case diagram?

26. What is the automation boundary on a use case
diagram, and how is it represented?

27. How many actors can be related to a use case on a
use case diagram?

28. Why might a systems analyst draw many different
use case diagrams when reviewing use cases with
end users?

29. What is the �includes� relationship between two
use cases?

Problems and Exercises
1. Review the external event checklist in Figure 3-3

and then think about a university course registra-
tion system. What is an example of an event of each
type in the checklist? Name each event by using the
guidelines for naming an external event.

2. Review the temporal event checklist in Figure 3-4.
Would a student grade report be an internal or
external output? Would a class list for the instructor
be an internal or external output? What are some
other internal and external outputs for a course
registration system? Using the guidelines for naming
temporal events, what would you name the events
that trigger these outputs?

3. Consider the following sequence of actions taken by
a customer at a bank. Which action is the event the
analyst should define for a bank account
transaction-processing system? (1) Kevin gets a
check from Grandma for his birthday. (2) Kevin
wants a car. (3) Kevin decides to save his money.
(4) Kevin goes to the bank. (5) Kevin waits in line.
(6) Kevin makes a deposit in his savings account.
(7) Kevin grabs the deposit receipt. (8) Kevin asks
for a brochure on auto loans.

4. Consider the perfect technology assumption, which
states that use cases should be included during
analysis only if the system would be required to
respond under perfect conditions. Could any of the
use cases listed for the RMO CSMS be eliminated
based on this assumption? Explain. Why are such
use cases as Log on to the system and Back up the
database required only under imperfect conditions?

5. Visit some Web sites of car manufacturers, such as
Honda, BMW, Toyota, and Acura. Many of these
sites have a use case that is typically named Build and
price a car. As a potential customer, you can select a

carmodel, select features andoptions, and get the car’s
suggested price and list of specifications. Write a brief
use case description for this use case (see Figure 3-10).

6. Again looking at a Web site for one of the car
manufacturers, consider yourself a potential buyer
and then identify all the use cases included on the
site that correspond to your goals.

7. Set up a meeting with a librarian. During your
meeting, ask the librarian to describe the situations
that come up in the library to which the book
checkout system needs to respond. List these exter-
nal events. Now ask about points in time, or dead-
lines, that require the system to produce a
statement, notice, report, or other output. List these
temporal events. Does it seem natural for the
librarian to describe the system in this way? List
each event and then name the resulting use case.

8. Again considering the library, ask some students
what their goals are in using the library system.
Also ask some library employees about their goals
in using the system. Name these goals as use cases
(verb-noun) and discuss whether student users have
different goals than employee users.

9. Visit a restaurant or the college food service to talk to a
server (or talk with a friend who is a food server). Ask
about the external events and temporal events, as you
did in exercise 7.What are the events and resulting use
cases for order processing at a restaurant?

10. Review the procedures for course registration at
your university and then talk with the staff in
advising, in registration, and in your major depart-
ment. Think about the sequence that goes on over
an entire semester. What are the events that stu-
dents trigger? What are the events that your own

86 PART 2 ■ Systems Analysis Activities

department triggers? What are the temporal events
that result in information going to students? What
are the temporal events that result in information
going to instructors or departments? List all the
events and the resulting use cases that should be
included in the system.

11. Refer to the RMO CSMS Order Fulfillment sub-
system shown in Figure 3-11. Draw a use case dia-
gram that shows all actors and all use cases. Use a
drawing tool such as Microsoft Visio if it is
available.

12. Again for the Order Fulfillment subsystem, draw a use
case diagram showing just the use cases for the ship-
ping department in preparation for a meeting with
them about the system requirements. Use a drawing
tool such as Microsoft Visio if it is available.

13. Refer to the RMO CSMS Marketing subsystem
shown in Figure 3-11. Draw a use case diagram that

shows all actors and all use cases. Use a drawing
tool such as Microsoft Visio if it is available.

14. Refer to the RMO CSMS Reporting subsystem
shown in Figure 3-11. These reports were identified
by asking users about temporal events, meaning
points in time that require the system to produce
information of value. In most actual systems today,
an actor is assigned responsibility for producing the
reports or other outputs when they are due. Recall
that the actor is part of the system—the manual,
nonautomated part. Thus, this is one way the
“system” can be responsible for producing an out-
put at a point in time. In the future, more outputs
will be produced automatically. Draw a use case
diagram that shows the use cases and actors, as
shown in Figure 3-11. Use a drawing tool such as
Microsoft Visio if it is available.

Case Study

The State Patrol Ticket-Processing System

The purpose of the State Patrol ticket-processing system
is to record moving violations, keep records of the fines
paid by drivers when they plead guilty or are found guilty
of moving violations, and notify the court that a warrant
for arrest should be issued when such fines are not paid
in a timely manner. A separate State Patrol system
records accidents and the verification of financial respon-
sibility (insurance). A third system uses ticket and acci-
dent records to produce driving record reports for
insurance companies. Finally, a fourth system issues,
renews, or suspends driver’s licenses. These four sys-
tems are obviously integrated in that they share access
to the same database; otherwise, they are operated sep-
arately by different departments of the State Patrol.

When an officer gives a ticket to a driver, a copy of the
ticket is turned in and entered into the system. A new ticket
record is created, and relationships to the correct driver, offi-
cer, and court are established in the database. If the driver
pleads guilty, he or she mails in the fine in a preprinted
envelope with the ticket number on it. In some cases, the
driver claims innocence and wants a court date. When the
envelope is returned without a check and the trial request
box has an “X” in it, the system does the following: notes
the plea on the ticket record; looks up driver, ticket, and
officer information; and sends a ticket details report to the
appropriate court. A trial date questionnaire form is also pro-
duced at the same time and is mailed to the driver. The
instructions on the questionnaire tell the driver to fill in con-
venient dates and mail the questionnaire directly to the
court. Upon receiving this information, the court schedules
a trial date and notifies the driver of the date and time.

When the trial is completed, the court sends the ver-
dict to the ticketing system. The verdict and trial date are
recorded for the ticket. If the verdict is innocent, the sys-
tem that produces driving record reports for insurance
companies will ignore the ticket. If the verdict is guilty,
the court gives the driver another envelope with the ticket
number on it for mailing in the fine.

If the driver fails to pay the fine within the required
period, the ticket-processing system produces a warrant
request notice and sends it to the court. This happens if
the driver does not return the original envelope within
two weeks or does not return the court-supplied envelope
within two weeks of the trial date. What happens then is in
the hands of the court. Sometimes, the court requests that
the driver’s license be suspended, and the system that
processes drivers’ licenses handles the suspension.

1. To what events must the ticket-processing system
respond? List each event, the type of event, and the
resulting use case.

2. Write a brief use case description for each use case.
3. The portion of the database used with the ticket-

processing system involves driver data, ticket data,
officer data, and court data. Driver data, officer data,
and court data are read by the system, and the ticket-
processing system creates and updates ticket data. In
an integrated system like the ticket-processing sys-
tem, some domain classes are created by and
updated by other systems, as described in this case.
Create a table with systems down the rows and the
four types of data (domain classes) across the col-
umns. Indicate C, R, U, or D for each domain class and
each system.

CHAPTER 3 ■ Use Cases 87

RUNNING CASE STUDIES

Community Board of Realtors

One of the functions of the Board of Realtors intro-
duced in Chapter 2 is to provide a Multiple Listing
Service (MLS) system that supplies information that
local real estate agents use to help them sell houses to
their customers. During the month, agents list houses
for sale (listings) by contracting with homeowners. The
agent works for a real estate office, which sends infor-
mation on the listing to the MLS. Therefore, any agent
in the community can get information on the listing.

Information on a listing includes the address, year
built, square feet, number of bedrooms, number of bath-
rooms, owner name, owner phone number, asking
price, and status code. At any time during the month,
an agent might directly request information on listings
that match customer requirements, so the agent contacts
the MLS with the request. Information is provided on
the house, on the agent who listed the house, and on
the real estate office for which the agent works. For
example, an agent might want to call the listing agent
to ask additional questions or call the homeowner
directly to make an appointment to show the house.
Once each week, the MLS produces a listing book that
contains information on all listings. These books are

sent to some real estate agents. Some real estate agents
want the books (which are easier to flip through), so
they are provided even though the information is often
out of date. Sometimes, agents and owners decide to
change information about a listing, such as reducing
the price, correcting previous information on the
house, or indicating that the house is sold. The real
estate office sends in these change requests to the MLS
when the agent asks the office to do so.

1. To what events must the MLS system respond? List
each event, the type of event, and the resulting use
case. Be sure to consider all the use cases that would
be needed to maintain the data in the MLS system,
thinking in terms of the CRUD technique.

2. Draw a use case diagram based on the actors and
use cases you identified in question 1.

3. Given the information available in the system,
consider yourself a potential customer looking for
real estate. List as many specific use cases you
would like to see based on your specific goals.

4. Draw a use case diagram for all the use cases for
the potential customer you identified in question 3.

The Spring Breaks ‘R’ Us Travel Service

Spring Breaks ‘R’ Us (SBRU), introduced in Chapter 2,
includes many use cases that make up the functional
requirements. Consider the following description of the
Booking subsystem. A few weeks before Thanksgiving
break, it is time to open the system to new bookings.
Students usually want to browse through the resorts and
do some planning. After that, when a student or group of
students wants to book a trip, the system allows it.
Sometimes, a student needs to be added or dropped from
the group or a group changes size and needs a different
type of room. One month before the actual trip, it is time
for the system to send out final payment requirement
notices. Students cancel the booking or they pay their
final bills. Students often want to look up their booking
status and check on resort details. When they arrive at
the resort, they need to check in; and when they leave,
they need to check out.

1. Using the event decomposition technique for each
event you identify in the description here, name
the event, state the type of event, and name the
resulting use case. Draw a use case diagram for
these use cases.

2. Consider the new Social Networking subsystem
that SBRU is researching. Think in terms of the
user goal technique to identify as many use cases
as you can think of that you would like to have in
the system. SBRU is guessing you might want to
join, send messages, and so forth, but there must
be many interesting and useful things the system
could do before, during, and after the trip. Draw
a use case diagram for these use cases.

(continued on page 89)

88 PART 2 ■ Systems Analysis Activities

On the Spot Courier Services

Recall the On the Spot courier service introduced in
Chapter 2. The details of the package pickup and
delivery process are described here.

When Bill got an order, at first, only on his phone,
he recorded when he received the call and when the
shipment would be ready for pickup. Sometimes, custo-
mers wanted immediate pickup; sometimes, they were
calling to schedule a later time in the day for pickup.

Once he arrived at the pickup location, Bill collected
the packages. It was not uncommon for the customer to
have several packages for delivery. In addition to the
name and address of the delivery location, he also
recorded the time of pickup. He noted the desired
delivery time, the location of the delivery, and the weight
of the package to determine the courier cost. When he
picked up the package, he printed out a label with his
portable printer that he kept in the delivery van.

At first, Bill required customers to pay at the time
of pickup, but he soon discovered that there were some
regular customers who preferred to receive a monthly
bill for all their shipments. He wanted to be able to
accommodate those customers. Bills were due and pay-
able upon receipt.

To help keep track of all the packages, Bill decided
that he needed to scan each package as it was sorted in
the warehouse. This would enable him to keep good
control of his packages and avoid loss or delays.

The delivery of a package was fairly simple.
Upon delivery, he would record information about
when the delivery was made and who received it.
Because some of the packages were valuable, it was
necessary in those instances to have someone sign for
the package.

1. From this description as well as the information
from Chapter 2, identify all the actors that will be
using the system.

2. Using the actors that you identified in question 1,
develop a list of use cases based on the user goal
technique. Draw a use case diagram for these use
cases.

3. Using the event decomposition technique for each
event you identify in the description here, name
the event, state the type of event, and name the
resulting use case. Draw a use case diagram for
these use cases.

Sandia Medical Devices

Recall the Sandia Medical Devices Real-Time Glucose
Monitoring (RTGM) system introduced in Chapter 2.
As the project began, interviews with patients and
physicians about potential RTGM capabilities and
interaction modes identified several areas of concern
that will need to be incorporated into the system
requirements and design. The relevant patient concerns
include:

■ Viewing and interpreting data and trends: Patients
want to be able to view more than their current
glucose level. They would like the ability to see
past glucose levels over various time periods, with
a specific focus on time periods during which their
glucose was within and outside of acceptable
ranges. A graphical view of the data is preferred,
although some patients also want to be able to see
actual numbers.

■ Additional data: Some patients want to be able to
enter text notes or voice messages to supplement
glucose level data. For example, patients who see a

high glucose alert might record voice messages
describing how they feel or what they had recently
eaten. Some patients thought that sharing such
information with their health-care providers might
be valuable, but others only wanted such infor-
mation for themselves.

Physicians expressed these concerns:

■ They do not want to be the “first line of
response” to all alerts. They prefer that nurses or
physician assistants be charged with that role
and that they be notified only when frontline
personnel determine that an emergency situation
exists.

■ They want to be able to monitor and view past
patient data and trends in much the same way as
described for patients.

■ They want all their actions to be logged and for
patient-specific responses to be stored as part of
the patient’s electronic medical record.

(continued from page 88)

(continued on page 90)

CHAPTER 3 ■ Use Cases 89

Perform the following tasks by using the information
here as well as the system description in Chapter 2:

1. Identify all the actors that will use RTGM.
2. Using the actors that you identified in question 1,

develop a list of use cases based on the user
goal technique. Draw a use case diagram for these
use cases.

3. Using the event decomposition technique for each
event you identified in the description, name the
event, state the type of event, and name the
resulting use case. Draw a use case diagram for
these use cases.

Further Resources

Classic and more recent texts include:
Craig Larman, Applying UML and Patterns (3rd ed.).

Prentice-Hall, 2005.

Grady Booch, Ivar Jacobson, and James Rumbaugh,
The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

Ed Yourdon, Modern Structured Analysis. Prentice
Hall, 1989.

Stephen McMenamin and John Palmer, Essential
Systems Analysis. Prentice Hall, 1984.

(continued from page 89)

90 PART 2 ■ Systems Analysis Activities

4
Domain Modeling

Chapter Outline

■ “Things” in the Problem Domain

■ The Entity-Relationship Diagram

■ The Domain Model Class Diagram

Learning Object ives

After reading this chapter, you should be able to:

■ Explain how the concept of “things” in the problem domain also defines
requirements

■ Identify and analyze data entities and domain classes needed in the system

■ Read, interpret, and create an entity-relationship diagram

■ Read, interpret, and create a domain model class diagram

■ Understand the domain model class diagram for the RMO Consolidated Sales
and Marketing System

91

OPENING CASE

Waiters on Call Meal-Delivery System (Part 2)

Recall that Waiters on Call has been working with Sam
Wells on the requirements for its meal-delivery system.
Sue and Tom Bickford want a new system that will auto-
mate and improve their specialty business of providing
customer-ordered, home-delivered meals prepared by a
variety of local restaurants. Sam did a great job of identifying
the use cases required for the delivery service, which
impressed the Bickfords. And while working on the use
cases, he continued to note all the business terms and
concepts that the Bickfords used as they described their
operations. He followed up with questions about the types
of things they work with each day, which they answered.

“Based on what you’ve told me,” Sam said, “I assume
you will need the system to store information about the
following types of things, which we call data entities or
domain classes: restaurants, menu items, customers, and
orders. I also think you’re going to need to store information

about the following types of things: drivers, addresses,
routes, and order payments.”

The Bickfords readily agreed and added that it was
important to know what route a restaurant was on and
how far it might be to the customer’s address. They
wanted drivers to be assigned to a route based on the
distances from place to place.

“Yes, we need to decide how things need to be asso-
ciated in the system,” Sam agreed. “Can you tell me if
drivers pick up orders from several restaurants when they
go out? Can you tell me how many items are usually
included in one order? Do you note pickup times and
delivery times? Do you need to plan the route so that hot
dishes are delivered first?”

The Bickfords were further reassured that they had
picked an analyst who was aware of the needs of their
business.

Overview
Chapter 3 focused on identifying use cases to define the functional requirements
for an information system. In this chapter, we focus on another key concept that
defines requirements: things in the problem domain of system users. You first
learned about these as data entities or domain classes when we discussed use
cases. You might have learned about these when studying database manage-
ment, as they define the sources for the tables used in a relational database man-
agement system. Nearly all approaches to system development include
identifying and modeling data entities or domain classes as an important task in
the analysis activity Define functional requirements.

“Things” in the Problem Domain
Domain classes or data entities are what end users deal with when they do their
work—for example, products, sales, shippers, shipments, and customers. These
are often referred to as “things” in the context of a system’s problem domain.
The problem domain is the specific area of the user’s business that is included
within the scope of the new system. The new system involves working with and
remembering these “things.” For example, some information systems need to
store information about customers and products, so it is important for the
analyst to identify lots of information about those two things. Often, things are
related to the people who interact with the system or to other stakeholders. For
example, a customer is a person who places an order, but the system needs
to store information about that customer, so a customer is also a thing in the
problem domain. However, things are sometimes distinct from people. For
example, the system may need to store information about products, shipments,
and warehouses, but these are not persons.

There are many techniques for identifying the important things in the prob-
lem domain. Two of them are introduced in this chapter: the brainstorming
technique and the noun technique.

problem domain the specific area
(or domain) of the user’s business need
(or problem) that is within the scope of
the new system

92 PART 2 ■ Systems Analysis Activities

The Brainstorming Technique
As with use cases, an analyst should ask the users to discuss the types of things
they work with routinely. The analyst can ask about several types of things to
help identify them. Many things are tangible and therefore more easily identi-
fied, but others are intangible. Different types of things are important to differ-
ent users, so it is important to involve all types of users to help identify
problem domain things. The brainstorming technique is useful for working
with users to identify things in the problem domain.

Figure 4-1 shows some types of things to consider. Tangible things are
often the most obvious, such as an airplane, a book, or a vehicle. In the
Ridgeline Mountain Outfitters case, a product in the warehouse and a vehicle
in the fleet are tangible things of importance. Another common type of thing
in an information system is a role played by a person, such as an employee, a
customer, a doctor, or a patient. The role of customer is obviously a very
important one in the Ridgeline Mountain Outfitters case. Many things in the
problem domain can fit into more than one type. For example, a vehicle is
a device and a tangible thing. Either way, the important point is to identify
potential things in the problem domain.

Other types of things can include organizational units, such as a division,
department, or workgroup. Similarly, a site or location, such as a warehouse, a
store, or a branch office, might be an important thing in a system. Finally, infor-
mation about an incident or an interaction can be a thing—information about an
order, a service call, a contract, or an airplane flight. A sale, a shipment, and a
return are all important incidents in the RMO case. Sometimes, these incidents
are thought of as associations between things. For example, a sale is an associa-
tion between a customer and an item of inventory. Initially, the analyst might
simply list all these as things and then make adjustments as required by different
approaches to analysis and design.

The analyst identifies these types of things by thinking about each use case,
talking to users, and asking questions. For example, for each use case,
what types of things are affected that the system needs to know about and store
information about? The types of things shown in Figure 4-1 can be used to
systematically brainstorm about what types of things might be involved in each
use case. When a customer wants to buy from the Web site, the system needs to
store information about the customer, the items ordered, the details about the
sale itself—such as the date and payment terms—and the location of the items

brainstorming technique a technique
to identify problem domain objects in which
developers work with users in an open group
setting

FIGURE 4-1 Types of things to use for the brainstorming technique

sensor
timer

controller
assembly line

production machine
sorter
printer

inventory bin

Devices

warehouse
branch office

factory
retail store

desktop

Sites/
locations

flight
service call

logon
logoff

contract
purchase

order
payment

Incidents,
events, or

interactions

airplane
book

vehicle
document
worksheet

Tangible
things

employee
customer

doctor
patient

end user
system

administrator

Roles
played

Things

division
department

section
task force

workgroup

Organizational
units

CHAPTER 4 ■ Domain Modeling 93

to be shipped. For that one use case, the analyst can define tangible things
(items ordered), roles played (customer), incidents or events (the sale), sites/
locations (warehouse), and organizational units (shipping).

Here are the steps to follow when using the brainstorming technique:

1. Identify a user and a set of use cases.
2. Brainstorm with the user to identify things involved when carrying out the

use case—that is, things about which information should be captured by the
system.

3. Use the types of things (categories) to systematically ask questions about
potential things, such as the following: Are there any tangible things you
store information about? Are there any locations involved? Are there roles
played by people that you need to remember?

4. Continue to work with all types of users and stakeholders to expand the
brainstorming list.

5. Merge the results, eliminate any duplicates, and compile an initial list.

The Noun Technique
Another useful procedure for identifying things in the problem domain is called
the noun technique. Recall that a noun is a person, place, or thing. Therefore,
identifying nouns might help you identify what needs to be stored by the system.
Begin by listing all the nouns that users mention when talking about the system.
Nouns used to describe events, use cases, and the actors are potential things.
Next, add to the list any additional nouns that appear in information about
the existing system or that come up in discussions with stakeholders about the
problem domain of the system. The list of nouns will become quite long, so the
list will need to be refined. How the noun technique differs from the brain-
storming technique is that the analyst lists all nouns without thinking too much
about them and without talking much to users. Only later will the list be refined
based on consultation with stakeholders and users.

Here are the steps to follow when using the noun technique:

1. Using the use cases, actors, and other information about the system—

including inputs and outputs—identify all nouns. For the RMO CSMS,
the nouns might include the following: customer, product item, sale,
confirmation, transaction, shipping, bank, change request, summary report,
management, transaction report, accounting, back order, back order
notification, return, return confirmation, fulfillment reports, prospective
customer, marketing, customer account, promotional materials, charge
adjustment, sale details, merchandising, and customer activity reports.

2. Using other information from existing systems, current procedures, and
current reports or forms, add items or categories of information needed.
For the RMO CSMS, these might include more detailed information, such
as price, size, color, style, season, inventory quantity, payment method, and
shipping address. Some of these items might be additional things, and some
might be more specific pieces of information (called attributes) about things
you have already identified. Refine the list and then record assumptions or
issues to explore.

3. As this list of nouns builds, you will need to refine it. Ask these questions
about each noun to help you decide whether you should include it:
■ Is it a unique thing the system needs to know about?
■ Is it inside the scope of the system I am working on?
■ Does the system need to remember more than one of these items?

Ask these questions about each noun to decide whether you should
exclude it:
■ Is it really a synonym for some other thing I have identified?

noun technique a technique to identify
problem domain objects by finding and classi-
fying the nouns in a dialog or description

94 PART 2 ■ Systems Analysis Activities

■ Is it really just an output of the system produced from other information
I have identified?

■ Is it really just an input that results in recording some other information
I have identified?

Ask these questions about each noun to decide whether you should
research it:
■ Is it likely to be a specific piece of information (attribute) about some

other thing I have identified?
■ Is it something I might need if assumptions change?

4. Create a master list of all nouns identified and then note whether each one
should be included, excluded, or researched further.

5. Review the list with users, stakeholders, and team members and then refine
the list of things in the problem domain.

Figure 4-2 lists some of the nouns from the RMO CSMS, with notes about
each one. As with the brainstorming technique, the initial list developed from
this table is just a start. Much more work is needed to refine the list and define
more information about each item in the list.

Attributes of Things
The noun technique involves listing all the nouns that come up in discussions
or documents about the requirements. As discussed previously, many of
these nouns are actually attributes. Most information systems store and use
specific pieces of information about each thing, as shown for some nouns in
Figure 4-2. The specific pieces of information are called attributes. For exam-
ple, a customer has a name, a phone number, a credit limit, and so on. Each of
these details is an attribute. The analyst needs to identify the attributes of each
thing that the system needs to store. One attribute may be used to identify a

attributes descriptive pieces of informa-
tion about things or objects

Identified noun Notes on including noun as a thing to store

Accounting We know who they are. No need to store it.

Back order A special type of order? Or a value of order status? Research.

Back-order information An output that can be produced from other information.

Bank Only one of them. No need to store.

Catalog Yes, need to recall them, for different seasons and years. Include.

Catalog activity reports An output that can be produced from other information. Not stored.

Catalog details Same as catalog? Or the same as product items in the

catalog? Research.

Change request An input resulting in remembering changes to an order.

Charge adjustment An input resulting in a transaction.

Color One piece of information about a product item.

Confirmation An output produced from other information. Not stored.

Credit card information Part of an order? Or part of customer information? Research.

Customer Yes, a key thing with lots of details required. Include.

Customer account Possibly required if an RMO payment plan is included. Research.

Fulfillment reports An output produced from information about shipments. Not stored.

Inventory quantity One piece of information about a product item. Research.

Management We know who they are. No need to store.

Marketing We know who they are. No need to store.

Merchandising We know who they are. No need to store.

FIGURE 4-2
Partial list of “things” based on nouns
for RMO

CHAPTER 4 ■ Domain Modeling 95

specific thing, such as a Social Security number for an employee or an order
number for a purchase. The attribute that uniquely identifies the thing is called
an identifier or key. Sometimes, the identifier is already established (a Social
Security number, vehicle ID number, or product ID number). Sometimes, the
system needs to assign a specific identifier (an invoice number or transaction
number).

A system may need to remember many similar attributes. For example, a
customer has several names: a first name, a middle name, a last name, and
possibly a nickname. A compound attribute is an attribute that contains a
collection of related attributes, so an analyst may choose one compound
attribute to represent all these names, perhaps naming it Customer full name.
A customer might also have several phone numbers: home phone number, office
phone number, fax phone number, and cell phone number. The analyst might
start out by describing the most important attributes but later add to the list.
Attribute lists can get quite long. Some examples of attributes of a customer
and the values of attributes for specific customers are shown in Figure 4-3.

Associations Among Things
After recording and refining the list of things and determining potential
attributes, the analyst needs to research and record additional information.
Many important relationships among things are important to the system. An
association is a naturally occurring relationship between specific things, such
as an order is placed by a customer and an employee works in a department
(see Figure 4-4). Is placed by and works in are two associations that naturally
occur between specific things. Information systems need to store information
about employees and about departments, but equally important is storing
information about the specific associations; for example, John works in the

FIGURE 4-3 Attributes and values

All customers have these attributes: Each customer has a value for each attribute:

Customer ID

First name

Last name

Home phone

Work phone

101

John

Smith

555-9182

555-3425

102

Mary

Jones

423-1298

423-3419

103

Bill

Casper

874-1297

874-8546

Mr Smith

“is
placed

by”
“works in”

“contains” “contains”

401 jeans size
34 long

red shirt size
16/32

Accounting DeptOrder # 1043

FIGURE 4-4
Associations naturally occur among
things

identifier or key an attribute the value of
which uniquely identifies an individual thing or
object

compound attribute an attribute that
consists of multiple pieces of information but is
best treated in the aggregate

association a term, in UML, that
describes a naturally occurring relationship
between specific things, sometimes called a
relationship

96 PART 2 ■ Systems Analysis Activities

accounting department and Mary works in the marketing department. Similarly,
it is quite important to store the fact that Order 1043 for a shirt was placed by
John Smith. In database management, the term relationship is often used in
place of association, which is the term used when modeling in UML. We will
use association in this book because we emphasize UML diagrams and terms.

Associations between things apply in two directions. For example, a
customer places an order describes the association in one direction. Similarly,
an order is placed by a customer describes the association in the other direction.
It is important to understand the association in both directions because some-
times it might seem more important for the system to record the association in
one direction than in the other. For example, Ridgeline Mountain Outfitters
definitely needs to know what items a customer ordered so the shipment can be
prepared. However, it might not be initially apparent that the company needs to
know about the customers who have ordered a particular item. What if the
company needs to notify all customers who ordered a defective or recalled prod-
uct? Knowing this information would be very important, but the operational
users might not immediately recognize that fact.

It is also important to understand the nature of each association in terms of
the number of links for each thing. For example, a customer might place many
different orders, but an order is placed by only one customer. In database
management, the number of links that occur is referred to as the cardinality
of the association. Cardinality can be one-to-one or one-to-many. The term
multiplicity is used to refer to the number of links in UML and should be used
when discussing UML models. Multiplicity is established for each direction of
the association. Figure 4-5 lists examples of cardinality/multiplicity associated
with an order.

It is important to describe not just the multiplicity but also the range of
possible values of the multiplicity (the minimum and maximum multiplicity).
For example, a particular customer might not ever place an order. In this case,
there are zero associations. Alternatively, the customer might place one order,
meaning one association exists. Finally, the customer might place two, three, or
even more orders. The relationship for a customer placing an order can have a
range of zero, one, or more, usually indicated as zero or more. The zero is the
minimum multiplicity, and more is the maximum multiplicity. These terms are
referred to as multiplicity constraints.

In some cases, at least one association is required (a mandatory as opposed
to optional association). For example, the system might not record any informa-
tion about a customer until the customer places an order. Therefore, the
multiplicity would read customer places one or more orders.

A one-to-one association can also be refined to include minimum and
maximum multiplicity. For example, an order is placed by one customer; it
is impossible to have an order if there is no customer. Therefore, one is the min-
imum multiplicity, making the association mandatory. Because there cannot be
more than one customer for each order, one is also the maximum multiplicity.

Mr. Jones has placed no order yet,
but there might be many placed

over time.

A particular order is placed by Mr.
Smith. There can’t be an order

without stating who the customer is.

An order contains at least one item,
but it could contain many items.

multiplicity/cardinality
is zero or more—
optional relationship

multiplicity/cardinality
is one and only one—
mandatory relationship

multiplicity/cardinality
is one or more—
mandatory relationship

FIGURE 4-5
Multiplicity/cardinality of associations

relationship a term that describes a
naturally occurring association between specific
things, sometimes called an association

cardinality a measure of the number of
links between one object and another object in
a relationship

multiplicity a measure, in UML, of the
number of links between one object and
another object in an association

multiplicity constraints the actual
numeric count of the constraints on objects
allowed in an association

CHAPTER 4 ■ Domain Modeling 97

Sometimes, such an association is read as an order must be placed by one and
only one customer.

The associations described here are between two different types of things—
for example, a customer and an order. These are called binary associations.
Sometimes, an association is between two things of the same type—for example,
the association is married to, which is between two people. This type of associa-
tion is called a unary association (and sometimes called a recursive associa-
tion). Another example of a unary association is an organizational hierarchy in
which one organizational unit reports to another organizational unit—the pack-
ing department reports to shipping, which reports to distribution, which reports
to marketing.

An association can also be among three different types of things, when it is
called a ternary association, or among any number of different types of
things, when it is called an n-ary association. For example, one particular
order might be associated with a specific customer plus a specific sales represen-
tative, requiring a ternary association.

Storing information about the associations is just as important as storing
information about the specific things. It is important to have information like
the name and address of each customer, but it is equally important (perhaps
more so) to know what items each customer has ordered.

The Entity-Relationship Diagram
More traditional approaches to system development place a great deal of
emphasis on data storage requirements for a new system and use the term
data entities for the things about which the system needs to store information.
Data storage requirements include the data entities, their attributes, and the
relationships (called “associations” in UML) among the data entities. A
model commonly used by traditional analysts and database analysts is called
the entity-relationship diagram (ERD). The ERD is not a UML diagram, but
it is very commonly used and is quite similar to the UML domain model class
diagram that is discussed later in this chapter.

Examples of ERD Notation
On the entity-relationship diagram, rectangles represent data entities, and the
lines connecting the rectangles show the relationships among data entities.
Figure 4-6 shows an example of a simplified entity-relationship diagram with
two data entities: Customer and Order. Each Customer can place many Orders,
and each Order is placed by one Customer. The cardinality is one-to-many in

binary associations associations
between exactly two distinct types of things

unary association an association
between two instances of the same type
of thing

ternary association an association
between exactly three distinct types of things

n-ary association an association
between n distinct types of things

data entities the term used in an ER
diagram to describe sets of things or individual
things

entity-relationship diagram (ERD) a
diagram consisting of data entities (i.e., sets of
things) and their relationships

an Order must be placed
by exactly one Customer

a Customer can place
zero or more Orders

Customer Order

FIGURE 4-6
A simple entity-relationship diagram

98 PART 2 ■ Systems Analysis Activities

one direction and one-to-one in the other direction. The crow’s-feet symbol on
the line next to the Order data entity indicates many orders. But other symbols
on the relationship line also represent the minimum and maximum cardinality
constraints. See Figure 4-7 for an explanation of ERD relationship symbols.
The model in Figure 4-6 actually says that a Customer places a minimum of
zero Orders and a maximum of many Orders. Reading in the other direction,
the model says an Order is placed by at least one and only one Customer. This
notation can express precise details about the system. The constraints reflect the
business policies that management has defined, and the analyst must discover
what these policies are. The analyst does not determine that two customers can-
not share one order; management does.

Figure 4-8 shows the model expanded to include the order items (one or
more specific items included on the order). Each order contains a minimum of
one and a maximum of many items (there could not be an order if it did not
contain at least one item). For example, an order might include a shirt, a pair
of shoes, and a belt, and each of these items is associated with the order. This
example also shows some of the attributes of each data entity: A customer has
a customer number, a name, a billing address, and several phone numbers.
Each order has an order ID, order date, and so on. Each order item has an item
ID, quantity, and price. The attributes of the data entity are listed below the
name, with the key identifier listed first, usually followed by “PK” to indicate
primary key.

Figure 4-9 shows how the actual data in some transactions might look.
John is a customer who has placed two orders. The first order, placed on
February 4, was for two shirts and one belt. The second order, placed on
March 29, was for one pair of boots and two pairs of sandals. Mary is a cus-
tomer who has not yet placed an order. Recall that a customer might place zero
or more orders. Therefore, Mary is not associated with any orders. Finally, Sara
placed an order on March 30 for three pairs of sandals. The diagram shown in
Figure 4-9 is sometimes referred to as a semantic net. A semantic net shows
specific objects that belong to a class or data entity and the links among them.

Exactly one (mandatory)

Zero or more (optional)

One or more (mandatory)

Zero or one (optional)

FIGURE 4-7
Cardinality symbols of ERD
relationships

Customer

cust number–PK
name

bill address
home phone
office phone

order ID–PK
order date

amount

Order OrderItem

item ID–PK
quantity

price

FIGURE 4-8
An expanded ERD with attributes
shown

semantic net a graphical representation
of an individual data entity and its relationship
with other individual data entities

CHAPTER 4 ■ Domain Modeling 99

A semantic net is useful for thinking through and verifying the entities and
relationships in an ERD and the classes and associations in a class diagram
(discussed next).

Another example is shown in Figure 4-10. This ERD is for a bank that has
many branches. Each branch has one or more accounts. Each account is owned
by one customer and results in one or more transactions. There are a few other
issues to consider in the bank example. First, there is no data entity named
Bank. That is because the ERD shows data storage requirements for the bank.
There is only one bank. Therefore, there is no need to include Bank in the
model. This is a general rule that applies to ERDs. If the system were for state
bank regulators, then Bank would be an important data entity because there
are lots of banks under the state regulators’ jurisdiction.

John

Mary

Sara

no orders for
Mary yet!

Order: 3 March 30

Order: 1 Feb 4

Order: 2 March 29

First shirt

Second shirt

Belt

Boots

First sandals

Second sandals

Third sandals

First sandals

Second sandals

FIGURE 4-9
Semantic net of customers, orders,
and order items consistent with the
expanded ERD

branch ID–PK

manager name
location
main phone

account ID–PK
account type
date opened

balance

cust number–PK
name

bill address

home phone
office phone

Account BranchCustomer

trans ID–PK

trans date
trans type

trans amount

Transaction

FIGURE 4-10
An ERD for a bank with many branches

100 PART 2 ■ Systems Analysis Activities

Look again at the cardinality. Note that a customer must have at least one
account. The rationale for this is that the bank would not add a customer unless
he or she were adding an account. Note also that the branch can have zero
accounts. A branch might be added long before it opens its doors, so it is possi-
ble that it is does not have any accounts. Additionally, there might be some
branches that do not have accounts, such as a kiosk at a university or airport.
Note that an account must have at least one transaction. The rationale is that
opening a new account requires an initial deposit, which is a transaction. It is
important to recognize that questions about the cardinality and minimum and
maximum cardinality constraints need to be discussed and reviewed with
stakeholders.

The Domain Model Class Diagram
Many current approaches to system development use the term class rather than
data entity and use concepts and notations based on UML to model the things
in the problem domain. These concepts come from the object-oriented approach
to systems. A class is a category or classification used to describe a collection of
objects. Each object belongs to a class. Therefore, students Mary, Joe, and
Maria belong to the class Student. Classes that describe things in the problem
domain are called domain classes. Domain classes have attributes and associa-
tions. Multiplicity (called cardinality in an ERD) applies among classes. Initially,
when defining requirements, the approach to modeling using an ERD or UML is
very similar.

The UML class diagram is used to show classes of objects for a system.
One type of UML class diagram that shows the things in the users’ problem
domain is called the domain model class diagram. Another type of UML
class diagram is called the design class diagram, and it is used when designing
software classes. You will learn about the design class diagram in Chapter 10.

On a class diagram, rectangles represent classes, and the lines connecting
the rectangles show the associations among classes. Figure 4-11 shows such a
symbol for a single domain class: Customer. The domain class symbol is a rect-
angle with two sections. The top section contains the name of the class, and the
bottom section lists the attributes of the class. Later, you will learn that the
design class symbol includes a third section at the bottom for listing methods of
the class; methods do not apply to problem domain classes.

Class names and attribute names use camelback notation, in which the
words run together without a space or underscore. Class names begin with a
capital letter; attribute names begin with a lowercase letter (see Figure 4-11).
Class diagrams are drawn by showing classes and associations among classes.
The examples used previously for the entity-relationship diagram are redrawn
by using UML domain class diagram notation in the following section so you
can compare them. Additionally, more complex issues about classes and associa-
tions are illustrated in domain model class diagrams.

The name of the class

Attributes: all objects in
the class have a value for

each of these

Customer

custNumber

name
billAddress
homePhone

officePhone

FIGURE 4-11
The UML domain class symbol with
name and attributes

class a category or classification of a set of
objects or things

domain classes classes that describe
objects from the problem domain

class diagram a diagram consisting of
classes (i.e., sets of objects) and associations
among the classes

domain model class diagram a class
diagram that only includes classes from the
problem domain

camelback notation or camelcase
notation when words are concatenated to
form a single word and the first letter of each
embedded word is capitalized

CHAPTER 4 ■ Domain Modeling 101

Domain Model Class Diagram Notation
Figure 4-12 shows a simplified domain model class diagram with three classes:
Customer, Order, and OrderItem (just like the example of an ERD shown in
Figure 4-9). Here, each class symbol includes two sections. In diagram notation,
we see that each Customer can place many Orders (a minimum of zero and a
maximum of many) and that each Order is placed by one Customer. The asso-
ciations places and consists of can be included on the diagram for clarity, as
shown in Figure 4-12, but this detail is optional. The multiplicity is one-
to-many in one direction and one-to-one in the other direction. The multiplicity
notation, shown as an asterisk on the line next to the Order class, indicates
many orders. The other association shows that an Order consists of one or
more OrderItems, and each OrderItem is associated with one Order.

See Figure 4-13 for a summary of multiplicity notation.
Figure 4-14 shows another example of a domain model class diagram, this

one for the bank with multiple branches that was discussed earlier and shown
as an ERD. In this example, the UML notation for indicating an attribute that
is an identifier or key is {key}.

Figure 4-15 shows an example of a domain model class diagram with a
many-to-many association. At a university, courses are offered as course sec-
tions, and a student enrolls in many course sections. Each course section con-
tains many students. Therefore, the association between CourseSection and
Student is many-to-many. There are situations in which many-to-many associa-
tions are appropriate, and they can be modeled as shown.

However, on closer analysis, analysts often discover that many-to-many
associations involve additional data that are important and must be stored. For
example, in Figure 4-15, where is the grade that each student receives for the
course stored? This is important data, and although the model indicates which
course section a student took, it does not have a place for the grade. The solu-
tion is to add a domain class to represent the association between student and
course section; this is called an association class. The association class is
given the missing attribute. Figure 4-16 shows the expanded class diagram,

orderID
orderDate
amount

Order

itemID
quantity
price

OrderItem

custNumber
name
billAddress
homePhone
officePhone

Customer

0..*1 1..*1

places consists of

FIGURE 4-12
A simple domain model class diagram

Zero or more

(optional)

One or more

(mandatory)

One and only one
(mandatory)

One and only one
alternate

(mandatory)

Zero or more

alternate
(optional)

Zero or one

(optional)

1

0..*0..1

1..1 1..*

*

FIGURE 4-13
UML notation for multiplicity of
associations

association class an association that is
also treated as a class; often required in order
to capture attributes for the association

102 PART 2 ■ Systems Analysis Activities

account ID {key}
accountType
dateOpened
balance

Account

transID {key}
transDate
transType
transAmount

Transaction

branchID {key}
managerName
branchLocation
mainPhone

Branch

custNumber {key}
fullName
billAddress
homePhone
officePhone

Customer

1..*1

1

1..*

10..*

FIGURE 4-14
A domain model class diagram for
a bank

sectionNumber

startTime

roomNumber

CourseSection

studentID

name

major

Student

courseNumber

title

creditHours

Course

0..*

1

0..*

0..*

FIGURE 4-15
A university course enrollment domain
model class diagram with a many-
to-many association

sectionNumber

startTime
roomNumber

CourseSection

studentID
name

major

Student

courseNumber
title
creditHours

Course

grade

CourseEnrollment

0..*

1

0..*

0..*

FIGURE 4-16
A refined university course enrollment
domain model class diagram with an
association class

CHAPTER 4 ■ Domain Modeling 103

with an association class named CourseEnrollment, which has an attribute for
the student’s grade. A dashed line connects the association class with the associ-
ation line between the CourseSection and Student classes.

Reading the association in Figure 4-16 from left to right, one course section
has many course enrollments—each with its own grade—and each course enroll-
ment applies to one specific student. Reading from right to left, one student has
many course enrollments—each with its own grade—and each course enroll-
ment applies to one specific course section. A database implemented by using
this model will be able to produce grade lists showing all students and their
grades in each course section as well as grade transcripts showing all grades
earned by each student.

More Complex Issues about Classes of Objects
Previously, we discussed associations between domain classes. In UML, an asso-
ciation is one of many types of relationships, so we need to be more precise
when discussing UML diagrams than when discussing ERDs. For example, the
use case diagram introduced in Chapter 3 shows the �includes� relationship
between use cases. With class diagrams, there are three types of relationships
among classes of objects: association relationships (which we have already dis-
cussed), generalization/specialization relationships, and whole/part relationships.
This section discusses generalization/specialization relationships and whole-part
relationships and shows how they are represented in UML class diagrams.

Generalization/Specialization Relationships
Generalization/specialization relationships are based on the idea that people
classify things in terms of similarities and differences. Generalizations are judg-
ments that group similar types of things. For example, there are several types of
motor vehicles: cars, trucks, and tractors. All motor vehicles share certain gen-
eral characteristics, so a motor vehicle is a more general class. Specializations
are judgments that group different types of things. For example, special types of
cars include sports cars, sedans, and sport utility vehicles. These types of cars
are similar in some ways yet different in other ways. Therefore, a sports car is a
special type of car.

A generalization/specialization relationship is used to structure or rank these
things from the more general to the more special. As discussed previously, classi-
fication refers to defining classes of things. Each class of things in the hierarchy
might have a more general class above it, called a superclass. At the same
time, a class might have a more specialized class below it, called a subclass.
In Figure 4-17, the class Car has three subclasses and one superclass
(MotorVehicle). UML class diagram notation uses a triangle that points to the
superclass to show a generalization/specialization hierarchy.

We mentioned that people structure their understanding by using
generalization/specialization relationships. In other words, people learn by refin-
ing the classifications they make about some field of knowledge. A knowledge-
able banker can talk at length about special types of loans and deposit
accounts. A knowledgeable merchandiser like John Blankens at Ridgeline
Mountain Outfitters can talk at length about special types of outdoor activities
and clothes. Therefore, when asking users about their work, the analyst is
trying to understand the knowledge the user has about the work, which the
analyst can represent by constructing generalization/specialization relationships.
At some level, the motivation for the new CSMS project at RMO started with
John’s recognition that Ridgeline Mountain Outfitters might handle many spe-
cial types of sales with a new system (online sales, telephone sales, and in-store
sales). These special types of sales are shown in Figure 4-18.

Inheritance allows subclasses to share characteristics of their superclass.
Returning to Figure 4-17, a car is everything any other motor vehicle is

generalization/specialization
relationship a type of hierarchical
relationship in which subordinate classes are
subsets of objects of the superior classes; an
inheritance hierarchy

superclass the superior or more general
class in a generalization/specialization
relationship

subclass the subordinate or more special-
ized class in a generalization/specialization
relationship

inheritance the concept that specializa-
tion classes inherit the attributes of the
generalization class

104 PART 2 ■ Systems Analysis Activities

but also something special. A sports car is everything any other car is but also
something special. In this way, the subclass “inherits” characteristics. In the
object-oriented approach, inheritance is a key concept that is possible because
of generalization/specialization hierarchies. Sometimes, these are referred to as
inheritance relationships.

In Figure 4-18, attributes are included for each class. Each member of the Sale
class has a saleDateTime attribute and a priorityCode attribute. Each InStoreSale
has a storeID, clerkID, and registerID, but an OnlineSale and a TelephoneSale have
other attributes. OnlineSale, InStoreSale, and TelephoneSale inherit the attributes
from Sale, plus they have some special attributes of their own. An OnlineSale actu-
ally has eight attributes (six from Sale and two additional). An InStoreSale has nine
attributes, and a TelephoneSale has eight attributes.

FIGURE 4-17 Generalization/specialization relationships for motor vehicles

TractorTruck

MotorVehicle

SportUtilitySedanSportsCar

Car

Trucks, cars, and tractors
are special types of motor

vehicles

Sports cars, sedans, and

sport utilities are special

types of cars

TelephoneSale

clerkID

lengthOfCall

OnlineSale

timeOnSite

chatUse

InStoreSale

storeID

registerID

clerkID

Sale

saleDateTime

priorityCode

S&H

tax

totalAmt

mountainBucks

FIGURE 4-18
Generalization/specialization relation-
ships (inheritance) for sales

CHAPTER 4 ■ Domain Modeling 105

Note that in Figure 4-18 the class name Sale is in italics; that is because it is
an abstract class. An abstract class is a class that exists so subclasses can
inherit from it. There is never an actual object simply called a Sale. Each sale
must be one of the three subclasses. A concrete class is a class that does have
actual objects. Sometimes, a superclass is abstract; sometimes, it is concrete
depending on the intention of the analyst.

Figure 4-19 shows an extension of the previous example of a bank with multi-
ple branches to indicate that there are two types of accounts: a SavingsAccount and
a CheckingAccount. The abstract class Account is in italics, indicating that it is an
abstract class. Rather than including an attribute for account type, the subclasses
represent different types of accounts. Each subclass has its own special attributes
that do not apply to the other subclasses. A SavingsAccount has four attributes,
and a CheckingAccount has five attributes. Note that each subclass also inherits an
association with a Customer, optionally a Branch, and one or more Transactions.

Whole-Part Relationships
Another way that people structure information about things is by defining them
in terms of their parts. For example, learning about a computer system might
involve recognizing that the computer is actually a collection of parts: processor,
main memory, keyboard, disk storage, and monitor. A keyboard is not a special
type of computer; it is part of a computer, but it is also something separate.
Whole-part relationships are used to show an association between one class
and other classes that are parts of that class.

There are two types of whole-part relationships: aggregation and composi-
tion. Aggregation refers to a type of whole-part relationship between the

abstract class a class that describes a
category or set of objects but that never
includes individual objects or instances

concrete class a class that allows indi-
vidual objects or instances to exist

accountID {key}

dateOpened
balance

Account

interestRate

SavingsAccount

checkStyle

minimumBalance

CheckingAccount

transID {key}

transDate

transType

transAmount

Transaction

branchID {key}

managerName
branchLocation
mainPhone

Branch

custNumber {key}

fullName
billAddress
homePhone

officePhone

Customer

1..*1

1..*

1

10..*

FIGURE 4-19
An expanded domain model class dia-
gram for the bank, with subclasses for
types of accounts

whole-part relationship a relationship
between classes in which one class is a part or
a component portion of another class

aggregation a type of whole-part rela-
tionship in which the component parts also
exist as individual objects apart from the
aggregate

106 PART 2 ■ Systems Analysis Activities

aggregate (whole) and its components (parts), where the parts can exist sepa-
rately. Figure 4-20 demonstrates the concept of aggregation in a computer sys-
tem, with the UML diamond symbol representing aggregation. Composition
refers to whole-part relationships that are even stronger, where the parts, once
associated, can no longer exist separately. The UML diamond symbol is filled
in to represent composition.

Whole-part relationships—aggregation and composition—mainly allow the
analyst to express subtle distinctions about associations among classes. As with
any association relationship, multiplicity can apply, such as when a computer
has one or more disk storage devices.

The UML class diagram examples we have seen so far are domain model
class diagrams. The design class diagram is a refinement of the class diagram
and is used to represent software classes in the new system. You will learn
about the process of converting the domain model class diagram to a design
class diagram in Chapter 10.

The Ridgeline Mountain Outfitters Domain Model Class Diagram
The RMO CSMS involves many domain classes and many complex association
and generalization/specialization relationships. A domain model class diagram for
an information system evolves as the project proceeds; and unlike the use case
diagrams, where many diagrams are created, there is eventually only one domain
model class diagram. Also, unlike the use case diagram, the domain model class
diagram is not produced just for presentations. The process of developing and

FIGURE 4-20 Whole-part (aggregation) relationships between a computer and its parts

Monitor

DiskStorage

Keyboard

MainMemory

Processor

Computer

Processor, Main

Memory, Keyboard, Disk

Storage, and Monitor are

parts of a computer

composition a type of whole-part rela-
tionship in which the component parts cannot
exist as individual objects apart from the total
composition

CHAPTER 4 ■ Domain Modeling 107

refining the domain model class diagram is how the analyst explores and learns
about the problem domain. Therefore, the information depicted in the domain
model class diagram is very detailed and rich in specific meaning.

The Ridgeline Mountain Outfitters domain model class diagram is a varia-
tion of the customer, order, and order item example shown in Figure 4-12.
Most of the domain classes are from the list of nouns developed in Figure 4-2.
Because the model is fairly complex, an analyst might start by focusing on one
subsystem at a time to reduce the complexity. Eventually, all subsystems can be
combined into one domain model.

The RMO Sales Subsystem
Figure 4-21 shows a domain model class diagram for the RMO CSMS Sales
subsystem. The Sales subsystem mainly involves the customer, sale, sales items,
products, promotions, and accessories. That is a good starting point, but there
are additional domain classes. Additionally, recall that the association relation-
ships are just as important as the classes, so these must be identified. There are
also special types of sales and a shopping cart.

In Figure 4-21, each customer can be associated with one or more sales.
Note that there are three special types of sales shown in the inheritance
relationships (in-store sale, online sale, and telephone sale), as discussed in
the last section. Therefore, the scope of the Sales subsystem includes in-store,
online, and telephone sales processes. A customer can also be associated
with an online shopping cart (OnLineCart) for any online sale. There are
two special types of carts: the active cart and the on-reserve cart. The
minimum multiplicity between customer and cart is zero, meaning there might
not be a shopping cart involved—for example, in an in-store or telephone
sale. There can be a maximum of two carts for a customer at any one
time: an active cart and an on-reserve cart. The on-reserve cart can be remem-
bered from session to session. Each sale and each cart is associated with one
customer, so the subclasses inherit the association, just as they inherit the
attributes of Sale.

Note that an individual sale is associated with one or more sales items. In
the online cart, it is associated with one or more cart items. With an online
sale, the sale is created from the cart when the customer checks out. Sale
items are created from each cart item. Finally, a sales transaction is created and
associated with the sale.

A sale can have one or more sale items, but what is each item? An associa-
tion between each sale item and an inventory item answers the question. Each
sale item is for a specific inventory item, meaning a specific size and color of
the item, such as a shirt or coat. An inventory item has an attribute for the
quantity on hand of that size and color. Because there are many colors and
sizes (each with its own quantity), each inventory item is associated with a
product item that describes the item generally (gender, description, supplier,
manufacturer, and picture). Each product item is associated with many inven-
tory items, and each inventory item is associated with many sale items.

A product item can be part of many promotions, and a promotion can
include many product items, making a many-to-many association. An associa-
tion class is added to store information about the price of each item in each
promotion. Each product item might have many accessories, and an accessory
might apply to many product items. Here, there is no defined association class
for the many-to-many association. Note that this association might also be
modeled as a unary (recursive) association. Finally, each product item can have
many customer comments, which are reviewed during a sale.

The RMO Customer Account Subsystem
The Customer Account subsystem domain model class diagram is shown in
Figure 4-22. Note that there are some classes repeated here that are also on the

108 PART 2 ■ Systems Analysis Activities

Sales subsystem domain model class diagram. For example, Customer is impor-
tant to both subsystems. Note that Sale and SaleTrans are also included here. In
order to make account adjustments and report on all payments and returns for
a customer, all sales and sales transactions need to be referenced. Repeating
domain classes in several subsystems does not mean there is redundancy.

FIGURE 4-21 RMO Sales subsystem domain model class diagram

elapsedTime

ActiveCart

holdForDays

OnReserveCart

storeID
registerID
clerkID

InStoreSale

timeOnSite
chatUse

OnlineSale

clerkID
lengthOfCall

TelephoneSale

quantity
soldPrice
shipStatus
backOrderStatus

SaleItem

saleDateTime
priorityCode
S&H
tax
totalAmt
mountainBucks

Sale

date
transactionType

amount

paymentMethod

SaleTrans

season
year
description
startDate
endDate

Promotion

date
rating
comment

ProductComment

size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

name
mobilePhone
homePhone

emailAddress
status

Customer

gender
description
supplier
manufacturer
picture

ProductItem

startDateTime
noOfItems
valueOfItems
status

OnLineCart

1

1

0..2

1..*

1..*

1..* 1

1..*

1

1 0..*

1

0..*

0..*

1

0..*

0..*

0..* 1..*

0..*

1

0..*

1

1

PromoOffering

regularPrice
promoPrice

category
description

AccessoryPackage

quantity
currentPrice

CartItem

CHAPTER 4 ■ Domain Modeling 109

In complex domain models, it is easier to do the modeling and analysis in sepa-
rate diagrams before merging them all together. Sometimes, the project team
divides the work by subsystem, so each would work on a separate diagram,
being sure to coordinate with each other.

The Customer Account subsystem includes messages, partner credits, and
friend links. The FriendLink class is an association class, but unlike other exam-
ples, it is attached to a unary association between customers. Each customer can
be linked to many other customers, shown by the association line at the top of
the Customer class. For each link, the status and dateLinkedUp is stored. The
Message class is handled differently. Each customer can send many messages, each
to many other customers. Similarly, each customer can receive many messages.

The Complete RMO Domain Model Class Diagram
The analysts at RMO may continue to model each subsystem separately. The
exercises at the end of this chapter ask you to create those other subsystem
diagrams. The final domain model class diagram for the RMO CSMS is shown
in Figure 4-23. Classes not shown before include Shipper, Shipment, ReturnItem,
and Suggestion.

FIGURE 4-22 RMO Customer Account subsystem domain model class diagram

number

street

city

state

zipcode

Address

saleDateTime

priorityCode

S&H

tax

totalAmt

mountainBucks

Sale

amtRMOCredits

amtPartnerCredits

CustPartnerCredit

name

address

contactPerson

telephone

agreementDescription

PromoPartner

date

transactionType

amount

paymentMethod

SaleTrans

customer1

customer2

status

dateLinkedUp

FriendLink

name

mobilePhone

homePhone

emailAddress

status

Customer

date

messageText

Message

typeOfAccount

creditCardNo

Account

1 1..*

0..*

1..*

1

0..*

0..*0..*

1..*

0..*

To

1

0..*

From

1

1..*

0..1

1..*1..*

0..1

110 PART 2 ■ Systems Analysis Activities

FIGURE 4-23 Complete RMO CSMS domain model class diagram

elapsedTime

ActiveCart

holdForDays

OnReserveCart

storeID
registerID
clerkID

InStoreSale

timeOnSite
chatUse

OnlineSale

clerkID
lengthOfCall

TelephoneSale

category
description

AccessoryPackage

quantity
soldPrice
shipStatus
backOrderStatus

SaleItem

trackingNo
dateTimeSent
dateTimeArrive
cost

Shipment

name
address
contactName
telephone

Shipper

quantity
price
reason
condition

ReturnItem

saleDateTime
priorityCode
S&H
tax
totalAmt
mountainBucks

Sale

date
transactionType
amount

paymentMethod

SaleTrans

season
year
description
startDate
endDate

Promotion

date
rating
comment

ProductComment

size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

name
mobilePhone
homePhone
emailAddress
status

Customer

number
street
city
state
zipcode

Address

regularPrice
promoPrice

PromoOffering

gender
description
supplier
manufacturer
picture

ProductItem

quantity
currentPrice

CartItem

date
messageText

Message

typeOfAccount
creditCardNo

Account

date
suggestionText

Suggestion

amtRMOCredits
amtPartnerCredits

CustPartnerCredit

startDateTime
noOfItems
valueOfItems
status

OnLineCart

customer1
customer2
status
dateLinkedUp

FriendLink

1

0..1

1

1

0..*

0..*
0..*

1

1..*

1

0..*

1..*

0..*

To From

1..*

1..*

0..1

0..2

1..*

1..*

1..* 1

1..*

1

1 0..*

1

0..*

0..*

1

0..*

0..*

0..* 1..*

0..*

1

0..*

0..1

1..*

1

1

1 0..*

0..* 1

0..*0..*

name
address
contactPerson
telephone
agreementDescription

PromoPartner

CHAPTER 4 ■ Domain Modeling 111

Chapter Summary
This is the second of three chapters that present techni-
ques for modeling a system’s functional requirements,
highlighting the tasks that are completed during the
analysis activity Define requirements. Use cases and
things in the user’s work environment are key concepts
common to all approaches to system development. This
chapter discusses data entities and domain classes as
two terms for things in the work environment. Two
techniques are demonstrated for identifying things in
the problem domain: the brainstorming technique and
the noun technique. The entity-relationship diagram
(ERD) is used by traditional analysts and by database
analysts to model things in the problem domain. An
ERD shows data entities, attributes, and relationships.
The UML class diagram is used for the same purpose

by analysts using UML, referred to as the domain
model class diagram. The domain model class diagram
models domain classes, attributes, and associations.
Multiplicity refers to the number of association links
between classes. UML and the domain model class
diagram can be extended to include three types of rela-
tionships: association relationships, generalization/
specialization relationships (inheritance), and whole-
part relationships. Additional concepts of importance
in domain model class diagrams are superclasses, sub-
classes, abstract classes, and concrete classes. Domain
classes are not software classes; therefore, they do not
have methods. Design class diagrams show software
classes that do have methods. Design classes are intro-
duced in Chapter 10.

Key Terms

abstract class 106

aggregation 106

association 96

association class 102

attributes 95

binary associations 98

brainstorming technique 93

camelback notation 101

cardinality 97

class 101

class diagram 101

composition 107

compound attribute 96

concrete class 106

data entities 98

domain classes 101

domain model class diagram 101

entity-relationship diagram (ERD) 98

generalization/specialization
relationships 104

identifier 96

Inheritance 104

key 96

multiplicity 97

multiplicity constraints 97

n-ary association 98

noun technique 94

problem domain 92

relationship 97

semantic net 99

subclass 104

superclass 104

ternary association 98

unary association 98

whole-part relationships 106

Review Questions
1. What are the two key concepts—one from

Chapter 3 and one from this chapter—that define
functional requirements?

2. What is the problem domain?

3. What is a “thing” called in models used by
traditional analysts and database analysts?

4. What is a “thing” called in newer approaches that
use UML?

5. What are two techniques for identifying things in
the problem domain?

6. What are some examples of tangible things in the
problem domain of a restaurant?

112 PART 2 ■ Systems Analysis Activities

7. What are some sites or locations in the problem
domain of a restaurant?

8. What are some roles played by people in the
problem domain of a restaurant?

9. What are the main steps of the brainstorming
technique?

10. Explain why identifying nouns helps identify things
in the problem domain?

11. What are the main steps of the noun technique?

12. What is an attribute, an identifier or key, and a
compound attribute?

13. What is an association, and what system develop-
ment standard defines it?

14. How would you describe or name the association
between a ship and a captain?

15. What is the term used for association by traditional
analysts and database analysts?

16. What is multiplicity, and what is the other term
used by traditional analysts and database analysts?

17. What is the minimum multiplicity for the associa-
tion that reads a customer places zero or more
orders?

18. What is the maximum multiplicity for the associa-
tion that reads an order is placed by exactly one
customer?

19. What are some examples of multiplicity
constraints?

20. What are the three types of associations, and which
is the most commonly used?

21. What are the three key parts of an entity-relationship
diagram (ERD)?

22. Sketch a simple ERD that shows a team has zero or
more players and each player is on one and only
one team.

23. Sketch a semantic net that shows two teams and
five players based on your ERD.

24. What is a class, a domain class, and the key parts of
a class diagram?

25. What does a domain model class diagram show
about system requirements, and how is it different
from an ERD?

26. List appropriate UML class names by using the
camelback notation for the following classes: grad-
uate student, undergraduate major, course instruc-
tor, and final exam feedback.

27. List appropriate UML attribute names for the
following attributes: student name, course
grade, major name, and final exam quantity
score.

28. Draw a simple domain model class diagram for the
example in question 22 where a team has zero or
more players and each player is on one and only
one team.

29. What is an association class? Extend the domain
model class diagram for teams and players about to
show a record of game statistics for each player in
each game.

30. In UML, what are three types of relationships found
on a class diagram?

31. What is a generalization/specialization
relationship, and what object-oriented terms
does it illustrate?

32. Compare/contrast superclass and subclass.
Compare/contrast abstract class and concrete
class.

33. What is a whole-part relationship, and why does it
show multiplicity?

34. Compare/contrast aggregation and composition for
a whole-part relationship.

Problems and Exercises
1. Draw an entity-relationship diagram, including

minimum and maximum cardinality, for the
following: The system stores information about two
things: cars and owners. A car has attributes for
make, model, and year. The owner has attributes
for name and address. Assume that a car must be
owned by one owner and an owner can own many
cars, but an owner might not own any cars (perhaps
she just sold them all, but you still want a record of
her in the system).

2. Draw a class diagram for the cars and owners
described in exercise 1, but include subclasses for

sports car, sedan, and minivan, with appropriate
attributes.

3. Consider the domain model class diagram shown in
Figure 4-16—the refined diagram showing course
enrollment with an association class. Does this model
allow a student to enroll in more than one course
section at a time? Does the model allow a course
section to contain more than one student? Does the
model allow a student to enroll in several sections of
the same course and get a grade for each enrollment?
Does the model store information about all grades
earned by all students in all sections?

CHAPTER 4 ■ Domain Modeling 113

4. Again consider the domain model class diagram
shown in Figure 4-16. Add the following to the
diagram and list any assumptions you had to make:
A faculty member usually teaches many course
sections, but some semesters, a faculty member may
not teach any. Each course section must have at
least one faculty member teaching it, but sometimes,
faculty teams teach course sections. Furthermore, to
make sure that all course sections are similar, one
faculty member is assigned as course coordinator to
oversee the course, and each faculty member can be
the coordinator of many courses.

5. If the domain model class diagram you drew in
exercise 4 showed a many-to-many association
between faculty member and course section, a fur-
ther look at the association might reveal the need to
store some additional information. What might this
information include? (Hint: Does the instructor
have specific office hours for each course section?
Do you give an instructor some sort of evaluation
for each course section?) Expand the domain model
class diagram to allow the system to store this
additional information.

6. Consider a system that needs to store information
about computers in a computer lab at a university,
such as the features and location of each computer.
What are the domain classes that might be included
in a model? What are some of the associations
among these classes? What are some of the
attributes of each class? Draw a domain model class
diagram for this system.

7. Consider the domain model class diagram for the
RMO CSMS Sales subsystem shown in Figure 4-21.
If an InStoreSale is created, how many attributes
does it have? If an OnlineSale is created, how many
attributes does it have? If an existing customer
places a telephone order for one item, how many
new objects are created overall for this transaction?
Explain.

8. Again consider the domain model class diagram
shown in Figure 4-21. How many attributes does an
active cart object have? Can an on-reserve cart
contain cart items? Explain.

9. A product item for RMO is not the same as an
inventory item. A product item is something like a
men’s leather hunting jacket supplied by Leather ‘R’
Us. An inventory item is a specific size and color of
the jacket—like a size medium brown leather
hunting jacket. If RMO adds a new jacket to its
catalog and six sizes and three colors are available
in inventory, how many objects need to be added
overall? Explain.

10. Consider the domain model class diagram shown in
Figure 4-24, which includes classes for college,
department, and faculty members.

a. What kind of UML relationships are shown in
the model?

b. How many attributes does a “faculty member”
have? Which (if any) have been inherited from
another class?

departmentName

departmentHead
officeLocation

officePhone

Department

firstName

lastName
currentRank

specialty
officePhone

FacultyMember

collegeName

collegeDean

collegeLocation

College

0..*

1

1..*

1..*

FIGURE 4-24
Domain model class diagram for a
university

114 PART 2 ■ Systems Analysis Activities

c. If you add information about one college, one
department, and four faculty members, how
many objects do you add to the system?

d. Can a faculty member work in more than one
department at the same time? Explain.

e. Can a faculty member work in two departments
at the same time, where one department is in the
college of business and the other department is in
the college of arts and sciences? Explain.

11. Review information about your own university.
Create generalization/specialization hierarchies by
using the domain model class diagram notation for
(1) types of faculty, (2) types of students, (3) types
of courses, (4) types of financial aid, and (5) types
of housing. Include attributes for the superclass and
the subclasses in each case.

12. Consider the classes involved when modeling
a car and all its parts. Draw a domain model
class diagram that shows the whole-part
relationships involved, including multiplicity.
Which type of whole-part relationships are
involved?

13. Refer to the complete RMO CSMS domain model
class diagram shown in Figure 4-23. Based on that
model and on the discussion of subsystems in
Chapter 3, draw a domain model class diagram for
the CSMS Marketing subsystem.

14. Again based on the complete RMO CSMS domain
model class diagram shown in Figure 4-23, draw a
domain model class diagram for the CSMS Order
Fulfillment subsystem.

Case Study

Metropolitan Car Service Bureau

Metropolitan Car Service Bureau needs a system that
keeps car service records. The company’s analyst has
provided information about the problem domain in the
form of notes. Your job is to use those notes to draw
the domain model class diagram. The analyst’s notes are
as follows:

■ The Owner class has attributes name and address.
■ The Vehicle class is an abstract class that has attri-

butes VIN, model, and model year.
■ There are two types of vehicles, cars and trucks:

■ Car has additional attributes for the number of
doors and luxury level.

■ Truck has an additional attribute for cargo capacity.

■ The Manufacturer class has attributes name and
location.

■ The Dealer class has attributes name and address.

A service record is an association class between
each vehicle and a dealer, with attributes service date
and current mileage. A warranty service record is a spe-
cial type of service record with an additional attribute:
eligibility verification. Each service record is associated
with a predefined service type, with attributes type ID,
description, and labor cost. Each service type is associ-
ated with zero or more parts, with attributes part ID,
description, and unit cost. Parts are used with one or
more service types.

An owner can own many vehicles, and a vehicle
can be owned by many owners. An owner and a vehicle
are entered into the system only when an owned
vehicle is first serviced by a dealer. Vehicles are serviced
many times at various dealers, which service many
vehicles.

1. Draw a UML domain model class diagram for the
system as described here. Be as specific and accu-
rate as possible, given the information provided. If
needed information is not given, make realistic
assumptions.

2. Answer True or False to the following statements,
which are based on the domain model. You may want
to draw a semantic net to help you think through the
questions.

a. This domain model is for a single car dealer service
department.

b. This domain model is for a single car manufacturer.
c. A vehicle can have service records with more than

one dealer.
d. A dealer can service vehicles from more than one

manufacturer.
e. Current mileage is recorded for service records and

warranty service records.
f. An owner can have each of his or her cars serviced

by a different dealer.
g. A warranty service for a car can include many parts.
h. A vehicle can be made by more than one

manufacturer.

CHAPTER 4 ■ Domain Modeling 115

RUNNING CASE STUDIES

Community Board of Realtors

In Chapter 3, you identified use cases for the Board of
Realtors Multiple Listing Service (MLS) system, which
supplies information that local real estate agents use to
help them sell houses to their customers. During the
month, agents list houses for sale (listings) by contract-
ing with homeowners. Each agent works for a real
estate office, which sends information on listings to
the multiple listing service. Therefore, any agent in
the community can get information on the listing.
Much of the information is available to potential cus-
tomers on the Internet.

Information on a listing includes the address, year
built, square feet, number of bedrooms, number of
bathrooms, owner name, owner phone number, asking
price, and status code. It is also important to have
information on the listing agent, such as name, office
phone, cell phone, and e-mail address. Agents work
through a real estate office, so it is important to
know the office name, office manager name, office
phone, and street address.

1. Based on the information here, draw a domain
model class diagram for the MLS system. Be sure

to consider what information needs to be
included versus information that is not in the
problem domain. For example, is detailed infor-
mation about the owner, such as his employer or
his credit history, required in the MLS system? Is
that information required regarding a potential
buyer?

2. Draw a second domain model class diagram that
adds the following specifications. First, there are
two types of listings: a listing for sale and a listing
for lease. Additionally, a listing might include no
structures, such as vacant land, or it might include
more than one structure, such as a main house and
a guest house, each with separate values for square
footage, number of bedrooms, and number of
bathrooms.

3. Draw a third domain model class diagram that
assumes a listing might have multiple owners.
Additionally, a listing might be shared by two or
more agents, and the percentage of the commis-
sion that each agent gets from the sale can be dif-
ferent for each agent.

The Spring Breaks ‘R’ Us Travel Service

In Chapter 3, you identified use cases for the Social
Networking subsystem SBRU is researching. Let us
assume you were thinking about a number of potential
domain classes that might be involved. For example,
there would need to be information about a traveler
attending a resort for a particular week. The traveler
would be assigned to a room along with roommates
but might also be connected to other friends. There
might be different interests or hobbies a traveler can
associate with in the hopes of connecting to others. The
resort has many locations where a traveler might be
hanging out at any given time, and a traveler can note

whether the location is “liked.” People might schedule a
party at a location and invite specific friends.

1. For the Social Networking subsystem as described
here, list the domain classes and their attributes
that should be included in the Social Networking
subsystem. Be creative and add those you think
should be included to make the system useful and
appealing.

2. Based on the domain classes you identified, draw a
domain model class diagram showing domain clas-
ses with attributes and associationswithmultiplicity.

On the Spot Courier Services

On the Spot courier services grew and changed over
the years. At first, Bill received requests for package
pickups on his mobile phone, recorded that informa-
tion in a log, and would then drive around to retrieve
all the packages later in the day. However, he soon
discovered that with another driver, it was difficult to

coordinate pickups between the two of them from his
van. It was not long before he reorganized his business
and turned the warehouse employee into a driver. Then,
he stayed in the warehouse himself, and his two
employees made all the pickups and deliveries. This
worked well because he could control and coordinate

(continued on page 117)

116 PART 2 ■ Systems Analysis Activities

the pickups and deliveries better. It was also easier for
him to receive pickup requests working at a desk rather
than trying to do it while driving a delivery van.

As he thought about how his business was grow-
ing and the services he provided to his customers, Bill
began to itemize the kinds of information he would
need to maintain.

Of course, he needed to maintain information
about his customers. Some of his customers were busi-
nesses; some were individuals. He needed to have basic
address and contact information for every customer.
Also, for his corporate customers, he needed to identify
a primary contact person. It was mostly his corporate
customers who wanted to receive monthly statements
listing all their shipments during the month and the
total cost. Bill needed to distinguish which customers
paid cash and which wanted monthly statements. In
fact, for those that paid monthly, he needed to keep a
running account of such things as when they were last
billed, when they paid, and any outstanding balances.
Finally, when payments were received, either for indi-
vidual shipments or from monthly invoices, he needed
to record information about the payment: type of pay-
ment, date, and amount. Although this was not a
sophisticated billing and payment system, Bill thought
it would suffice for his needs.

Next, he started thinking about his packages and
shipments. At the time that a request for a pickup
came in, he needed to keep track of it as some type
of delivery request or delivery order. At that point in
time, Bill mostly needed to know who the customer
was, where the pickup location was, and what date
and time the package(s) would be ready for pickup.
He also recorded the date and time that he received
the order. A delivery order was considered “open”
until the delivery van arrived at the pickup location
and the packages were all retrieved. At that point, the
delivery order was satisfied.

Once the packages were retrieved, each package
needed to be uniquely identified. Bill needed to know
when it was picked up and which delivery person
picked it up. Other important information was the
“deliver to” entity name and the address. He also
needed to identify the type of delivery. Some packages
were high priority, requiring same-day delivery. Others
were overnight. Of course, the weight and cost were
recorded so the customer could either pay or have it
added to the monthly invoice.

In the courier and delivery business, one of the
most important information requirements is the date
and time stamp. For each package, it is important to
know when it was picked up, when it arrived at the
warehouse, when it went back out on the delivery
run, and when it was delivered. When possible, it is
also important to have names associated with each of
these events.

1. Using the noun technique, read through this case
and identify all the nouns that may be important
for this system. You may also find it helpful to
read back through the case descriptions in the
previous chapters.

2. Once you have identified all the nouns, identify
which are classes and which are attributes of these
primary classes. Begin constructing a class dia-
gram based on the classes and attributes you have
identified.

3. Now that you have identified the classes, deter-
mine what the relationships should be among the
classes. Add multiplicity constraints, being espe-
cially cognizant of zero-to-many versus one-
to-many differences.

4. Finalize the class diagram, including all your clas-
ses, attributes, primary keys, relationships, and
multiplicity constraints.

Sandia Medical Devices

Initial discussions about the functional requirements
resulted in an initial domain model class diagram
for Sandia Medical Devices’ Real-Time Glucose
Monitoring (RTGM) system (see Figure 4-25). After
consultations with system stakeholders, the following
potential changes to the diagram are being
considered:

■ Include additional medical personnel (nurses and
physicians’ assistants, at a minimum).

■ Include alerts sent by the system to medical per-
sonnel and messages sent by medical personnel to
the patient.

1. Modify the diagram to incorporate the changes
under consideration. You may need to use associ-
ation classes and generalization/specialization
(inheritance).

2. Is a set of abstract and concrete classes needed to
represent variations among cell phones? Why or
why not?

(continued from page 116)

(continued on page 118)

CHAPTER 4 ■ Domain Modeling 117

Further Resources

Classic and more recent texts include the
following:

Peter Rob and Carlos Coronel, Database Systems:

Design, Implementation, and Management,
(7th ed.). Course Technology, 2007.

Craig Larman, Applying UML and Patterns

(3rd ed.). Prentice Hall, 2005.

Grady Booch, Ivar Jacobson, and James Rumbaugh,
The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

id
lastName
firstName

id
medicalRecordNumber
lastName
dateOfBirth
gender
race
height
weight

Patient

dateTime
level

GlucoseObservation

id
phoneNumber
operatingSystem
osVersion
applicationVersion

CellPhone

Physician

serialNumber
manufacturer
dateOfManufacture
firmwareVersion

MonitoringDevice

1..1

1..1

0..*

0..*

0..*

0..*

1..1

1..1

FIGURE 4-25
Initial domain model class dia-
gram for Sandia RTGM system

(continued from page 117)

118 PART 2 ■ Systems Analysis Activities

5
Extending the Requirements
Models

Chapter Outline

■ Use Case Descriptions

■ Activity Diagrams for Use Cases

■ The System Sequence Diagram—Identifying Inputs and Outputs

■ The State Machine Diagram—Identifying Object Behavior

■ Integrating Requirements Models

Learning Object ives

After reading this chapter, you should be able to:

■ Write fully developed use case descriptions

■ Develop activity diagrams to model flow of activities

■ Develop system sequence diagrams

■ Develop state machine diagrams to model object behavior

■ Explain how use case descriptions and UML diagrams work together to define
functional requirements

119

OPENING CASE

Electronics Unlimited: Integrating the Supply Chain

Electronics Unlimited is a warehousing distributor that buys
electronic equipment from various suppliers and sells it
to retailers throughout the United States and Canada. It
has operations and warehouses in Los Angeles, Houston,
Baltimore, Atlanta, New York, Denver, and Minneapolis. Its
customers range from large nationwide retailers, such as
Target, to medium-sized independent electronics stores.

Many of the larger retailers are moving toward inte-
grated supply chains. Information systems used to be
focused on processing internal data; however, today,
these retail chains want suppliers to become part of a
totally integrated supply chain system. In other words,
the systems need to communicate between companies
to make the supply chain more efficient.

To maintain its position as a leading wholesale dis-
tributor, Electronics Unlimited has to convert its system
to link with its suppliers (the manufacturers of the
electronic equipment) and its customers (the retailers).
It is developing a completely new system that uses
object-oriented techniques to provide these links.
Object-oriented techniques facilitate system-to-system
interfaces by using predefined components and objects
to accelerate the development process. Fortunately,
many of the system development staff members have
experience with object-oriented development and are
eager to apply the techniques and models to the system
development project.

William Jones is explaining object-oriented develop-
ment to the group of systems analysts who are being
trained in this approach.

“We’re developing most of our new systems by using
object-oriented principles,” he tells them. “The complexity
of the new system, along with its interactivity, makes the
object-oriented approach a natural way to develop require-
ments. It takes a little different thought process than some

of you may be used to, but the object-oriented models
track very closely with the new object-oriented program-
ming languages and frameworks.”

William is just getting warmed up.
“This way of thinking about a system in terms of

objects is very interesting,” he adds. “It is also consistent
with the object-oriented programming techniques you
learned in your programming classes. You probably first
learned to think about objects when you developed screens
for the user interface. All the controls on the screen, such
as buttons, text boxes, and drop-down boxes, are objects.
Each has its own set of trigger events that activate its pro-
gram functions.”

“How does this apply to our situation?” one of the
analysts asks.

“You just extend that thought process,” William
explains. ”You think of such things as purchase orders
and employees as objects too. We can call them the prob-
lem domain or business objects to differentiate them from
screen objects, such as windows and buttons. During anal-
ysis, we have to find out all the trigger events and meth-
ods associated with each business object.”

“And how do we do that?” another analyst asks.
“You continuewith your fact-finding activities and build a

better understanding of each use case,” William says. “The
way the business objects interact with each other in the use
case determines how you identify the initiating activity. We
refer to those activities as the messages between objects.
The tricky part is that you need to think in terms of objects
instead of just processes. Sometimes, it helpsme to pretend
I am an object. I will say, ‘I am a purchase order object. What
functions and services are other objects going to ask me to
do?’ After you get the hang of it, it works very well, and it is
enlightening to see how the system requirements unfold as
you develop the diagrams.”

Overview
The main objective of defining requirements in system development is under-
standing users’ needs, how the business processes are carried out, and how the
system will be used to support those business processes. As we indicated in
Chapter 2, system developers use a set of models to discover and understand
the requirements for a new system. This activity is a key part of systems analysis
in the system development process. The first step in the process for developing
this understanding requires the fact-finding skills you learned in Chapter 2.
Fact-finding activities are also called discovery activities, and obviously, discov-
ery must precede understanding.

The models introduced in Chapters 3 and 4 focus on two primary aspects
of functional requirements: the use cases and the things involved in users’ work.
Use cases are identified by using the user goal technique and the event decompo-
sition technique. The UML use case diagram was introduced to show use cases

120 PART 2 ■ Systems Analysis Activities

and actors. An information system also needs to record and store information
about things involved in the business processes. In a manual system, the infor-
mation is recorded on paper and stored in a filing cabinet. In an automated sys-
tem, the information is stored in electronic files or a database. The information
storage requirements of a system are documented either with entity-relationship
diagrams (ERDs) or with UML domain model class diagrams.

In this chapter, you learn additional techniques and models that will allow
you to extend the requirements models to show additional information about
the use cases and domain classes for the system. Fully developed use case
descriptions, UML activity diagrams, and UML system sequence diagrams
(SSDs) are introduced to show more information about each use case. Then,
UML state machine diagrams are introduced; these help you show more infor-
mation about domain classes. Remember, when defining requirements for a sys-
tem, you will also be doing design and implementation work, as illustrated in
the Trade Show application developed in Chapter 1. The next chapter begins
covering system design activities.

Use Case Descriptions
A list of use cases and use case diagrams provides an overview of all the use
cases for a system. Detailed information about each use case is described with a
use case description. Brief use case descriptions were introduced in Chapter 3.
A use case description lists and describes the processing details for a use case.
Implied in all use cases is a person who uses the system. In UML, that person is
called an actor, as shown on use case diagrams. An actor is always outside
the automation boundary of the system but may be part of the manual portion
of the system. By defining actors that way—as those who interact with the
system—we can more precisely define the exact interactions to which the
automated system must respond. This tighter focus helps define the specific
requirements of the automated system itself—to refine them as we move from
the event table to the use case details.

Another way to think of an actor is as a role. For example, in the RMO
case, the use case Create customer account might involve a customer service rep
talking to the customer on the phone. Or the customer might be the actor if the
customer adds or updates information directly online.

To create a comprehensive, robust system that truly meets users’ needs, we
must understand the detailed steps of each use case. Internally, a use case
includes a whole sequence of steps to complete a business process. Frequently,
several variations of the business steps exist within a single use case. The use
case Create customer account will have a separate flow of activities depending
on which actor invokes the use case. The processes for a customer service repre-
sentative updating information over the phone might be quite different from the
processes for a customer updating the information him or herself. Each flow
of activities is a valid sequence for the Create customer account use case. These
different flows of activities are called scenarios or sometimes use case
instances. Thus, a scenario is a unique set of internal activities within a use case
and represents a unique path through the use case.

Brief Use Case Descriptions
Depending on an analyst’s needs, use case descriptions tend to be written at
two separate levels of detail: brief description and fully developed description.
Some brief use case descriptions were shown in Chapter 3 (see Figure 5-1).
A brief description can be used for very simple use cases, especially when the
system to be developed is a small, well-understood application. A simple use
case would normally have a single scenario and very few—if any—exception
conditions. An example would be Add product comment or Send message.

use case description a textual model
that lists and describes the processing details
for a use case

scenarios or use case instances
unique sets of internal activities within
use cases

CHAPTER 5 ■ Extending the Requirements Models 121

A use case such as Fill shopping cart is complex enough that a fully developed
description is also written.

Fully Developed Use Case Descriptions
The fully developed description is the most formal method for documenting a
use case. One of the major difficulties for software developers is that they often
struggle to obtain a deep understanding of the users’ needs. But if you create a
fully developed use case description, you increase the probability that you thor-
oughly understand the business processes and the ways the system must support
them. Figure 5-2 is an example of a fully developed use case description of the
use case Create customer account.

Figure 5-2 also serves as a standard template for documenting a fully devel-
oped description for other use cases and scenarios. The first and second com-
partments are used to identify the use cases and the scenarios within the use
cases (if needed) that are being documented. In larger or more formal projects,
a unique identifier can also be added for the use case, with an extension identi-
fying the particular scenario. Sometimes, the name of the system developer who
produced the form is added.

The third compartment identifies the event that triggers the use case. The
fourth compartment is a brief description of the use case or scenario. Analysts
may just duplicate the brief description they constructed earlier here. The fifth
compartment identifies the actor or actors. The sixth compartment identifies
other use cases and the way they are related to this use case. These cross-
references to other use cases help document all aspects of the users’ requirements.

The seventh compartment identifies stakeholders who are interested parties
other than specific actors. They might be users who don’t actually invoke the
use case but who have an interest in results produced from the use case. For
example, in Figure 5-2, the accounting department is interested in accurately
capturing billing and credit card information. Although no one in the marketing
department actually creates new customer accounts, they do perform statistical
analysis of the new customers and create marketing promotions. Thus, market-
ers have an interest in the data that are captured and stored from the Create
customer account use case. The sales department is interested in having an
easy-to-use and attractive user interface to assure sales aren’t lost because of
poor user experience. Considering all the stakeholders is important for system
developers to ensure that they have understood all requirements.

The eighth and ninth compartments—preconditions and postconditions—
provide critical information about the state of the system before and after the
use case executes. Preconditions identify what the state of the system must be
for the use case to begin, including what objects must already exist, what infor-
mation must be available, and even the condition of the actor prior to beginning
the use case.

Postconditions identify what must be true upon completion of the use
case. Most importantly, they indicate what new objects are created or updated
by the use case and how objects need to be associated. The postconditions are

Use case

Create customer account

Look up customer

Process account adjustment

Brief use case description

User/actor enters new customer account data, and the system

assigns account number, creates a customer record, and

creates an account record.

User/actor enters customer account number, and the system

retrieves and displays customer and account data.

User/actor enters order number, and the system retrieves

customer and order data; actor enters adjustment amount, and

the system creates a transaction record for the adjustment.

FIGURE 5-1
Use cases and brief use
case descriptions

precondition a condition that must be
true before a use case begins

postcondition what must be true upon
the successful completion of a use case

122 PART 2 ■ Systems Analysis Activities

important for two reasons. First, they form the basis for stating the expected
results for test cases that will be used for testing the use case after it is imple-
mented. For example, in the Create customer account use case, it is important
to test that a customer record, address record, and account record were success-
fully added to the database. Second, the objects in postconditions indicate which
objects involved in the use case are important for design. You will see in
Chapters 10 and 11 that the design of a use case includes identifying and assign-
ing responsibilities to objects that collaborate to complete the use case. In this
situation, a customer, one or more addresses, and an account object collaborate
to create a new customer account.

The tenth compartment in the template describes the detailed flow of activi-
ties of the use case. In this instance, we have shown a two-column version, iden-
tifying the steps performed by the actor and the responses required by the
system. The item numbers help identify the sequence of the steps. Alternative
activities and exception conditions are described in the eleventh compartment.

FIGURE 5-2 Fully developed use case description for Create customer account

Use case name: Create customer account.

Scenario: Create online customer account.

Triggering event: New customer wants to set up account online.

Brief description: Online customer creates customer account by entering basic information
and then following up with one or more addresses and a credit or debit card.

1. Customer indicates desire to
 create customer account and
 enters basic customer information.

2. Customer enters one or more
 addresses.

3. Customer enters credit/debit card
 information.

1.1 System creates a new customer.
1.2 System prompts for customer
 addresses.

2.1 System creates addresses.
2.2 System prompts for credit/debit
 card.

3.1 System creates account.
3.2 System verifies authorization
 for credit/debit card.
3.3 System associates customer,
 address, and account.
3.4 System returns valid customer
 account details.

Flow of activities: Actor System

Actors: Customer.

Related use cases: Might be invoked by the Check out shopping cart use case.

Stakeholders: Accounting, Marketing, Sales.

Preconditions: Customer account subsystem must be available.
Credit/debit authorization services must be available.

Postconditions: Customer must be created and saved.
One or more Addresses must be created and saved.
Credit/debit card information must be validated.
Account must be created and saved.
Address and Account must be associated with Customer.

Exception

conditions:
1.1 Basic customer data are incomplete.
2.1 The address isn’t valid.
3.2 Credit/debit information isn’t valid.

CHAPTER 5 ■ Extending the Requirements Models 123

The numbering of exception conditions also helps tie the exceptions to specific
steps in the flow of activities.

Figure 5-3 shows the use case description for the use case Ship items. The
scenario for this description assumes they are shipping a new sale rather than
backordered items from a previous sale. Notice that the use case description
minimizes the description of manual work that is done in conjunction with
shipping items. Some analysts put that detail in, but others don’t because the
emphasis is on the interaction with the computer application. In this use case,
the preconditions show what existing objects must already exist before the use
case can execute. They can’t ship items that aren’t part of an existing sale for
a customer. The postconditions again indicate what to look for when stating
the expected results for a test case and show the objects that will need to collab-
orate in the design.

FIGURE 5-3 Fully developed use case description for Ship items

Actors: Shipping clerk.

Preconditions: Customer and address must exist.
Sale must exist.
Sale items must exist.

1. Shipping requests sale and sale
 item information.

2. Shipping assigns shipper.

3. For each available item, shipping
 records item is shipped.

4. For each unavailable item,
 shipping records back order.

5. Shipping requests shipping label
 supplying package size and
 weight.

1.1 System looks up sale and
 returns customer, address, sale,
 and sales item information.

2.1 System creates shipment and
 associates it with the shipper.

3.1 System updates sale item as
 shipped and associates it with
 shipment.

4.1 System updates sale item as
 on back order.

5.1 System produces shipping label
 for shipment.
5.2 System records shipment cost.

Related use cases None.

Stakeholders: Sales, Marketing, Shipping, warehouse manager.

Triggering event: Shipping is notified of a new sale to be shipped.

Brief description: Shipping retrieves sale details, finds each item and records it is shipped,
records which items are not available, and sends shipment.

Scenario: Ship items for a new sale.

Use case name: Ship items.

Flow of activities: Actor System

Postconditions: Shipment is created and associated with shipper.
Shipped sale items are updated as shipped and associated with the shipment.
Unshipped items are marked as on back order.
Shipping label is verified and produced.

Exception

conditions:
2.1 Shipper is not available to that location, so select another.
3.1 If order item is damaged, get new item and updated item quantity.
3.1 If item bar code isn’t scanning, shipping must enter bar code manually.
5.1 If printing label isn’t printing correctly, the label must be addressed
 manually.

124 PART 2 ■ Systems Analysis Activities

Activity Diagrams for Use Cases
Another way to document a use case is with an activity diagram. In Chapter 2,
you learned about activity diagrams as a form of workflow diagram. You
learned that an activity diagram is an easily understood diagram to document
the workflows of the business processes. Activity diagrams are a standard UML
diagram, and they are also an effective technique to document the flow of activ-
ities for each use case.

Figure 5-4 is an activity diagram that documents the flow of activities for
the Create customer account use case. Sometimes, an activity diagram can take
the place of the flow of activities section of a use case description, and some-
times, it is created to supplement the use case description. There are two swim-
lanes: one for the customer and one for the system. The customer has three
activities, and the system has five activities.

Activity diagrams are helpful when the flow of activities for a use case is
complex. The use case Fill shopping cart is complex in that three other use
cases might be invoked while adding items to the shopping cart. For example,
the actor might search for a product and then look at product reviews before
adding the item to the cart. Once an item is added, the actor might search
for and view available accessories and then add one or more to the cart.

Customer System

Request account

Enter addresses

Enter credit info

Create customer

Create addresses

Create account

Verify credit info

Return account
details

FIGURE 5-4
Activity diagram for Create customer
account showing alternate way to
model the flow of activities

CHAPTER 5 ■ Extending the Requirements Models 125

The activity diagram shown in Figure 5-5 shows the Fill shopping cart use case
flow of activities. The yellow ovals show the other use cases that are invoked
while filling the shopping cart. The activities of the use case go in between the
other use cases. The Fill shopping cart use case includes select options and quan-
tities, add to cart, select accessory options and quantity, and add to cart.
However, the intent of the richer user experience becomes evident when the
activity diagram shows the use case in context.

The System Sequence Diagram—Identifying
Inputs and Outputs
In the object-oriented approach, the flow of information is achieved through
sending messages either to and from actors or back and forth between internal
objects. A system sequence diagram (SSD) is used to describe this flow of
information into and out of the automated system. Thus, an SSD documents
the inputs and the outputs and identifies the interaction between actors and the
system. An SSD is a type of interaction diagram.

Customer System

Search for product

Search and view
accessories

Look at product
reviews

Select options
and quantity

Add to cart

Add to cart

Select accessory
options and quantity

FIGURE 5-5
Activity diagram for Fill shopping cart
showing richer user experience

system sequence diagram (SSD) a
diagram showing the sequence of messages
between an external actor and the system
during a use case or scenario

interaction diagram either a
communication diagram or a sequence diagram
that shows the interactions between objects

126 PART 2 ■ Systems Analysis Activities

SSD Notation
Figure 5-6 shows a generic SSD. As with a use case diagram, the stick figure
represents an actor—a person (or role) that interacts with the system. In a use
case diagram, the actor “uses” the system, but the emphasis in an SSD is on
how the actor “interacts” with the system by entering input data and receiving
output data. The box labeled :System is an object that represents the entire
automated system. In SSDs and all other interaction diagrams, analysts use
object notation instead of class notation. In object notation, a box refers to an
individual object, not the class of all similar objects. The notation is simply a
rectangle with the name of the object underlined. The colon before the under-
lined class name is a frequently used but optional part of the object notation.
In an interaction diagram, the messages are sent and received by individual
objects, not by a class. In an SSD, the only object included is one representing
the entire system.

Underneath the actor and :System are vertical dashed lines called lifelines.
A lifeline, or object lifeline, is simply the extension of that object—either
actor or object—during the use case. The arrows between the lifelines represent
the messages that are sent by the actor. Each arrow has an origin and a destina-
tion. The origin of the message is the actor or object that sends it, as indicated
by the lifeline at the arrow’s tail. Similarly, the destination actor or object of a
message is indicated by the lifeline that is touched by the arrowhead. The pur-
pose of lifelines is to indicate the sequence of the messages sent and received by
the actor and object. The sequence of messages is read from top to bottom in
the diagram.

A message is labeled to describe its purpose and any input data being sent.
The message name should follow the verb-noun syntax to make the purpose
clear. The syntax of the message label has several options; the simplest forms are
shown in Figure 5-6. Remember that the arrows are used to represent a message
and input data. But what is meant by the term message here? In a sequence
diagram, a message is an action that is invoked on the destination object, much like
a command. Notice in Figure 5-6 that the input message is called inquireOnItem.

inquireOnItem (catalogID, prodID, size)

item information

:System

The object lifeline; shows
the“sequence” of messages,
top to bottom

Optional note to explain

something in a diagram

A returned value

The actor

interacting with

the system

An object

(underlined)

representing the
automated system

An input message

item information:
description, price, quantity

Clerk

FIGURE 5-6
Sample system sequence diagram
(SSD)

lifeline or object lifeline the vertical
line under an object on a sequence diagram to
show the passage of time for the object

CHAPTER 5 ■ Extending the Requirements Models 127

The clerk is sending a request (a message) to the system to find an item. The input
data that is sent with the message is contained within the parentheses, and in this
case, it is data to identify the particular item. The syntax is simply the name of the
message followed by the input parameters in parentheses. This form of syntax is
attached to a solid arrow.

The returned value has a slightly different format and meaning. Notice that
the arrow is a dashed arrow. A dashed arrow indicates a response or an answer,
and as shown in the figure, it immediately follows the initiating message. The
format of the label is also different. Because it is a response, only the data that
is sent on the response is noted. There is no message requesting a service—only
the data being returned. In this case, a valid response might be a list of all the
information returned—for example, the description, price, and quantity of an
item. However, an abbreviated version is also satisfactory. In this case, the
information returned is named item information. Additional documentation is
required to show the details. In Figure 5-6, this additional information is shown
as a note. A note can be added to any UML diagram to add explanations. The
details of item information could also be documented in supporting narratives
or even simply referenced by the attributes in the Customer class.

Frequently, the same message is sent multiple times. For example, when an
actor enters items on an order, the message to add an item to an order may be
sent multiple times. Figure 5-7(a) illustrates the notation to show this repeating
operation. The message and its return are located inside a larger rectangle called

addItem (itemID, quantity)
Repeat everything

in the rectangle

description, price, extendedPrice

* [another item] description, price, extendedPrice

:= addItem (itemID, quantity)

(a) Detailed notation

(b) Alternate notation

Clerk

Clerk

Test condition for

repeatability

:System

:System

Loop for all items

FIGURE 5-7
Repeating message in (a) detailed
loop frame notation and (b) alternate
notation

128 PART 2 ■ Systems Analysis Activities

a loop frame. In a smaller rectangle at the top of the frame is the descriptive
text to control the behavior of the messages within the larger rectangle. The
condition loop for all items indicates that the messages in the box repeat many
times or are associated with many instances.

Figure 5-7(b) shows an alternate notation. Here, the square brackets and text
inside them are called a true/false condition for the messages. The asterisk (*)
preceding the true/false condition indicates that the message repeats as long as the
true/false condition evaluates to true. Analysts use this abbreviated notation for
several reasons. First, a message and the returned data can be shown in one step.
Note that the return data is identified as a return value on the left side of an assign-
ment operator—the := sign. This alternative simply shows a value that is returned.
Second, the true/false condition is placed on the message itself. Note that in this
example, the true/false condition is used for the control of the loop. True/false condi-
tions are also used to evaluate any type of test that determines whether a message is
sent. For example, consider the true/false condition [credit card payment]. If it is true
that the thing being tested is a credit card payment, the message is sent to the system
to verify a credit card number. Finally, an asterisk is placed on the message itself to
indicate the message repeats. Thus, for simple repeating messages, the alternate nota-
tion is shorter. However, if several messages are included within the repeat or there
are multiple messages—each with its own true/false condition—the loop frame is
more explicit and precise.

Here is the complete notation for a message:

[true/false condition] return-value := message-name (parameter-list)

Any part of the message can be omitted. In brief, the notation components
do the following:

■ An asterisk (*) indicates repeating or looping of the message.
■ Brackets [] indicate a true/false condition. This is a test for that message

only. If it evaluates to true, the message is sent. If it evaluates to false, the
message isn’t sent.

■ Message-name is the description of the requested service. It is omitted on
dashed-line return messages, which only show the return data parameters.

■ Parameter-list (with parentheses on initiating messages and without
parentheses on return messages) shows the data that are passed with the
message.

■ Return-value on the same line as the message (requires :=) is used to
describe data being returned from the destination object to the source object
in response to the message.

Sequence diagrams use two additional frames to depict processing logic, as
shown in Figure 5-8. The opt frame in Figure 5-8(a) is used when a message
or a series of messages is optional or based on some true/false condition. The
alt frame is used with if-then-else logic, as shown in Figure 5-8(b). The alt
frame in this figure indicates that if an item is taxable, then add sales tax; oth-
erwise, add a tax exemption code for a sales tax exemption.

Developing a System Sequence Diagram (SSD)
An SSD is usually used in conjunction with the use case descriptions to help docu-
ment the details of a single use case or scenario within a use case. To develop an
SSD, it is useful to have a detailed description of the use case—either in the fully
developed form or as an activity diagram. These two models identify the flow of
activities within a use case, but they don’t explicitly identify the inputs and out-
puts. An SSD will provide this explicit identification of inputs and outputs. One
advantage of using activity diagrams is that it is easy to identify when an input
or output occurs. Inputs and outputs occur whenever an arrow in an activity dia-
gram goes from an external actor to the computer system.

loop frame notation on a sequence
diagram showing repeating messages

true/false condition part of a message
between objects that is evaluated prior to
transmission to determine whether the
message can be sent

opt frame notation on a sequence diagram
showing optional messages

alt frame notation on a sequence diagram
showing if-then-else logic

CHAPTER 5 ■ Extending the Requirements Models 129

Recall the activity diagram for Create customer account shown in Figure 5-4.
There are two swimlanes: the customer and the computer system. In this instance,
the system boundary coincides with the vertical line between the customer swim-
lane and the computer system swimlane.

The development of an SSD based on an activity diagram falls into four steps:

1. Identify the input messages—In Figure 5-4, there are three locations with
a workflow arrow crossing the boundary line between the customer and
the system. At each location that the workflow crosses the automation
boundary, input data is required; therefore, a message is needed.

2. Describe the message from the external actor to the system by using the
message notation described earlier—In most cases, you will need a message

addAccessory (anAccessory)

accessary details

(a) Opt frame notation

Opt

Customer

[accessory selected]

addSalesTax (locationCode)

tax exemption details

(b) Alt frame notation

Alt

Sales clerk

sales tax details

addTaxExemptionCode (eCode)

[taxable item]

[else]

:System

:System

FIGURE 5-8
Sequence diagram notation for (a) opt
frame and (b) alt frame

130 PART 2 ■ Systems Analysis Activities

name that describes the service requested from the system and the input
parameters being passed. Figure 5-9—the SSD for the Create customer
account use case—illustrates the three messages based on the activity
diagram. Notice that the names of the messages reflect the services that the
actor is requesting of the system: createNewCustomer, enterAddress, and
enterCreditCard. Other names could also have been used. For example,
instead of enterAddress, the name could be createAddress. What is impor-
tant is that the message name describes the service requested from the sys-
tem and be in verb-noun form.

The other information required is the parameter list for each message.
Determining exactly which data items must be passed in is more difficult.
In fact, developers frequently find that determining the data parameters
requires several iterations before a correct, complete list is obtained. The
important principle for identifying data parameters is to base it on the class
diagram. In other words, the appropriate attributes from the classes are
listed as parameters. Looking at the attributes, along with an understanding
of what the system needs to do, will help you find the right attributes.
With the first message just mentioned—createNewCustomer—the parameters
should include basic information about the customer, such as name, phone,
and e-mail address. Note that when the system creates the customer, it
assigns a new customerId and returns it with the other customer information.

In the second message—enterAddress—parameters are needed to identify
the full address. Usually, that would include street address, city, state, and
ZIP code. The SSD simplifies the message to show address as the parameter.

The third message—based on the activity diagram—enters the credit card
information. The parameter—cc-info—represents the account number,
expiration date, and security code.

3. Identify and add any special conditions on the input messages, including
iteration and true/false conditions—In this instance, the enterAddress
message is repeated for each address needed for the customer. The asterisk
symbol in front of the message is shown.

Customer

createNewCustomer (name, phones, emails)

cust ID, name, phones, emails

*address details := enterAddress (address)

enterCreditCard (cc-info)

credit card info details

:System

FIGURE 5-9
SSD for the Create customer account
use case

CHAPTER 5 ■ Extending the Requirements Models 131

4. Identify and add the output return messages—Remember that there are
two options for showing return information: as a return value on the
message itself or as a separate return message with a dashed arrow. The
activity diagram can provide some clues about return messages, but there
is no standard rule that when a transition arrow in the workflow goes
from the system to an external actor an output always occurs. In Figure
5-4, there are three arrows from the computer system swimlane to the
customer swimlane. In Figure 5-9, these are shown as return data on the
dashed line. Note that they are each named with a noun that indicates what
is being returned. Sometimes, no output data is returned.

Remember that the objective is discovery and understanding, so you should
be working closely with users to define exactly how the workflow proceeds and
exactly what information needs to be passed in and provided as output. This is
an iterative process, and you will probably need to refine these diagrams several
times before they accurately reflect the needs of the users.

Let us develop an SSD for the Ship items use case that is shown as a fully
developed use case description in Figure 5-3. Note that the actor has five numbered
steps in the flow of activities, so there will be five input messages in the SSD shown
in Figure 5-10: getNextSale, setShipper, recordShippedItem, recordBackorder,
and getShippingLabel. No parameter is needed for getNextSale because the system
will return the information for the next sale to be shipped. The shipper is selected
by the actor—probably from a list on the form or page—so the parameter is
shipperID. Two messages are repeated in loops: recordShippedItem and
recordBackorder. On this SSD, the loop frame notation is used. Finally, the
getShippingLabel message requires two parameters: the size of the package and the
weight. The system uses that information, along with the shipper and address, to
produce the shipping label and record the cost.

These first sections of this chapter have explained the models that are used
in object-oriented development to specify the processing aspects of the new sys-
tem. The use case descriptions, as provided by written narratives or activity dia-
grams, give the details of the internal steps within each use case. Precondition
and postcondition statements help define the context for the use case—that is,
what must exist before and after processing. Finally, the SSD describes the
inputs and outputs that occur within a use case. Together, these models provide
a comprehensive description of the system-processing requirements and give the
foundation for system design.

Now that the use cases have been explained, let us find out how to capture
important object status information.

The State Machine Diagram—Identifying
Object Behavior
Sometimes, it is important for a computer system to maintain information
about the status of problem domain objects. For example, a customer might
want to know whether a particular sale has been shipped or a manager might
want to know if a customer sale has been paid for. Thus, the system needs to
be able to track the status of customer sales. When defining requirements,
analysts need to identify and document which domain objects require status
checking and which business rules determine valid status conditions. Referring
back to RMO, an example of a business rule is that a customer sale shouldn’t
be shipped until it has been paid for.

The status condition for a real-world object is often referred to as the state
of the object. Defined precisely, a state of an object is a condition that occurs
during its life when it satisfies some criterion, performs some action, or waits

state a condition during an object’s life
when it satisfies some criterion, performs some
action, or waits for an event

132 PART 2 ■ Systems Analysis Activities

for an event. For real-world objects, we equate the state of an object with its
status condition.

The naming convention for status conditions helps identify valid states. A
state might have a name of a simple condition, such as On or In repair. Other
states are more active, with names consisting of gerunds or verb phrases, such
as Being shipped or Working. For example, a specific Sale object comes into
existence when a customer buys something. Right after it is created, the object
might be in a state called Adding new sale items, then a state called Waiting for
items to be shipped, and finally, when all items have been shipped, a state called
Completed. If you find yourself trying to use a noun to name a state, you prob-
ably have an incorrect idea about states or object classes. The name of a state
shouldn’t be an object (or noun); it should be something that describes the
object (or noun).

States are described as semipermanent conditions because external events
can interrupt a state and cause the object to go to a new state. An object

:System

Shipping clerk

customer, address, sale, and sale item info

getNextSale ()

setShipper (shipperID)

shipping label data

getShippingLabel (package size, weight)

Loop

shipping confirmation

recordShippedItem (saleItem)

[shipped item]

Loop

backorder confirmation

recordBackorder (saleItem)

[backorder item]

FIGURE 5-10
SSD for the Ship items use case

CHAPTER 5 ■ Extending the Requirements Models 133

remains in a state until some event causes it to move, or transition, to another
state. A transition, then, is the movement of an object from one state to
another state. Transitioning is the mechanism that causes an object to leave a
state and change to a new state. States are semipermanent because transitions
interrupt them and cause them to end. Generally, transitions are short in
duration—compared with states—and they can’t be interrupted. The combination
of states and transitions between states provides the mechanisms that analysts use
to capture business rules. In our previous RMO example, we would say that a
customer sale must be in a Paid for state before it can transition to a Shipped
state. This information is captured and documented in a UML diagram called a
state machine diagram.

A state machine diagram can be developed for any problem domain classes
that have complex behavior or status conditions that need to be tracked.
However, not all classes will require a state machine diagram. If an object in
the problem domain class doesn’t have status conditions that must control the
processing for that object, a state machine diagram probably isn’t necessary.
For example, in the RMO class diagram, a class such as Sale may need a state
machine diagram. However, a class such as SaleTransaction probably does not.
A sale transaction is created when the payment is made and then just sits there;
it doesn’t need to track other conditions.

A state machine diagram is composed of ovals representing the states of an
object and arrows representing the transitions. Figure 5-11 illustrates a simple
state machine diagram for a printer. Because it is a little easier to learn about
state machine diagrams by using tangible items, we start with a few examples of
computer hardware. After the basics are explained, we will illustrate modeling of
software objects in the problem domain. The starting point of a state machine
diagram is a black dot, which is called a pseudostate. The first shape after the
black dot is the first state of the printer. In this case, the printer begins in the Off
state. A state is represented by a rectangle with rounded corners (almost like an
oval but more squared), with the name of the state placed inside.

As shown in Figure 5-11, the arrow leaving the Off state is called a transi-
tion. The firing of the transition causes the object to leave the Off state and
make a transition to the On state. After a transition begins, it runs to completion
by taking the object to the new state, called the destination state. A transition
begins with an arrow from an origin state—the state prior to the transition—to
a destination state, and it is labeled with a string to describe the components of
the transition.

The transition label consists of the following syntax with three components:

transition-name (parameters, …) [guard-condition] / action-expression

Off On
onButtonPushed [Safety cover closed] / run self-test

State indicates a state
of being of the object.

Beginning pseudostate
denotes start of state
machine diagram.

offButtonPushed

Transition moves the object from the
origin state to the destination state.

Transition-name has trigger name,
guard, and action-expression.

FIGURE 5-11
Simple state machine diagram
for a printer

transition the movement of an object from
one state to another state

state machine diagram a diagram
showing the life of an object in states and
transitions

pseudostate the starting point of a state
machine diagram, indicated by a black dot

destination state for a particular
transition, the state to which an object moves
after the completion of a transition

origin state for a particular transition, the
original state of an object from which the
transition occurs

134 PART 2 ■ Systems Analysis Activities

In Figure 5-11, the transition-name is onButtonPushed. The transition is like
a trigger that fires or an event that occurs. The name should reflect the action of
a triggering event. In Figure 5-11, no parameters are being sent to the printer.
The guard-condition is [Safety cover closed]. For the transition to fire, the
guard must be true. The forward slash divides the firing mechanism from the
actions or processes. Action-expressions indicate some process that must
occur before the transition is completed and the object arrives in the destination
state. In this case, the printer will run a self-test before it goes into the On state.

The transition-name is the name of a message event that triggers the transi-
tion and causes the object to leave the origin state. Notice that the format is
very similar to a message in an SSD. In fact, you will find that the message
event names and transition-names use almost the same syntax. One other rela-
tionship exists between the messages and the transitions: Transitions are caused
by messages coming to the object. The parameter portion of the message name
comes directly from the message parameters.

The guard-condition is a qualifier or test on the transition, and it is simply
a true/false condition that must be satisfied before the transition can fire. For a
transition to fire, first the trigger must occur and then the guard must evaluate
to true. Sometimes, a transition has only a guard-condition and no triggering
event. In that case, the trigger is constantly firing, and whenever the guard
becomes true, the transition occurs.

Recall from the discussion of sequence diagrams that messages have a simi-
lar test, which is called a true/false condition. This true/false condition is a test
on the sending side of the message, and before a message can be sent, the true/
false condition must be true. In contrast, the guard-condition is on the receiving
side of the message. The message may be received, but the transition fires only if
the guard-condition is also true. This combination of tests, messages, and transi-
tions provides tremendous flexibility in defining complex behavior.

The action-expression is a procedural expression that executes when the
transition fires. In other words, it describes the action to be performed. Any of the
three components—transition-name, guard-condition, or action-expression—may
be empty. If either the transition-name or the guard-condition is empty, it automati-
cally evaluates to true. Either of them may also be complex, with AND and OR
connectives.

Composite States and Concurrency
Before teaching you how to develop a state machine diagram, we need to intro-
duce one other type of state: a composite state. In the real world, it is very com-
mon for an object to be in multiple states at the same time. For example, when
the printer in Figure 5-11 is in the on state, it might also be doing other things.
Sometimes, it is printing; sometimes, it is just sitting idle; and when it is first
turned on, it goes through some self-checking steps. All these conditions occur
while the printer is on, and they can be considered simultaneous states. The con-
dition of being in more than one state at a time is called concurrency, or
concurrent states. One way to show this is with a synchronization bar and
concurrent paths, as in activity diagrams. Thus, we could split a transition with
a synchronization bar so one path goes to the On state and the other path goes
to the Idle, Printing, and Selfcheck states. A path is a sequential set of con-
nected states and transitions.

Another way to show concurrent states is to have states nested inside other,
higher-level states. These higher-level states are called composite states.

A composite state represents a higher level of abstraction and can contain nested
states and transition paths. Figure 5-12, which is an extension of Figure 5-11,
illustrates this idea with respect to a printer. The printer is not only in the
On state, it is concurrently in either the Idle or Working state. The rounded
rectangle for the On state is divided into two compartments. The top compartment

action-expression a description of the
activities performed as part of a transition

guard-condition a true/false test to see
whether a transition can fire

concurrency or concurrent state the
condition of being in more than one state
at a time

path a sequential set of connected states
and transitions

composite state a state containing other
states and transitions (that is, a path)

CHAPTER 5 ■ Extending the Requirements Models 135

contains the name, and the lower compartment contains the nested states and
transition paths.

When the printer enters the On state, it automatically begins at the nested
black dot and moves to the Idle state. Thus, the printer is in the On and Idle
states. When the print message is received, the printer makes the transition to
the Working state but also remains in the On state. Some new notation is also
introduced for the Working state. In this instance, the lower compartment con-
tains the action-expressions—that is, the activities that occur while the printer is
in the Working state.

We can extend this idea of composite states and concurrency one step
further by allowing multiple paths within a composite state. Perhaps an object
has entire sets of states and transitions—multiple paths—that are active concur-
rently. To document concurrent multiple paths for a single object, we draw a
composite state with the lower portion divided into multiple compartments—
one for each concurrent path of behavior. For example, imagine a printer that
has an input bin to hold the paper. This printer also alternates between two
states in its work cycle: Idle and Working. We may want to describe two
separate paths: one representing the state of the input paper tray and the other
the state of the printing mechanism. The first path will have the states
Empty, Full, and Low. The second path will have the states Idle and Working.
These two paths are independent; the movement between states in one compart-
ment is completely independent of the movement between states in the other
compartment.

As before, there are two ways to document this concurrent behavior.
First, we could use a synchronization bar with one path becoming three
paths. Second, we could use a composite state. Figure 5-13 extends the
printer example from Figure 5-12. In this example, there are two concurrent
paths within the composite state. The upper concurrent path represents the
paper tray part of the printer. The two paths are completely independent,
and the printer moves through the states and transitions in each path inde-
pendently. When the Off button is pushed, the printer leaves the On state.
Obviously, when the printer leaves the On state, it also leaves all the paths
in the nested states. It doesn’t matter whether the printer is in a state or in
the middle of a transition. When the Off button is pushed, all activity is
stopped, and the printer exits the On state. Now that you know the basic
notation of state machine diagrams, we will explain how to develop a state
machine diagram.

Idle Working

Load and print sheets

On

print(document)

[finished]

FIGURE 5-12
Sample composite states for the
printer object

136 PART 2 ■ Systems Analysis Activities

Rules for Developing State Machine Diagrams
State machine diagram development follows a set of rules. The rules help you
develop state machine diagrams for classes in the problem domain. Usually, the
primary challenge in building a state machine diagram is to identify the right
states for the object. It might be helpful to pretend that you are the object itself.
It is easy to pretend to be a customer but a little more difficult to say “I am an
order” or “I am a shipment. How do I come into existence? What states am I
in?” However, if you can begin to think this way, it will help you develop state
machine diagrams.

The other major area of difficulty for new analysts is to identify and handle
composite states with nested threads. Usually, the primary cause of this diffi-
culty is a lack of experience in thinking about concurrent behavior. The best
solution is to remember that developing state machine diagrams is an iterative
behavior—more so than developing any other type of diagram. Analysts seldom
get a state machine diagram right the first time. They always draw it and then
refine it again and again. Also, remember that when you are defining require-
ments, you are only getting a general idea of the behavior of an object. During
design, as you build detailed sequence diagrams, you will have an opportunity
to refine and correct important state machine diagrams.

Finally, don’t forget to ask about an exception condition—especially when
you see the words verify or check. Usually, there will be two transitions out of
states that verify something: one for acceptance and one for rejection.

Here is a list of steps that will help you get started in developing state
machine diagrams:

1. Review the class diagram and select the classes that might require state
machine diagrams—Remember to include only those classes that have mul-
tiple status conditions that are important for the system to track. Then,
begin with the classes that appear to have the simplest state machine dia-
grams, such as the SaleItem class for RMO, which is discussed later.

2. For each selected class in the group, make a list of all the status conditions
you can identify—At this point, simply brainstorm. If you are working on a
team, have a brainstorming session with the whole team. Remember that
these states must reflect the states for the real-world objects that will be
represented in software. Sometimes, it is helpful to think of the physical
object, identify states of the physical object, and then translate those that
are appropriate into corresponding system states or status conditions. It is

Empty

On

fill ()

trayEmpty ()

Full Low

WorkingIdle

fill ()

lowMsg ()

print(document)

Load and print sheets

Off
onButtonPushed ()

offButtonPushed ()

[finished]

FIGURE 5-13
Concurrent paths for a printer in the
On state

CHAPTER 5 ■ Extending the Requirements Models 137

also helpful to think of the life of the object. How does it come into exis-
tence in the system? When and how is it deleted from the system? Does it
have active states? Does it have inactive states? Does it have states in which
it is waiting? Think of activities done to the object or by the object. Often,
the object will be in a particular state as these actions are occurring.

3. Begin building state machine diagram fragments by identifying the transi-
tions that cause an object to leave the identified state—For example, if a
sale is in a state of Ready to be shipped, a transition such as beginShipping
will cause the sale to leave that state.

4. Sequence these state-transition combinations in the correct order—Then,
aggregate these combinations into larger fragments. As the fragments are
being aggregated into larger paths, it is natural to begin to look for a natu-
ral life cycle for the object. Continue to build longer paths in the state
machine diagram by combining the fragments.

5. Review the paths and look for independent, concurrent paths—When an
item can be in two states concurrently, there are two possibilities. The two
states may be on independent paths, as in the printer example of Working
and Full. This occurs when the states and paths are independent, and one
can change without affecting the other. Alternately, one state may be a
composite state, so the two states should be nested. One way to identify a
candidate for a composite state is to determine whether it is concurrent with
several other states and whether these other states depend on the original
state. For example, the On state has several other states and paths that can
occur while the printer is in the On state, and those states depend on the
printer being in the On state.

6. Look for additional transitions—Often, during a first iteration, several of
the possible combinations of state-transition-state are missed. One method
to identify them is to take every paired combination of states and ask
whether there is a valid transition between the states. Test for transitions in
both directions.

7. Expand each transition with the appropriate message event, guard-
condition, and action-expression—Include with each state appropriate
action-expressions. Much of this work may have been done as the state
machine diagram fragments were being built.

8. Review and test each state machine diagram—Review each of your state
machine diagrams by doing the following:
a. Make sure your states are really states of the object in the class. Ensure

that the names of states truly describe the object’s states rather than the
object itself.

b. Follow the life cycle of an object from its coming into existence to its being
deleted from the system. Be sure that all possible combinations are covered
and that the paths on the state machine diagram are accurate.

c. Be sure your diagram covers all exception conditions as well as the
normal expected flow of behavior.

d. Look again for concurrent behavior (multiple paths) and the possibility
of nested paths (composite states).

Developing RMO State Machine Diagrams
Let us practice these steps by developing two state machine diagrams for RMO.
The first step is to review the domain class diagram and then select the classes
that may have status conditions that need to be tracked. In this case, we select
the Sale and SaleItem classes. We assume that customers will want to know the
status of their sales and the status of individual items on the sale. Other classes
that are candidates for state machine diagrams are: InventoryItem, to track in-
stock or out-of-stock items; Shipment, to track arrivals; and possibly Customer,
to track active and inactive customers.

138 PART 2 ■ Systems Analysis Activities

Developing the SaleItem State Machine Diagram
The first step in developing the SaleItem state machine diagram is to identify the
possible status conditions that might be of interest. Some necessary status condi-
tions are Ready to be shipped, On back order, and Shipped. An interesting
question comes to mind at this point: Can a sale item be partially shipped? In
other words, if the customer bought 10 of a single item but there are only five
in inventory, should RMO ship those five and put the other five on back order?
You should see the ramifications of this decision. The system and the database
would need to be designed to track and monitor detailed information to support
this capability. The domain class diagram for RMO indicates that a SaleItem
can be associated with either zero (not yet shipped) shipments or one (totally
shipped) shipment. Based on the current specification, the definition doesn’t
allow partial shipments of SaleItems.

This is just another example of the benefit of building models. Had we not
been developing the state machine diagram model, this question might never
have been asked. The development of detailed models and diagrams is one of
the most important activities that a system developer can perform. It forces ana-
lysts to ask fundamental questions. Sometimes, new system developers think
that model development is a waste of time, especially for small systems.
However, truly understanding the users’ needs before writing the program
always saves time in the long run.

The second step is to identify exit transitions for each of the status condi-
tions. Figure 5-14 is a table showing the states that have been defined and the
exit transitions for each of those states. One additional state has been added to
the list—Newly added—which covers the condition that occurs when an item
has been added to the sale but the sale isn’t complete or paid for, so the item
isn’t ready for shipping.

The third step is to combine the state-transition pairs into fragments and to
build a state machine diagram with the states in the correct sequence. Figure 5-15
illustrates the partially completed state machine diagram. The flow from beginning
to end for the SaleItem object is quite obvious. However, at least one transition
seems to be missing. There should be some path to allow entry into the On back
order state so we recognize that this first-cut state machine diagram needs some
refinement. We will fix that in a moment.

On back order
itemArrived ()

Ready to shipNewly added
finishedAdding ()

Shipped
shipItem ()

FIGURE 5-15
Partial state machine diagram for
SaleItem object

State Transition causing exit from state

Newly added finishedAdding

On back order itemArrived

Ready to ship shipItem

Shipped No exit transition defined

FIGURE 5-14
States and exit transitions for
SaleItem object

CHAPTER 5 ■ Extending the Requirements Models 139

The fourth step is to look for concurrent paths. In this case, it doesn’t
appear that a SaleItem object can be in any two of the identified states at the
same time. Of course, because we chose to begin with a simple state machine
diagram, that was expected.

The fifth step is to look for additional transitions. This step is where we
flesh out other necessary transitions. The first addition is to have a transition
from Newly added to On back order. To continue, examine every pair of states
to see whether there are other possible combinations. In particular, look for
backward transitions. For example, can a SaleItem go from Ready to ship to
On back order? This would happen if the shipping clerk found that there
weren’t enough items in the warehouse, even though the system indicated that
there should have been. Other backward loops, such as from Shipped to Ready
to ship or from On back order to Newly added, don’t make sense and aren’t
included.

The sixth step is to complete all the transitions with correct names, guard-
conditions, and action-expressions. Two new transition-names are added. The
first is the transition from the beginning black dot to the Newly added state.
That transition causes the creation—or, in system terms, the instantiation—of a
new SaleItem object. It is given the same name as the message into the system
that adds it: addItem(). The final transition is the one that causes the order item
to be removed from the system. This transition goes from the Shipped state to a
final circled black dot, which is a final pseudostate. On the assumption that it is
archived to a backup tape when it is deleted from the active system, that transi-
tion is named archive().

Action-expressions are added to the transitions to indicate any special
action that is initiated by the object or on the object. In this case, only one
action is required. When an item that was Ready to ship moves to On back
order, the system should initiate a new purchase order to the supplier to buy
more items. Thus, on the markBackOrdered() transition, an action-expression is
noted to place a purchase order. Figure 5-16 illustrates the final state machine
diagram for SaleItem.

The seventh step—reviewing and testing the state machine diagram—is the
quality-review step. It is always tempting to omit this step; however, a good
project manager ensures that the systems analysts have time in the schedule to
do a quick quality check of their models. A walkthrough (as described in
Chapter 2) at this point in the project is very appropriate.

Developing the Sale State Machine Diagram
A Sale object is a little more complex than the SaleItem objects. In this example,
you will see some features of state machine diagrams that support more com-
plex objects.

FIGURE 5-16 Final state machine diagram for SaleItem object

On back order
itemArrived ()

finishedAdding () shipItem ()
Ready to ship

addItem ()

markBackOrdered ()

markBackOrdered ()
/ place purchase order

archive ()
Newly added Shipped

140 PART 2 ■ Systems Analysis Activities

Figure 5-17 shows the defined states and exit transitions that, on first itera-
tion, appear to be required. Reading from top to bottom, the states describe the
life cycle of a sale—for example, the status conditions. First, a Sale comes into
existence and is ready to have items added to it—the Open for item adds state.
The users in RMO indicated that they wanted a Sale to remain in this state for
24 hours in case the customer wants to add more items. After all the items are
added, the Sale is Ready for shipping. Second, it goes to shipping and is in the
In shipping state. At this point, it isn’t clear how In shipping and Waiting for
back orders relate to each other. That relationship will have to be sorted out as
the state machine diagram is being built. Finally, the Sale is Shipped, and after
the payment clears, it is Closed.

In the third step, fragments are built and combined to yield the first-cut
state machine diagram (see Figure 5-18). The state machine diagram built from
the fragments appears to be correct—for the most part. However, we note some
problems with the Waiting for back orders state.

After some analysis, we decide that In shipping and Waiting for back orders
are concurrent states. And another state is needed, called Being shipped, for
when the shipping clerk is actively shipping items. One way to show the life of a
Sale is to put it in the In shipping state when shipping begins. It also enters the
Being shipped state at that point. The Sale can cycle between Being shipped and
Waiting for back orders. The exit out of the composite state only occurs from
the Being shipped state, which is inside the In shipping state. Obviously, upon
leaving the inside state, the order also leaves the composite In shipping state.

As we go through the fourth, fifth, and sixth steps, we note that new transi-
tions must be added. The creation transition from the initial pseudostate is
required. Also, transitions must be included to show when items are being
added and when they are being shipped. Usually, we put these looping activities
on transitions that leave a state and return to the same state. In this case, the
transition is called addItem(). Note how it leaves the Open for item adds state

Waiting for
back orders

backOrdersArrive ()

paymentCleared ()
Closed

completeSale ()

archive ()

Ready for
shipping

Open for item
adds

beginShipping ()
In shipping

Shipped

shippingComplete ()

FIGURE 5-18
First-cut state machine diagram
for Order

State Exit transition

Open for item adds completeSale

In shipping shippingComplete

Ready for shipping beginShipping

Waiting for back orders backOrdersArrive

Shipped paymentCleared

Closed archive

FIGURE 5-17
States and exit transitions for Sale

CHAPTER 5 ■ Extending the Requirements Models 141

and returns to the same state. Figure 5-19 takes the state machine diagram to
this level of completion.

The benefit of developing a state machine diagram for a problem domain
object is that it helps you capture and clarify business rules. From the state
machine diagram, we can see that shipping can’t commence while the sale is in
the Open for item adds state, new items can’t be added to the sale after it has
been placed in the Ready for shipping state, and the sale isn’t considered
shipped until all items are shipped. If the sale has the status of In shipping, we
know that it is either actively being worked on or waiting for back orders.

As always, the benefits of careful model building help us gain a true under-
standing of the system requirements. Let us now look at the big picture and see
how the different models fit together.

Integrating Requirements Models
The diagrams described in this chapter allow analysts to completely specify the
system functional requirements. If you were developing a system using a water-
fall systems development life cycle, you would develop the complete set of dia-
grams to represent all system requirements before continuing with design.
However, because you are using an iterative approach, you would only con-
struct the diagrams that are necessary for a given iteration. A complete use case
diagram would be important to get an idea of the total scope of the new system.
But the supporting details included in use case descriptions, activity diagrams,
and system sequence diagrams need only be done for use cases in the specific
iteration.

The domain model class diagram is a special case. Much like the entire use
case diagram, the domain model class diagram should be as complete as possi-
ble for the entire system, as shown for RMO in Chapter 4. The number of

Open for item adds

shippingCurrent () [backorders exist]

completeSale ()

archive ()

Ready for
shipping

beginShipping ()

startSale ()

addItem ()

In shipping

Being shipped

backOrdersArrive ()

Shipped

Waiting for
back orders

Closed

shippingComplete ()

paymentCleared ()

FIGURE 5-19
Second-cut state machine diagram for
Order

142 PART 2 ■ Systems Analysis Activities

problem domain classes for the system provides an additional indicator of the
total scope of the system. Refinement and actual implementation of many clas-
ses will wait for later iterations, but the domain model should be fairly com-
plete. The domain model is necessary to identify all the domain classes that are
required in the new system. The domain model is also used to design the
database.

Throughout this chapter, you have seen how the construction of a diagram
depends on information provided by another diagram. You have also seen that the
development of a new diagram often helps refine and correct a previous diagram.
You should also have noted that the development of detailed diagrams is critical to
gaining a thorough understanding of the user requirements. Figure 5-20 illustrates
the primary relationships among the requirements models for object-oriented devel-
opment. The use case diagram and other diagrams on the left are used to capture
the processes of the new system. The class diagram and its dependent diagrams
capture information about the classes for the new system. The solid arrows repre-
sent major dependencies, and the dashed arrows show minor dependencies. The
dependencies generally flow from top to bottom, but some arrows have two heads
to illustrate that influence goes in both directions.

Note that the use case diagram and the domain model class diagram are the
primary models from which others draw information. You should develop those
two diagrams as completely as possible. The detailed descriptions—either in nar-
rative format or in activity diagrams—provide important internal documenta-
tion of the use cases and must completely support the use case diagram. Such
internal descriptions as preconditions and postconditions use information from
the class diagram. These detailed descriptions are also important for develop-
ment of system sequence diagrams. Thus, the detailed descriptions, activity dia-
grams, and system sequence diagrams must all be consistent with regard to the
steps of a particular use case. As you progress in developing the system and
especially as you begin doing detailed system design, you will find that under-
standing the relationships among these models is an important element in the
quality of your models.

Chapter Summary
The object-oriented approach to information systems
development has a complete set of diagrams and textual
models that together document the user’s needs and
define the system requirements. These requirements are
specified by using domain model class diagrams and
state machine diagrams to model the problem domain
and use case diagrams, use case descriptions or activity
diagrams, and system sequence diagrams (SSDs) to
model the use cases.

The internal activities of a use case are first described
by an internal flow of activities. It is possible to have sev-
eral different internal flows, which represent different sce-
narios of the same use case. Thus, a use case may have
several scenarios. These details are documented either in
use case descriptions or with activity diagrams.

Another diagram that provides details of the use
case’s processing requirements is an SSD. An SSD docu-
ments the inputs and outputs of the system. The scope of

Use case
descriptions

System sequence
diagrams (SSDs)

State machine
diagrams

Activity
diagrams

Use case
diagrams

Domain model
class diagram

FIGURE 5-20
Relationships among object-oriented
requirements models

CHAPTER 5 ■ Extending the Requirements Models 143

each SSD is usually a use case or a scenario within a use
case. The components of an SSD are the actor—the same
actor identified in the use case—and the system. The
system is treated as a black box in that the internal
processing isn’t addressed. Messages, which represent
the inputs, are sent from the actor to the system.
Output messages are returned from the system to the
actor. The sequence of messages is indicated from top
to bottom.

The domain model class diagram continues to be
refined when defining requirements. The behavior of
domain objects represented in the class diagram is an
aspect of the requirements that is also studied and mod-
eled. The state machine diagram is used to model object
states and state transitions that occur in a use case.
All the models discussed in this chapter are interrelated,
and information in one model explains information
in others.

Key Terms

action-expressions 135

alt frame 129

composite states 135

concurrency, or concurrent states 135

destination state 134

guard-condition 135

interaction diagram 126

lifeline, or object lifeline 127

loop frame 129

opt frame 129

origin state 134

path 135

postconditions 122

preconditions 122

pseudostate 134

scenarios or use case instances 121

state 132

state machine diagram 134

system sequence diagram (SSD) 126

transition 134

true/false condition 129

use case description 121

Review Questions
1. What are the models that describe use cases in more

detail?

2. What two UML diagrams are used to model
domain classes?

3. Which part of a use case description can also be
modeled by using an activity diagram?

4. Explain the difference between a use case and a
scenario. Give a specific example of a use case with
a few possible scenarios.

5. List the parts or compartments of a fully developed
use case description.

6. Compare/contrast precondition and postcondition.

7. Compare/contrast postcondition and exception
condition.

8. Compare/contrast business process and flow of
activities for a use case. Explain how an activity
diagram can be used to model both.

9. What is the purpose of an SSD? What symbols are
used in an SSD?

10. What are the steps required to develop an SSD?

11. Write a complete SSD message from the actor to the
system, with the actor asking the system to begin

the process for updating information about a
specific product.

12. What is the name of the sequence diagram symbol
used to represent the extension of an object
throughout the duration of a use case?

13. What are the two ways to show a returned value on
a sequence diagram?

14. What are two ways to show repetition on a
sequence diagram?

15. What are the three types of frames used on a
sequence diagram?

16. What is the symbol for a true/false condition on a
sequence diagram?

17. What are the parameters of a message?

18. List the primary steps for developing a SSD.

19. What is an object state?

20. What is a state transition?

21. When considering requirements, states and state
transitions are important for understanding which
other diagram?

22. What UML diagram is used to show the states and
transitions for an object?

144 PART 2 ■ Systems Analysis Activities

23. List the elements that make up a transition descrip-
tion. Which elements are optional?

24. What is a composite state? What is it used for?

25. What is meant by the term path?

26. What is the purpose of a guard-condition?

27. Identify the models explained in this chapter and
their relationship to one another.

Problems and Exercises
1. After reading the following narrative, do the

following:

i. Develop an activity diagram for each scenario.

ii. Complete a fully developed use case descrip-
tion for each scenario.

Quality Building Supply has two kinds of custo-
mers: contractors and the general public. Sales to
each are slightly different.

A contractor buys materials by taking them to
the checkout desk for contractors. The clerk enters
the contractor’s name into the system. The system
displays the contractor’s information, including
current credit standing. The clerk then opens up a
new ticket (sale) for the contractor. Next, the clerk
scans in each item to be purchased. The system
finds the price of the item and adds the item to the
ticket. At the end of the purchase, the clerk indi-
cates the end of the sale. The system compares the
total amount against the contractor’s current credit
limit and, if it is acceptable, finalizes the sale. The
system creates an electronic ticket for the items,
and the contractor’s credit limit is reduced by the
amount of the sale. Some contractors like to keep a
record of their purchases, so they request that
ticket details be printed. Others aren’t interested in
a printout.

A sale to the general public is simply entered
into the cash register, and a paper ticket is printed
as the items are identified. Payment can be by cash,
check, or credit card. The clerk must enter the type
of payment to ensure that the cash register balances
at the end of the shift. For credit card payments,
the system prints a credit card voucher that the
customer must sign.

2. Based on the following narrative, develop either an
activity diagram or a fully developed description for
the use case Add a new vehicle to an existing policy
in a car insurance system.

A customer calls a clerk at the insurance com-
pany and gives his policy number. The clerk enters
this information, and the system displays the basic

insurance policy. The clerk then checks the infor-
mation to make sure the premiums are current and
the policy is in force.

The customer gives the make, model, year, and
vehicle identification number (VIN) of the car to be
added. The clerk enters this information, and the
system ensures that the given data is valid. Next,
the customer selects the types of coverage desired
and the amount of each. The clerk enters the
information, and the system records it and vali-
dates the requested amount against the policy lim-
its. After all the coverages have been entered, the
system ensures the total coverage against all other
ranges, including other cars on the policy. Finally,
the customer must identify all the drivers and the
percentage of time they drive the car. If a new
driver is to be added, then another use case—Add
new driver—is invoked.

At the end of the process, the system updates
the policy, calculates a new premium amount, and
prints the updated policy statement to be mailed to
the policy owner.

3. Given the following list of classes and associations
for the previous car insurance system, list the pre-
conditions and postconditions for the use case Add
a new vehicle to an existing policy.

Classes in the system:
■ Policy
■ InsuredPerson
■ InsuredVehicle
■ Coverage
■ StandardCoverage (lists standard insurance

coverages with prices by rating category)
■ StandardVehicle (lists all types of vehicles ever

made)

Relationships in the system:
■ Policy has InsuredPersons (one-to-many)
■ Policy has InsuredVehicles (one-to-many)
■ Vehicle has Coverages (one-to-many)
■ Coverage is a type of StandardCoverage
■ Vehicle is a StandardVehicle

CHAPTER 5 ■ Extending the Requirements Models 145

4. Develop an SSD based on the narrative and your
activity diagram for problem 1.

5. Develop an SSD based on the narrative or your
activity diagram for problem 2.

6. Review the cellular telephone state machine diagram
shown in Figure 5-21 and then answer the following
questions. (Note that this telephone has characteris-
tics not found in ordinary telephones. Base your
answers only on the state machine diagram.)

i. What happens to turn on the telephone?

ii. What states does the telephone go into when it
is turned on?

iii. What are the three ways the telephone can be
turned off?

iv. Can the telephone turn off in the middle of the
Active (Talking) state?

v. How can the telephone get to the Active
(Talking) state?

vi. Can the telephone be plugged in while some-
one is talking?

vii. Can the telephone change battery states while
someone is talking? Explain which movement
is allowed and which isn’t allowed.

viii. What states are concurrent with what other
states? Make a two-column table showing the
concurrent states.

7. Based on the following description of a shipment
made by Union Parcel Shipments, identify all the
states and exit transitions and then develop a state
machine diagram.

A shipment is first recognized after it has been
picked up from a customer. Once in the system, it
is considered active and in transit. Every time it
goes through a checkpoint, such as arrival at an
intermediate destination, it is scanned and a record
is created indicating the time and place of the
checkpoint scan. The status changes when it is
placed on the delivery truck. It is still active, but
now it is also considered to have a status of
delivery pending. After it is delivered, the status
changes again.

FIGURE 5-21 Cellular telephone state machine diagram

switchOn ()

pluggedIn () [1/2 hour]

switchOff ()

plugIn () unplug ()

answer ()

hangUp ()

Off

Quiet

Plugged in

Dialing Connecting

Active
(Talking)Ringing

Charged Low warning Uncharged

146 PART 2 ■ Systems Analysis Activities

From time to time, a shipment has a destina-
tion that is outside the area served by Union. In
those cases, Union has working relationships with
other courier services. After a package is handed
off to another courier, it is noted as being handed
over. In those instances, a tracking number for the
new courier is recorded (if it is provided). Union
also asks the new courier to provide a status
change notice after the package has been
delivered.

Unfortunately, from time to time, a package
gets lost. In that case, it remains in an active state
for two weeks but is also marked as misplaced. If
after two weeks the package hasn’t been found, it
is considered lost. At that point, the customer can

initiate lost-package procedures to recover any
damages.

8. Locate a company in your area that develops
software. Consulting companies or companies with a
large staff of information systems professionals tend
to be more rigorous in their approach to systems
development. Set up an interview. Determine the
development approaches that the company uses.
Many companies still use traditional structured
techniques combined with some object-oriented
development. In other companies, some projects are
structured, whereas other projects are object oriented.
Find out what kinds of modeling the company does
for requirements specification. Compare your
findings with the techniques taught in this chapter.

Case Study

TheEyesHaveIt.com Book Exchange

TheEyesHaveIt.com Book Exchange is a type of
e-business exchange that does business entirely on the
Internet. The company acts as a clearinghouse for buyers
and sellers of used books.

To offer books for sale, a person must register with
TheEyesHaveIt.com. The person must provide a current
physical address and telephone number as well as a cur-
rent e-mail address. The system then maintains an open
account for this person. Access to the system as a seller
is through a secure, authenticated portal.

A seller can list books on the system through a special
Internet form. The form asks for all the pertinent informa-
tion about the book: its category, its general condition, and
the asking price. A seller may list as many books as
desired. The system maintains an index of all books in
the system so buyers can use the search engine to search
for books. The search engine allows searches by title,
author, category, and keyword.

People who want to buy books come to the site and
search for the books they want. When they decide to buy,
they must open an account with a credit card to pay for the
books. The system maintains all this information on secure
servers.

When a purchase is made, TheEyesHaveIt.com
sends an e-mail notice to the seller of the book that
was chosen as well as payment information. It also
marks the book as sold. The system maintains an open

order until it receives notice that the book has been
shipped. After the seller receives notice that a listed book
has been sold, the seller must notify the buyer via e-mail
within 48 hours that the purchase is noted. Shipment of
the order must be made within 24 hours after the
seller sends the notification e-mail. The seller sends a
notification to the buyer and TheEyesHaveIt.com when
the shipment is made.

After receiving the notice of shipment,
TheEyesHaveIt.com maintains the order in a shipped
status. At the end of each month, a check is mailed to
each seller for the book orders that have remained in a
shipped status for 30 days. The 30-day waiting period
exists to allow the buyer to notify TheEyesHaveIt.com if
the shipment doesn’t arrive for some reason or if the
book isn’t in the same condition as advertised.

If they want, buyers can enter a service code for the
seller. The service code is an indication of how well the
seller is servicing book purchases. Some sellers are very
active and use TheEyesHaveIt.com as a major outlet for
selling books. Thus, a service code is an important indica-
tor to potential buyers.

For this case, develop these diagrams:

1. A domain model class diagram
2. A list of uses cases and a use case diagram
3. A fully developed description for two use cases: Add a

seller and Record a book order
4. An SSD for each of the two use cases in question 3

CHAPTER 5 ■ Extending the Requirements Models 147

RUNNING CASE STUDIES

Community Board of Realtors

The Multiple Listing Service system has a number of
use cases, which you identified in Chapter 3, and three
key domain classes, which you identified in Chapter 4:
RealEstateOffice, Agent, and Listing.

1. For the use case Add agent to real estate office,
write a fully developed use case description and
draw an SSD. Review the case materials in previ-
ous chapters and recall that the system will need to

know which real estate office the agent works for
before prompting for agent information.

2. For the use case Create new listing, write a fully
developed use case description and draw an SSD.
Recall that the system needs to know which agent
made the listing before the system prompts for
listing information.

3. Draw a state machine diagram showing the states
and transitions for a Listing object.

The Spring Breaks ‘R’ Us Travel Service

The Spring Breaks ‘R’ Us Travel Service system has many
use cases and domain classes, which you identified in
Chapters 3 and4.Review thedomainmodel class diagram
to get a feel for the complexity of some of the use cases.

1. For the use case Book a reservation, write a fully
developed use case description and draw an SSD.
Review the classes that are associated with a res-
ervation in the domain model to understand the
flow of activities and repetition involved.

2. For the use case Add new resort, write a fully
developed use case description and draw an SSD.
Review the classes that are associated with a resort
in the domain model to understand the flow of
activities and repetition involved.

3. Draw an activity diagram to show the flow of
activities for the use case Add a new resort.

4. Draw a state machine diagram showing the state
and transitions for a Reservation object.

On the Spot Courier Services

As On the Spot Courier Services continues to grow,
Bill discovers that he can provide much better services
to his customers if he utilizes some of the technology
that is currently available. For example, it will allow
him to maintain frequent communication with his
delivery trucks, which could save transportation and
labor costs by making the pickup and delivery opera-
tions more efficient. This would allow him to serve his
customers better. Of course, a more sophisticated sys-
tem will be needed, but Bill’s development consultant
has assured him that a straightforward and not-
too-complex solution can be developed.

Here is how Bill wants his business to operate.
Each truck will have a morning and afternoon delivery
and pickup run. Each driver will have a portable digi-
tal device with a touch screen. The driver will be able
to view his or her scheduled pickups and deliveries for
that run. (Note: This process will require a new use
case—something the Agile development methodology
predicted would happen.) However, because the trucks
will maintain frequent contact with the home office via
telephony Internet access, the pickup/delivery schedule
can be updated in real time—even during a run. Rather
than maintain constant contact, Bill decides that it will

be sufficient if the digital device synchronizes with the
home office whenever a pickup or delivery is made. At
those points in time, the route schedule can be updated
with appropriate information.

Previously, customers were able to either call On
the Spot and request a package pickup or visit the
company’s Web site to schedule a pickup. Once custo-
mers logged in, they could go to a Web page that
allowed them to enter information about each pack-
age, including “deliver to” addresses, size and weight
category information, and type of service requested.
On the Spot provided “three hour,” “same day,” and
“overnight” services. To facilitate customer self-
service, On the Spot didn’t require exact weights and
sizes, but there were predefined size and weight cate-
gories from which the customer could choose.

Once the customer entered the information for all
the packages, the system would calculate the cost and
then print mailing labels and receipts. Depending on
the type of service requested and the proximity of a
delivery truck, the system would schedule an immedi-
ate pickup or one for later that day. It would display
this information so the customer would immediately
know when to expect the pickup.

(continued on page 149)

148 PART 2 ■ Systems Analysis Activities

Picking up packages was a fairly straightforward
process. But therewas some variation inwhatwould hap-
pen depending on what information was in the system
and whether the packages were already labeled. Upon
arriving at the scheduled pickup location, the driver
would have the system display any package information
available for this customer. If the system already had
information on the packages, the driver would simply
verify that the correct information was already in the sys-
tem for the packages. The driver could also make such
changes as correcting the address, deleting packages, or
adding new packages. If this were a cash customer, the
driver would collect any money and enter that into the
system. Using a portable printer from the van, the driver
could print a receipt for the customer as necessary. If
there were new packages that weren’t in the system, the
driver would enter the required information and also
print mailing labels with his portable printer.

One other service that customers required was to be
able to track the delivery status of their packages. The
system needed to track the status of a package from the
first time it “knew” about the package until it was
delivered. Such statuses as “ready for pickup,” “picked
up,” “arrived at warehouse,” “out for delivery,” and

“delivered” were important. Usually, a package would
follow through all the statuses, but due to the sophisti-
cation of the scheduling and delivery algorithm, a pack-
age would sometimes be picked up and delivered on the
same delivery run. Bill also decided to add a status of
“cancelled” for those packages that were scheduled to
be picked up but ended up not being sent.

1. Based on this description, develop the following
for the use case Request a package pickup and for
the Web customer scenario:

i. A fully developed use case description

ii. An activity diagram

iii. An SSD

Based on the same description, develop the follow-
ing for the use case Pickup a package:

i. A fully developed use case description

ii. An activity diagram

iii. System sequence diagram

2. Develop a state machine diagram describing all the
possible status conditions for a Package object.

Sandia Medical Systems Real-Time Glucose Monitoring

Figure 5-22 shows a set of use cases for the patient
and physician actors. Answer the following questions
and/or complete the following exercises:

1. Which use cases include which other use cases?
Modify the diagram to incorporate included
relationships.

(continued from page 148)

FIGURE 5-22 RTGM system use cases

View/respond to
alert

View history

Annotate history

Send message to
physician

View/hear
message from

physician

View/respond to
alert

Send message to
patient

View/hear
message from

patient

Set alert
conditions

Patient Physician

(continued on page 150)

CHAPTER 5 ■ Extending the Requirements Models 149

2. Consider the use cases View/respond to alert and
View history. Both actors share the latter, but each
has a different version of the former. Why do the
actors have different versions of the View/respond
to alert use case? Would the diagram be incorrect
if each actor had his own version of the View
history use case? Why or why not?

3. Develop an SSD for the View history use case.
Assume that the system will automatically display
the most recent glucose level, which is updated at
five-minute intervals by default. Assume further that
the user can ask the system to view glucose levels
during a user-specified time period and that the levels
can be displayed in tabular form or as a graph.

Further Resources

Grady Booch, James Rumbaugh, and Ivar
Jacobson, The Unified Modeling Language User

Guide. Addison-Wesley, 1999.

E. Reed Doke, J. W. Satzinger, and S. R. Williams,
Object-Oriented Application Development Using

Java. Course Technology, 2002.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and
David Fado,UML2Toolkit. JohnWiley&Sons,2004.

Martin Fowler, UML Distilled: A Brief Guide to

the Standard Object Modeling Language (3rd
edition). Addison-Wesley, 2004.

Philippe Kruchten, The Rational Unified Process:

An Introduction (3rd edition). Addison-Wesley,
2005.

Craig Larman, Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and

Design and the Unified Process (3rd edition).
Prentice Hall, 2005.

Object Management Group, UML 2.0 Superstructure

Specification, 2004.

(continued from page 149)

150 PART 2 ■ Systems Analysis Activities

PART 3

Essentials of Systems Design

Chapter 6
Essentials of Design and the
Design Activities

Chapter 7
Designing the User and
System Interfaces

151

This page intentionally left blank

6
Essentials of Design and
the Design Activities

Chapter Outline

■ The Elements of Design

■ Inputs and Outputs for Systems Design

■ Design Activities

■ Design the Environment

Learning Object ives

After reading this chapter, you should be able to:

■ Describe the difference between systems analysis and systems design

■ Explain each major design activity

■ Describe the major hardware and network environment options

■ Describe the various hosting services available

153

OPENING CASE

Technology Decisions at Wysotronics, Inc.

As James Schultz walked down the hall toward a
meeting with his staff, he thought about his new job.
For a year now, Schultz had been the vice president and
chief information officer for a medium-sized supplier of
electronic components to several large electronics firms,
including Samsung and Acer. James’s company,
Wysotronics, Inc., had been in business for many years
but had recently been having some problems with its
internal computer systems. James was hired to fix the
problems.

Soon after starting his new job, James discovered that
quite a few of the systems were functioning properly but
that the infrastructure was a hodgepodge of disjointed
computers and networks. On the corporate side, there
were accounting systems and human resource systems,
both of which were desktop client/server systems hosted
on a local network computer that resided in the accounting
department.

Engineering had its own database and network com-
puters, which hosted several sophisticated engineering
systems with intensive computing requirements. The
engineers’ local desktop systems were the most recent,
up-to-date equipment and software. The server was also
high capacity, with a large data repository to house all the
engineering documents and images.

Marketing and Sales also had their own systems
hosted on their own network server, which was also
connected to the Internet. The sales staff worked closely
with the manufacturing and assembly plants to ensure that
deliveries were on time, and they were frequently on the
road visiting Wysotronics’s clients. It was their job to
ensure that clients were satisfied with schedules,
deliveries, and quality, and they wanted to be able to
access the sales and production databases while they
were on the road. Unfortunately, the servers they used
weren’t very stable and continually had problems.

Perhaps the biggest problem was the supply chain
management system. Wysotronics had a large
manufacturing plant, an assembly plant, and several
suppliers that needed access to the inventory and supply
chain system. The current infrastructure didn’t have
enough capabilities to provide timely information to
these facilities and suppliers.

The meeting today was one of many to plan and
configure the total infrastructure of corporate systems. As
he walked into the room, James was greeted by William
Hendricks, who would be making a presentation summa-
rizing past decisions and future directions.

“Hi, Bill,” James said. “Will you have some new
recommendations for us today? Are there any surprises
from your research?”

“No surprises,” Bill said. “But you will be pleased to
know that our research has validated the decisions you
have made recently. We are providing better service to
the company than ever before, and we are doing it
at less cost than we ever have before. I do have a
few recommendations about how to fine-tune our infra-
structure to provide even better service, though.”

It was obvious that Bill was pretty enthused about the
results of his research.

“Before we start, can you give me a brief idea about
where the cost savings are coming from?” James asked.

“Sure,” Bill said. “As you know, we decided to create
a virtual private network using the Internet for all our
supply chain and production needs. We moved all the
computers to support this system into a colocation facility.
We still own the servers, but we have signed a service
agreement with the hosting company to manage all the
operating system and connection and network mainte-
nance. This has allowed us to focus our efforts on the
software itself and not to have to use valuable personnel
worrying about the environment or connectivity. And we
have not had to invest in additional buildings for a larger
data center. Plus, the level of service is incredible. We
have had almost 100 percent uptime since the switchover.
The people in our plants really are pleased that they can
check inventory levels and shipment dates from all their
suppliers at any time.”

“Wow. That is great news,” James said. “And what
are you going to recommend for our marketing and sales
system?”

“Well, as you know, that is a Web-based system,” Bill
replied. “It doesn’t have the security requirements that our
production systems do, but it needs to be widely available.
Our research has shown that we can deploy that system
through a hosting company that provides ‘cloud’ comput-
ing. We have the option of going with our colocation
provider or using another company we have used in the
past. I think this other company is going to give us some
good price concessions and will still be able to provide
excellent service.”

“That sounds great!” James said. “I’m interested in
hearing about the details. I assume you have also laid out
a migration plan to move the systems over?”

“Yes, I have done my homework on this one,” Bill
said. “I think you will be pleased with the results.”

154 PART 3 ■ Essentials of Systems Design

Overview
Previous chapters described the activities and decisions associated with discover-
ing and understanding the major elements of the user’s requirements—in other
words, the analysis activities. This chapter focuses on the solution system.
During analysis, the focus is on understanding what the system should do
(i.e., the requirements), whereas during design, the focus is on the solution
(i.e., specifying how the system will be built and what the structural components
of the new system will be).

A question new developers often ask is “When are these tasks carried out in
a real project?” Unfortunately, there is no single answer. Many projects begin
with some of the design decisions having already been made, particularly with
regard to the deployment environment when companies already have a strong
technology infrastructure in place. For other projects, the new system may be
the result of a new thrust for the organization and thus the decisions are wide
open. However, it is normal for the project team to start thinking about these
issues very early in the project and to begin making preliminary decisions as
requirements are being defined. The topics discussed in this and the following
chapters are solution-oriented design topics; however, you shouldn’t try to
come up with a solution until you understand the problem.

This is the first of several chapters that discuss design. Here, we briefly
describe all the design activities and discuss the first activity (designing the envi-
ronment) in more detail. Later chapters explore other design activities and
explain in detail the various models and techniques used for systems design.

The Elements of Design
In Chapter 1, we defined systems design as those activities that enable the
project team to describe in detail the system that solves the need. Obviously,
there are many aspects of a system that need to be designed. The design of any
complex artifact requires detailed design documents. For example, think of all
the components that must be designed to build an ocean liner or a commercial
aircraft. For a commercial aircraft, design ranges from the preliminary shape
and size of the aircraft to the major subsystems, such as the mechanical system,
the hydraulic system, and the electronic system, on down to the minutest details:
the shape of the airfoil, the size and shape of seats, the placement of cockpit
display and control devices, and even the external metering devices. Nothing is
left to chance. Designing commercial airplanes today is only possible because of
many years of experience and an extensive knowledge base regarding how to
build airplanes.

The software applications being designed and constructed today are equally
complex and are also only possible because so much infrastructure is already in
place and there is a massive knowledge base and a set of development tools.
Even with all the tools available, designing and constructing software applica-
tions is a difficult and complex process.

In this section, we first explore some of the different aspects and levels of
design. Next, we take a high-level view of a computer application system to see
what things must be included in a design. Later in this section, we identify the
types of documents and products that are produced by the design process.
Finally, we review what information and documents are available as inputs to
design.

What Is Systems Design?
Systems design is really a bridge process. The objective of systems analysis is to
thoroughly understand the organization’s informational needs or requirements
and to document those requirements in a set of specifications. The objective of

CHAPTER 6 ■ Essentials of Design and the Design Activities 155

software construction is to build a system that satisfies those requirements.
Systems design, then, is the bridge that takes us from requirements to solution.
The objective of systems design is to define, organize, and structure the compo-
nents of the final solution system that will serve as the blueprint for construc-
tion. Another way to think about systems design is that whereas analysis
tells us what the solution needs to do, design describes how the system will be
configured and constructed.

Major Components and Levels of Design
Today, information systems are deployed on a range of devices—from individ-
ual computers and small mobile digital devices to localized networks of compu-
ters to large distributed and Internet-connected computers. We discuss several
of these equipment and network configurations in a later section.

The design requirements vary dramatically depending on the targeted
environment. Some applications never connect to the Internet, some connect
periodically to retrieve specific information, and some need to have a continu-
ous connection in order to execute. For example, you may own a laptop
computer with several applications that execute only on your laptop. These
might include a spreadsheet program, a word processing program, a tax prepa-
ration program, or a program that plays music. Of course, given the connected-
ness of today’s world, even these small programs may have components that
from time to time check for updates. However, these kinds of programs don’t
need to be connected to the Internet or to a network in order to carry out their
fundamental purposes.

You may also own a mobile digital device or a smartphone with applica-
tions that run in a stand-alone (i.e., not Internet-connected) manner. Maybe
you downloaded an application from the Internet, but once downloaded, it
executes on its own. The design of these types of programs is usually only
moderately complex.

On the other end of the range are applications that run in some type of
distributed network environment. The environment can be either a localized
private network, such as would be found in medium-sized corporations, or a
distributed global network. Almost all large corporations have these types of
internal systems that can be used only by employees. For example, a large
global corporation may have a human resources system that is accessible by
human resources personnel at many company offices throughout the world.

Another ubiquitous type of information system today is Web-based systems
deployed on a server (or multiple servers) and accessed entirely through Web
pages. Some of these types of systems are small and relatively simple, whereas
others are extremely complex, requiring complex database access and sophisti-
cated connectivity and interfaces with multiple external systems. An example of
a simple system would be a personal blog hosted on a small server. A more
complex system would be a comprehensive catalog and customer sales system,
much like the new RMO CSMS.

Figure 6-1 is a network diagram that illustrates one common configura-
tion for today’s information systems. A network diagram is a model that shows
how the application is deployed across networks and computers. The system
depicted in Figure 6-1 is a network-based system that is also accessible through
the Internet. We illustrate this type of comprehensive system to identify the
various system components that must be designed and built.

For the entire system, the analysts first identify the overall application
deployment environment. This requires defining the hardware and software
environments. The hardware environment shown in Figure 6-1 includes the
computers, the networks, the firewalls, and so forth. The software environment
includes such things as what operating systems, what database management
system, and what kind of network protocol will be used.

network diagram a model that shows
how the application is deployed across
networks and computers

156 PART 3 ■ Essentials of Systems Design

In most situations, the infrastructure for the application information system
already exists and the new system must conform to the existing configuration.
For example, most companies have an existing infrastructure of computers, net-
works, and communication devices. Therefore, some parts of the system design
may be unnecessary because the new application will be integrated into the
existing environment. However, even when there is an existing infrastructure,
the new application will at times need to extend it to meet new requirements.

To perform design, analysts first partition the entire system into its major
components because an information system is too complex to design all at
once. The icons in Figure 6-1 refer to pieces of hardware, and inside the pieces
of hardware are their software components. The large cloud on the right side of
the figure represents the entire system, and the various icons within it show the
parts of the system that must work together to make the system functional.
Information systems professionals must make sure to develop a total solution
for the users. They haven’t done their job if they haven’t provided an integrated,
complete solution. In other words, design must include the overall infrastructure
as well as the various components.

The infrastructure illustrated in Figure 6-1 is a common one in today’s com-
puting environments. The servers contain the software applications and the
databases. Often, there are local desktop computers that access the application
on a local network—either wired or wireless. The local network is isolated from

FIGURE 6-1 System components requiring systems design

Wireless
device

Wi-Fi-enabled
device

Internal desktop

Application
server

Database
server

Foreign
system

Internal desktop

Environment design specifies the
network and hardware linking the
system together (this chapter).

Database design
specifies the structure
of the database
(Chapter 12).

User-interface design
defines the screens,
reports, and controls for
the inputs and outputs
(Chapter 7).

Internet

System-interface design
describes the
communications to other
systems (Chapter 7).

Security and controls
design represented by the
firewall (Chapter 12).

Mobile telephone
device

Application design describes
the computer programs
(Chapters 10 and 11).

CHAPTER 6 ■ Essentials of Design and the Design Activities 157

the Internet by a firewall computer. The application is made available to
the Internet and to the rest of the world via the firewall computer. The firewall
computer is often connected directly to the Internet and provides access for com-
puters and mobile digital devices through Internet Wi-Fi connections. Outside the
firewall, connections to telephonic devices can also provide access to the applica-
tion for mobile telephone devices. Not all applications require this expanded
access to the Internet, but more and more companies allow their employees to
work at remote locations where they need Internet access to internal applications.

In Figure 6-1, the callout boxes identify the various components requiring
design. As mentioned in the previous paragraphs, the network and infrastruc-
ture need to be designed or extended at times. The application software that
exists on the server needs to be designed, as does the accompanying database.
The user interface must also be designed, whether it is desktop screens or Web
pages. Some systems have automated interfaces to external systems, and those
interfaces must be designed. For example, an internal purchasing system may
interface directly with vendors and suppliers so they can submit purchase orders
electronically. The following chapters will explain the details of designing these
various components of an information system.

In addition to defining the components requiring design, an important idea
underlying systems design has to do with the different levels of design. During
analysis, we first identified the scope of the problem and described it with a sys-
tems vision document. Once we had a clear overview of the problems and
issues, we drilled down to understand the detailed requirements. In other
words, during analysis, we went from general, high-level information to more
detailed and specific information. During design, we take a similar approach.
At first, we try to design the overall infrastructure, then the major functions of
each of the components, and finally the specific details within each component.

As you begin working in industry, you will find that various names are
given to the design at the highest level, including architectural design, general
design, and conceptual design. We use the term architectural design. During
architectural design, you determine the overall structure and form of the solu-
tion before trying to design the details. Designing the details is usually called
detail design. It isn’t important at this point to distinguish which activities are
architectural design and which are detail design, nor is it important to identify
which models or documents belong to architectural design or to detail design.
What is important is to recognize that design should proceed in a top-down
fashion.

Let us review the implications of this approach for each of the design com-
ponents identified in Figure 6-1.

For the application software component, the first step is to identify the vari-
ous subsystems and their relationships to each other. The application also has to
be configured to be consistent with the network, the database, and the user-
interface components. Part of that early design of the application is the automa-
tion system boundary. The system boundary identifies which functions are
included within the automated system and which are manual procedures.

For the database component, the first step is to identify the type of database
to be used and the database management system. Some details of the tables, the
data fields, and indexes might have already been identified, but the final design
decisions will depend on the architecture as well as the details of the
application.

For the user-interface component, the first step is to identify the general
form and structure of the user dialog based on the major inputs and outputs.
The project team also describes the relationship of the user-interface elements to
the application software and the hardware equipment. In today’s world, this
can become rather complex because many different types of devices may need
to connect to the system. Figure 6-1 illustrates internal computers (wired and
wireless), Internet-connected computing devices, and smartphones that connect

architectural design broad design of
the overall system structure; also called general
design or conceptual design

detail design low-level design that
includes the design of the specific program
details

158 PART 3 ■ Essentials of Systems Design

via telephonic protocols. The user interface has to be flexible enough to antici-
pate all the various types of connections that will be used. After the overall con-
nection and communication protocols have been decided on, detailed screen
layouts and report formats can be developed.

Inputs and Outputs for Systems Design
During the analysis activities described in previous chapters, we build docu-
ments and models. For object-oriented analysis, we use the event table and
developed other models, such as class diagrams, use case diagrams, use case
descriptions, activity diagrams, system sequence diagrams, and state machine
diagrams. In the optional online chapter, we present the traditional analysis
models, such as the event table, data flow diagrams, and entity-relationship
diagrams. Regardless of the approach, the input to the design activities consists
of those documents and models that are built during earlier activities.

In iterative projects, which we have covered in previous chapters and will
explain in more detail in Chapter 8, analysis and design activities are often
done concurrently. However, the first focus of any iteration has to be identifying
and specifying the requirements (i.e., analysis); determining the solutions
(i.e., design) comes later.

During analysis, analysts also build models to represent the real world and
to understand the desired business processes and the information used in those
processes. Basically, analysis involves decomposition—breaking a complex
problem with complicated information requirements into smaller, more under-
standable components. Analysts then organize, structure, and document the
problem domain knowledge by building requirements models. Analysis and
modeling require substantial user involvement to explain the requirements and
to verify that the models are accurate.

Design is also a model-building activity. Analysts convert the information
gathered during analysis—the requirements models—into models that represent
the solution system. Design is much more oriented toward technical issues and
therefore requires less user involvement and more involvement by other systems
professionals. Figure 6-2 illustrates this flow from analysis to design, highlight-
ing the distinct objectives of analysis and design.

Design involves describing, organizing, and structuring the system solution.
The output of the design activities is a set of diagrams and documents that
achieves this objective. These diagrams model and document various aspects of
the solution system.

The formality of a project also affects design. Formal projects usually require
well-developed design documents, which are often reviewed in formal meetings.
Developers on informal projects often create their designs with notepads and
pencils and then throw away the design once the program is coded. This kind of
informal design (used in many Agile projects) is merely a means to an end, which
is the actual program code. However, even though outsiders don’t see the design
documents, the design process must still be followed. A programmer who
jumps into code without carefully thinking it through—this if often referred to as
cowboy coding—ends up with errors, patches, and poorly structured systems.

Figure 6-3 identifies the major models used for analysis and design. These
lend themselves to object-oriented development, although they also share many
characteristics with traditional development, as explained in online Chapter A.
Notice that several analysis models have corresponding design models; for
example, class diagram has a design class diagram. As mentioned earlier, devel-
opment often flows smoothly from analysis into design, and this approach is
further facilitated when the models are quite similar. Take the class diagram for
example; here, the analysis model identifies the classes, attributes, and relation-
ships, and the design class diagram adds more information, such as type

CHAPTER 6 ■ Essentials of Design and the Design Activities 159

information for the attributes, keys, indexes, and the class methods or functions.
It builds and expands on what the analysis-oriented class diagram offers.

You should be familiar with the analysis models shown in Figure 6-3. In the
following chapters, you will learn how to create the design models shown on the
bottom half of the figure. Two of them—package diagrams and nodes and
locations diagrams—are primarily architectural design models. They document
the overall structure of the final system. The design class diagram describes the
classes in a way that is helpful for database design and application design.
The sequence diagrams are an extension of the system sequence diagrams and
document the flow of control and execution among the classes. The database
schema is of course required to document the database for the application. For
most current applications, a relational database approach is used. The user-
interface models provide the layout for the computer screens and for the online
or printed reports. Communication diagrams are similar to sequence diagrams in
that they document the interactions between the classes in the program code.
System security and control models aren’t formal models; they are documents
and notations that identify the important control features of the new application.

In the previous chapters, you learned about analysis activities and
you developed skills in using the techniques and tools necessary to create the
analysis models shown in the top half of Figure 6-3. In the life of a real project,
once the systems analysts have begun to understand the user’s business require-
ments and document those requirements by using the analysis models, they
begin their design activities and extend the analysis models into the design
models. Next, we discuss those design activities.

Design Activities
Figure 6-4 identifies the activities associated with the following core process
that was discussed in Chapter 1: Design the system components that solve the
problem or satisfy the need. Each design activity corresponds to the design of

Analysis activities

Objectives:
To understand

1. Business events and processes
2. System activities and processing
 requirements
3. Information storage requirements

Design activities

Objective:
To define, organize, and structure the
components of the final solution system
that will serve as the blueprint for
construction

Analysis models
and documents

FIGURE 6-2
Analysis objectives and design
objectives

160 PART 3 ■ Essentials of Systems Design

Class
diagrams

System
sequence
diagrams

State
machine
diagrams

Use case
diagrams

Use case
descriptions

Activity
diagrams

Package
diagrams

Design
class

diagrams

Database
schema

Nodes and
locations
diagram

Sequence
diagrams

User-interface
screens and

reports

System
security

and controls

Communication
diagrams

Analysis

Design

FIGURE 6-3
Analysis and design models

FIGURE 6-4 Design activities

Design activities

Design the environment.

Design application architecture and software.

Design user interfaces.

Design system interfaces.

Design the database.

Design system controls and security.

Core
processes

1 2 3 4 5 6

Identify problem and obtain

approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy

solution.

Iterations

CHAPTER 6 ■ Essentials of Design and the Design Activities 161

one of the components identified in Figure 6-1. This section will provide a short
introduction to each of these design activities. In-depth explanation and instruc-
tion on the specific concepts and skills are given later in the text. Designing the
environment is discussed as the last section in this chapter, and the other topics
are covered in subsequent chapters.

Systems design is a model-building endeavor, just as systems analysis was.
As design decisions are made, especially at the detail level, they are derived
from and documented by the building of models. As indicated earlier, the
models may be quite informal, but they are the essence of design. For example,
in database design, we identify which tables will be required and what fields
will be in which table before we begin to build the tables with SQL statements.
In software design, we decide which classes are the core classes and which are
utility classes and what responsibilities (methods) each class will have.
User-interface design often requires storyboards or other visual models to make
efficient workflow decisions. All these systems design tasks are model-building
tasks.

Systems design involves specifying in detail how a system will work when
using a particular technology. Some of the design details will have been devel-
oped during systems analysis, but much more detail is often required. In addi-
tion, each component of the final solution is heavily influenced by the design of
all the other components. Thus, systems design activities are usually done in
parallel. For example, the database design is used heavily in software design
and even affects user-interface design. Likewise, the application architecture
drives many of the decisions for how the network must be configured. When an
iterative approach to the SDLC is used, major design decisions are made in the
first or second iteration; however, many designed components are revisited
during later iterations. To better understand these design activities, you can
summarize each one with a question. In fact, systems developers often ask
themselves these questions to help them stay focused on the objective of each
design activity. Figure 6-5 presents these questions.

Each of the activities develops a specific portion of the final set of design
documents. Just as a set of building blueprints has several different documents,
a systems design package consists of several sets of documents that specify the
entire system. In addition, just as the blueprints must all be consistent and
integrated to describe the same physical building, the various systems design
documents must be consistent and integrated to provide a comprehensive set of
specifications for the complete system. For example, if an analyst is working on
the user interface without consulting the database designer, the analyst could
build an interface with the wrong fields or wrong field types and lengths.

Design activity

Design the environment

Design application

architecture and software

Design system interfaces

Key question

Have we specified in detail the environment and all the various

options in which the software will execute?

Have we specified in detail all the elements of the software and

how each use case is executed?

Design user interfaces Have we specified in detail how users will interact with the

system to carry out all their tasks (use cases)?

Design the database Have we specified in detail all the information storage

requirements, including all the schema elements?

Design system controls and

security

Have we specified in detail all the elements to ensure the

system and the data are secure and protected?

Have we specified in detail how the system will communicate

with all other systems inside and outside the organization?

FIGURE 6-5
Design activities and key questions

162 PART 3 ■ Essentials of Systems Design

Internal consistency is a mandatory element of effective system modeling and
design. In what follows, we briefly discuss these design activities to better under-
stand what is involved. In later chapters, you will develop the skills necessary
for each of these activities.

Design the Environment
The environment is all the technology required to support the software applica-
tion that is being developed. For example, in the development of RMO’s
CSMS, we have focused on the functional and nonfunctional requirements so
far. However, the system will need to exist on a set of computer servers,
desktop computers, mobile computers, and perhaps additional computing
devices. Each of these computing devices will have an operating system, commu-
nication capabilities, diverse input and output capabilities, and so forth.
Additional software—often referred to as middleware—may be needed to facili-
tate the integration of these diverse computing devices into a comprehensive
solution. All these supporting systems—hardware and software—are considered
part of the technology architecture, which we discussed in Chapter 2. For the
new CSMS to be developed and deployed successfully, the complete environ-
ment must be precisely defined. Hence, the first step in the development of a
new system is to define this environment.

Every software application must execute in some technology environment.
This environment includes the computers and other hardware required for
the deployment of the application as well as such things as server computers,
desktop computers, mobile computers, firewalls, routers and cabling, fiber
optics, and wireless access points. Some applications are simple stand-alone
applications that execute on a single computer, laptop, or mobile computing
device. Other applications are entirely server based and utilize an application
server, a database server, and perhaps some content delivery network, with
the users accessing all the application’s functions on their computers through
a local browser. Other applications are complex distributed applications in
which the application itself and the data execute on various computers
concurrently. Still other applications may be deployed to remote computing
devices, such as smartphones or remote monitoring devices. Today’s comput-
ing environment has become a world of connected technologies, many of
which operate on different protocols and aren’t entirely compatible. A big
part of designing the environment is identifying and defining all the types of
computing devices that will be required. That includes identifying all the
locations and communication protocols necessary to integrate computing
hardware.

The technology environment includes more than just the hardware. Another
important component consists of the operating systems, communication proto-
cols and systems, and other supporting software (i.e., middleware). For example,
the deployment of a Web-based system will involve server operating systems as
well as the operating systems on the users’ computers. The server may also
have other systems, such as the Web server, a database management system, a
programming-language server, an image and graphics processor, or other spe-
cialty software. The design of the supporting software environment is even
more complicated when the software systems cannot communicate directly with
each other. These incompatibilities must be resolved.

Design the Application Architecture and Software
In designing the application architecture, we include decisions about the struc-
ture and configuration of the new system as well as the design of the computer
software itself. One of the first steps in this design process is partitioning the
software into subsystems. Decisions are also made about the database infra-
structure and about the multilayer design in which the user interface is

CHAPTER 6 ■ Essentials of Design and the Design Activities 163

separated from the business logic and database processing. The technology
architecture will drive many of these design decisions. For example, which sub-
systems need to reside on which pieces of equipment? Subsystems may be placed
on different server computers based on importance, response time requirements,
or privacy and security issues.

Other kinds of processing requirements influence the technology architec-
ture and the application architecture. For example, should users be able to
access the new system only at work on their desktops or should they also be
able to work from home via an Internet connection? Is it necessary to
allow remote wireless devices to connect to the system? What kind of
transactions (use cases) and what volume of transactions must the new system
be able to handle? These kinds of application decisions will drive the application
architecture, the environment, and other hardware requirements. Designing the
application architecture is usually a top-down process, with the overall structure
defined first and then the detailed design of the various components.

The other part of application design is designing the application software at
a detailed level. Detailed design is primarily a model-building activity. Creating
models not only enables the design process, but it also provides the documenta-
tion necessary for writing code. These models include activity diagrams,
sequence diagrams, design class diagrams, and other physical models. For
the traditional approach, such models as data flow diagrams are developed.
For example, for object-oriented design, one of the primary models is the
design class diagram, which identifies the classes, their attributes, and their
methods. Figure 6-6 is a partial design class diagram for RMO’s CSMS.

+processNewSale ()

+makePayment ()

<<controller>>

SaleHandler

-accountNo:string {key}
-name:string
-billingAddress:string

-shippingAddress:string

-dayPhone:string
-nightPhone:string

-emailAddress:string
-status:string

Customer

+updateName ()

+updateAddress ()
+requestHistory ()

-saleID:int {key}
-saleDateTime:date
-priorityCode:string

-S&H:currency

-tax:currency
-totalAmt:currency

Sale

+addItem ()

+updateInformation ()
+requestShipment ()
+updateStatus ()

+recievePayment ()

-saleItemId:int {key}
-productItem:string
-quantity:int

-soldPrice:currency

-shipStatus:string
-backOrderStatus:string

SaleItem

+updateinformation ()

+cancelItem ()
+requestBackorder ()

-productItem:string

-inventoryItem:int

-size:string

-color:string

-options:string

-quantityOnHand:int

-averageCost:currency

-reorderQuantity:int

-dateLastOrder:date

-dateLastShipment:date

InventoryItem

+updateQOH ()
+updateInformation ()

FIGURE 6-6
Partial design class diagram for RMO’s
CSMS

164 PART 3 ■ Essentials of Systems Design

Chapters 10 and 11 will explain the details of how to design the application
architecture and software.

Design the User Interfaces
Analysts should remember that to the user of a system, the user interface is
the system. It is more than just the screens. It is everything the user comes into
contact with while using the system—conceptually, perceptually, and physically.
Thus, the user interface isn’t just an add-on to the system.

New technology has led to many new requirements for the user interface.
For example, will users only use computers with large screens or will they
also use PDAs and other remote devices with small graphical areas? Will
other devices be used for entering information, such as text, verbal commands,
pictures, and graphics? These elements and requirements of the user interface
need to be considered throughout the development process.

On desktops, laptops, and tablet computers, the interface is a graphical
user interface with windows, dialog boxes, and mouse interactions.
Increasingly, even these now include sound, video, and voice commands. On
mobile devices, such things as touch screens, screen keyboards, voice commands
and responses, and movement and positioning inputs and outputs are a stan-
dard part of the user interface. As information systems become increasingly
interactive and accessible, the user interface is becoming a larger and more
important part of the total system.

Designing the user interface can be thought of as an analysis and a design
activity. It has elements of analysis in that the developers must understand the
user’s needs and how the user carries out his or her job. Not only must the user
interface carry the right information, but it must also be ergonomically efficient
and esthetically attractive. User-interface design is also a design activity in
that it requires creativity and conformity to rigorous technology requirements.
Many types of models and tools are used to perform user-interface design,
including mock-ups, storyboards, graphical layouts, and prototyping with
screen-modeling tools. One of the primary difficulties of designing the user inter-
face in today’s connected world is that the disparity between desktop screens
and smartphone displays often necessitates multiple user interfaces for the
same application. Chapter 7 describes many of the tools and techniques used to
effectively carry out the user-interface design.

Design the System Interfaces
Few, if any, systems exist in a vacuum in today’s connected computing environ-
ment. A new information system will affect and utilize many other information
systems. Sometimes, one system provides information that is later used by
another system, and sometimes, systems exchange information continuously as
they run. The component that enables systems to share information is the
system interface, and each system interface needs to be designed in detail.

The form of these interfaces will vary dramatically. In some cases, a file is
sent from one system to another. In other cases, real-time data exchange is
necessary, and live transactions are transferred between systems. In other
cases, one system requires a service from another system, and a function call
is performed via an application program interface. The format of the inter-
change can also vary, from binary format to encrypted formats to text-based
formats.

From the beginning of a systems design, analysts must ensure that all the
systems work together well. In some cases, the new system needs to interface
with a system outside the organization—for example, at a supplier’s site or
a customer’s home. Increasingly, organizations are linking systems together
across organizational boundaries. For example, at RMO, the new Supply Chain
Management System will have information flows from RMO to its key suppliers.

CHAPTER 6 ■ Essentials of Design and the Design Activities 165

The new CSMS will also require linkups with the Supply Chain Management
system as well as real-time links to banks and other credit verification organiza-
tions. One standardized method for defining text-based system interfaces is to
use eXtensible Markup Language (XML). Much like HTML, XML uses tags to
define the structure of the record. Figure 6-7 presents an example of an XML
record.

Some system interfaces link internal organizational systems, so the analyst
may have information available about other systems. Internally at RMO, the
Supply Chain Management system will have real-time communication with the
Trade Show System that was described in Chapter 1. The Sales subsystem must
have access to the supply chain warehouse database in order to know which
items are in stock and which aren’t available.

System interfaces can become quite complex, particularly with so many
types of technology available today. System-interface design is discussed in
more detail in Chapter 7.

Design the Database
An integral part of every computer information system is the information itself,
with its underlying database. The data model (the domain model) is created
early during systems analysis and is then used to create the implementation
model of the database. Usually, the first decision is determining the database
structure. Sometimes, the database is a collection of traditional computer files.
More often, it is a relational database consisting of dozens or even hundreds of
tables. Sometimes, files and relational databases are used in the same system.
Another decision that needs to be made is whether the database is centralized
or distributed. The internal properties of the database must also be designed,
including such things as tables, attributes, and links. Figure 6-8 is an example
of an RMO database table definition for inventory items in MYSQL.

Analysts must consider many important technical issues when designing the
database. Many of the technical (as opposed to functional) requirements defined
during systems analysis concern database performance needs (such as response
times). Much of the design work might involve performance tuning to make
sure the system actually works fast enough. Security and encryption issues,
which are important aspects of information integrity, must be addressed and
designed into the solution. Given today’s widespread connectivity, a database
may need to be replicated or partitioned at various locations around the world.
It is also not uncommon to have multiple databases, with distinct database

<inventoryRecord>
 <productItem>WS39448-7</productItem>
 <inventoryItem>48763920</inventoryItem>
 <itemCharacteristics>
 <size>large</size>
 <color>blue</color>
 <options>withzippers</options>
 </itemCharacteristics>
 <orderRules>
 <quantityOnHand>54</quantityOnHand>
 <averageCost>38.27</averageCost>
 <reorderQuantity>25</reorderQuantity>
 </orderRules>
 <dates>
 <dateLastOrder>06042012</dateLaseOrder>
 <dateLastShipment>08072012</dateLastShipment>
 </dates>
</inventoryRecord>

FIGURE 6-7
Sample system-to-system interface
using XML

166 PART 3 ■ Essentials of Systems Design

management systems. These databases may be distributed across multiple data-
base servers and may even be located at completely different sites. These highly
technical issues often require specialized skills from experts at database design,
security, performance, and physical configuration. A final key aspect of
database design is making sure the new databases are properly integrated with
existing databases. Chapter 12 describes database design in detail.

Design the Security and System Controls
The final design activity is ensuring that the system has adequate safeguards to
protect organizational assets—the safeguards referred to as system controls. This
activity isn’t listed last because it is the least important. On the contrary, espe-
cially in today’s culture, where outsiders can cause severe damage to a system
and its data, designing system controls is a crucial activity. The design of security
and system controls should be included in all other design activities: user inter-
face, system interface, application architecture, database, and network design.

User-interface controls limit access to the system to authorized users.
System-interface controls ensure that other systems cause no harm to this
system. Application controls ensure that transactions are recorded precisely and
that other work done by the system is done correctly. Database controls ensure
that data is protected from unauthorized access and from accidental loss due to
software or hardware failure. Finally—and of increasing importance—network
controls ensure that communication through networks is protected. All these
controls need to be designed into the system based on the existing technology.
Specialists are often brought in to work on controls, and all system controls
need to be thoroughly tested. Control issues are addressed in several chapters
but most explicitly in Chapter 12.

Design the Environment
The first activity in the list of design activities is designing the environment. This
activity is also listed first because it permeates all the other design decisions. For
example, a stand-alone, single-desktop system will require very different design
decisions for the software, the user interface, the system interfaces, and the
database than a complex interconnected and distributed system. Even though
all the detailed design decisions concerning the environment might not be com-
pleted at the beginning of the project, the major decisions are addressed.

There is an incredible variation in the software systems being deployed
today as well as an explosion in the types of devices and configurations
that have software applications. Consequently, there is no easy way to organize
and discuss the issues that are relevant to designing the environment. In this
section, we address issues related to three major industry trends in software

FIGURE 6-8 Sample database table definition in MYSQL

CHAPTER 6 ■ Essentials of Design and the Design Activities 167

deployment: software systems deployed entirely within an organization,
software systems built for purely external use (in our case, deployed on the
World Wide Web via the Internet), and software systems deployed remotely in
a distributed fashion (for internal and external use).

Design for Internal Deployment
There are two types of internally deployed software systems: stand-alone sys-
tems and internal network systems. Even though the internal environments for
these two types of systems have some common features, each type of system
has unique requirements that must be considered during design.

Stand-Alone Software Systems
Any software system that executes on a single computing device without con-
necting externally via an Internet or network connection is a stand-alone system.
Companies still develop stand-alone systems, but most of them are developed by
individuals and then sold or delivered to companies or other individuals. For
example, the Microsoft Office Suite and the Apple iWork Suite, which allow
word documents, spreadsheets, and presentations to be created, execute primar-
ily on single computers. Likewise, many people use such stand-alone software
as QuickBooks or H&R Block At Home—programs that are acquired either as
packages of CDs or downloaded as executable install files. Another type of
stand-alone system are the games that many people download and play on their
laptops or desktops.

Design issues for stand-alone systems are usually straightforward. These sys-
tems usually read and write data into files without database access. The biggest
issue with stand-alone systems is that they often need to be deployed on various
pieces of equipment. For example, a tax program may need versions that run on
PCs under Windows, PCs under Unix, and Apple computers using the Mac
operating system. Other stand-alone programs may need to run in these three
configurations as well as be able to run on mobile devices, including tablet com-
puters and smartphones. Each of these environments requires slightly different
versions of the interface with the operating system and the functions of the user
interface. Usually, different versions of the application will be designed and built
so the one best suited for a particular device is deployed.

Internal Network-Based Systems
An internal network-based system is one that is for the exclusive use of the
organization that builds it or buys it. It isn’t meant to be used by anyone except
company employees who are located within the organization’s physical facilities.
Figure 6-9 is a network diagram that illustrates a possible hardware configura-
tion for this type of system. Often, such a hardware environment is referred to
as a local area network (LAN)—a computer network in which the cabling and
hardware are confined to a single location, such as a building.

This configuration depicts a simple client-server architecture for an inter-
nal network system. What distinguishes a client-server architecture from a
single-computer architecture is that the individual computers in a client-server
architecture must be connected to a server. The computers that users do their
work on are called the client computers, whereas the main computer is called
the server computer. The latter “serves” functions and data, which the client
computers receive. There are two kinds of systems that can be deployed in a
client-server architecture:

■ Desktop application systems
■ Browser-based application systems

The simplest version of a desktop system is a computer program that
executes on a client computer. That situation may not even require a server
computer. However, many desktop systems access a server computer to retrieve

local area network (LAN) a computer
network in which the cabling and hardware are
confined to a single location

client-server architecture a computer
network configuration with user’s computers
and central computers that provide common
services

client computers the computers at
which the users work to perform their
computational tasks

server computer the central computer
that provides services (such as database
access) to the client computers over a network

168 PART 3 ■ Essentials of Systems Design

and update data from a database. Even more sophisticated desktop systems may
consist of computer programs that communicate together between the client and
the server computers. The advantage of this type of system is that the presenta-
tion (i.e., the user interface) and the functionality can be customized to the
exact requirements of the users. Examples of these types of systems include
graphical or engineering systems in which the processing and presentation
requirements are very strict and very intensive.

The other type of internal network system is one that is browser based. In
a browser-based system, the presentation of screens and reports to the user’s
computers (i.e., the clients) is handled by an Internet browser, such as Internet
Explorer, Firefox, Chrome, or Safari. In this configuration, most of the proces-
sing and heavy calculation is done by the server and then passed to the client
computers as Hypertext Markup Language (HTML) pages. This puts a heavier
load on the server computer because it not only has to serve data to all the
clients, but it also has to do the processing for all the clients. Therefore, high-
speed computers are usually purchased to provide the necessary computing
power. Another disadvantage is that the presentation of the user-interface
screens and reports must conform to the capabilities provided by the browsers.
Often, this isn’t a major problem, but at times, it can be limiting. An advantage
of using a browser-based design is that the system can easily be extended
outside the local LAN and deployed via the Internet. These kind of systems use
the same transmission protocol as the Internet: Transmission Control
Protocol/Internet Protocol (TCP/IP).

Three-Layer Client-Server Architecture
One effective method of software design is to separate the user-interface routines
from the business logic routines and separate the business logic routines from
the database access routines. This method of designing the application software
is called three-layer architecture. Three-layer architecture is used for all types
of systems, including desktop applications and browser-based applications. A
three-layer architecture divides the application software into three layers:

■ The user interface or view layer, which accepts user input and formats and
displays processing results

Wireless laptop client

Printer

Application
server

Apple client

Database
server

Desktop client

FIGURE 6-9
Network diagram for an internal
network system

Hypertext Markup Language
(HTML) the predominant language for
constructing Web pages and which consists
of tags and rules about how to display pages

Transmission Control Protocol/
Internet Protocol (TCP/IP) the
foundation protocol of the Internet; used to
provide reliable delivery of messages between
networked computers

three-layer architecture a client/
server architecture that divides an application
into view layer, business logic layer, and data
layer

view layer the part of the three-layer
architecture that contains the user interface

CHAPTER 6 ■ Essentials of Design and the Design Activities 169

■ The business logic or domain layer, which implements the rules and
procedures of business processing

■ The data layer, which manages stored data, usually in one or more
databases

Figure 6-10 illustrates in the abstract how these three layers work together
to respond to a user request for processing or information. This has proven
to be an effective approach to building software. It is effective because the
programmers can more easily focus their attention on solving one issue at a
time. It is also easier to upgrade and enhance different portions of the system.
For example, the user interface can be changed with only minimal impacts on
the business logic routines.

One of the advantages of a client-server architecture is that it easily
supports—in fact, encourages—software to be developed by using an applica-
tion program three-layer architecture. Figure 6-11 illustrates an internally
deployed system with a three-layer architecture, and it shows how the three
layers might be configured across three separate computing platforms.

The view layer resides on all the client computers as well as on a portion of
the application server computer. The HTML is rendered and displayed by the
browser on the client computers. The view layer classes that format the HTML
are on the application server. The data layer consists of the database server and
any application programs on the application server that are necessary to access

FIGURE 6-10 Abstract three-layer architecture

View layer Domain layer Data layer

User requestUser request

Data access
 response

Data access
 response

Data access
 request

Data access
 request

Unformatted
 response

Unformatted
 response

Information
 request

Information
 request

Formatted
response

Formatted
response

FIGURE 6-11 Internal deployment with three-layer architecture

Database server

View layer

Application serverDomain layer

Data layer

Software on application server

Domain layer logic—implement business rules

Data layer logic—formulate queries

View layer logic—format screens/reports

business logic layer or domain
layer the part of a three-layer architecture
that contains the programs that implement the
business rules and processes

data layer the part of a three-layer archi-
tecture that interacts with the data

170 PART 3 ■ Essentials of Systems Design

the data. The business logic layer resides on the application server computer and
includes all the logic to process the business rules.

A major benefit of using three-layer architecture is its inherent flexibility.
Interactions among the layers are always requests or responses, which make the
layers relatively independent of one another. It doesn’t matter where other
layers are implemented or on what type of computer or operating system they
execute. The only interlayer dependencies are a common language for requests
and responses and a reliable network with sufficient communication capacity.

Multiple layers can execute on the same computer or each layer can oper-
ate on a separate computer. Complex layers can be split across two or more
computers. System capacity can be increased by splitting layer functions
across computers or by load sharing across redundant computers. In the
event of a malfunction, redundancy improves system reliability if the server
load can be shifted from one computer to another. In sum, three-layer archi-
tecture provides the flexibility needed by modern organizations to deploy and
redeploy information-processing resources in response to rapidly changing
conditions. We will discuss the software aspects of three-layer design in
Chapters 10 and 11.

Design for External Deployment
The largest and most rapidly growing arena for new software applications is the
deployment of systems that are purely for external use on the Internet. The tre-
mendous increase in broadband connectivity capability and Web-enabled
devices has generated incredible opportunities for the creation of purely online
businesses. Today, almost all “brick and mortar” businesses have extended
their business models to include online purchase of goods and services.
Tremendous growth has also occurred in home-based and other small businesses
that only do business via the Internet. The software applications that support
these business activities are, in most cases, built purely for external use. In other
words, there is no need for in-house employees to use these systems. They are to
be used by customers who aren’t part of the hosting organization. Important
issues related to the environment for externally deployed systems include:

■ Configuration for Internet deployment
■ Hosting alternatives for Internet deployment
■ Diversity of client devices with Internet deployment

Configuration for Internet Deployment
Figure 6-12 illustrates a simple Internet deployment configuration. Notice that
it is quite similar to the three-layer architecture in the last section. In fact,
almost all Internet-deployed applications use a three-layer architecture. The
back end (i.e., the application server and the database server) provides the
same functionality as an internally deployed client-server system. The view
layer architecture has some similarities but also has more complex require-
ments due to the varied and insecure nature of the Internet. The view layer
consists of the HTML pages that are rendered by a browser. It also includes
those programs or classes that reside on the server and that format the
dynamic HTML.

Internet and Web technologies present an attractive alternative for imple-
menting information systems used by external customers and organization
employees. For example, consider the data entry and data access needs of an
RMO buyer who purchases items from the company’s suppliers. Buyers are typ-
ically on the road for several months a year—often for weeks at a time. A trav-
eling buyer therefore needs some means of remotely interacting with RMO’s
Supply Chain Management (SCM) system to record purchasing agreements and
query inventory status.

CHAPTER 6 ■ Essentials of Design and the Design Activities 171

Implementing an application via the Web has a number of advantages over
traditional client/server applications, including:

■ Accessibility—Given that Web browsers and Internet connections are nearly
ubiquitous, Web-based applications are accessible to a large number of
potential users (including customers, suppliers, and off-site employees).

■ Low-cost communication—The high-capacity networks that form the
Internet backbone were initially funded primarily by governments. Traffic
on the backbone networks travels free of extra charges to the end user.
Connections to the Internet can be purchased from a variety of private
Internet service providers at relatively low costs.

■ Widely implemented standards—Web standards are well known, and many
computing professionals are already trained in their use.

Of course, there are problematic aspects of application delivery via the
Internet and Web technologies, including:

■ Security—Web servers are a well-defined target for security breaches
because Web standards are open and widely known. Wide-scale intercon-
nection of networks and the use of Internet and Web standards make ser-
vers accessible to a global pool of hackers. This is probably the most serious
issue that must be addressed with external deployment of applications.
Protection must be provided for the home systems, including the data, and
for the data as they are transmitted over the Internet.

■ Throughput—When high loads occur, throughput and response time can
suffer significantly. The configuration must support not only daily average
users but also a peak-load number of users. This is unpredictable and can
vary widely.

■ Changing standards—Web standards change rapidly. Client software is
updated every few months. Developers of widely used applications are faced
with a dilemma: Use the latest standards to increase functionality or use
older standards to ensure greater compatibility with older user software.

For RMO, the primary disadvantages of implementing the customer order
application or even an RMO buyer-accessing home system via the Internet are
security and throughput. If a buyer can access the system via the Web, so can
anyone else. Access to sensitive parts of the system can be restricted by a num-
ber of means, including user accounts and passwords. But the risk of a security

Database
server

Application
serverFirewall

Internet

FIGURE 6-12
Internet deployment of software
applications

172 PART 3 ■ Essentials of Systems Design

breach will always be present. Protection of data while in transit is important
because “sniffer” software may discover user IDs, passwords, and sensitive data
during transmission.

Protection of data while in transit is accomplished through Hypertext
Transfer Protocol Secure (HTTPS), which is a combination of Hypertext
Transfer Protocol (HTTP) and Transport Layer Security (TLS) protocol. Web
pages that are served through the HTTPS protocol are transmitted in encrypted
format, which can be made quite secure. You will learn more about secure
transmissions in Chapter 12.

Performance is affected by several factors. First, of course, is the capacity of the
server computer and the amount of traffic that it must support. Figure 6-13 illus-
trates a simple configuration, with only a Web server, which hosts the software
application, and a database server. However, as volumes increase, increased capac-
ity is provided by utilizing larger, more powerful servers and by adding more
servers. Conceptually, the configuration is the same as the Internet deployment
configuration shown in Figure 6-12: a Web application server and a database
server. However, each of two servers becomes many servers that have equipment
on the input side to distribute page requests and database requests across these
servers. Figure 6-13 illustrates a typical data center configuration that uses multiple
application servers and multiple database servers. This configuration adds another
layer of complexity to the design of the computing environment.

Many companies that support very high volumes also build server farms,
which consist of multiple data centers positioned around the country or even
around the world. Each data center houses many individual servers that are
linked together with load-balancing hardware. This adds even more complexity
as requests for access to the application are routed to the correct data center,

Hypertext Transfer Protocol Secure
(HTTPS) an encrypted form of information
transfer on the Internet that combines HTTP
and TLS

Transport Layer Security (TLS) an
advanced version of Secure Sockets Layer (SSL)
protocol used to transmit information over the
Internet securely

Database servers

Application servers

Firewall

Load-balancing computer

Internet

FIGURE 6-13
Multiple server configuration

CHAPTER 6 ■ Essentials of Design and the Design Activities 173

which is frequently the nearest data center but not always so. Sophisticated
synchronization algorithms and software are required to keep data current in
the various data centers.

Throughput can also be increased by using a content delivery network
(CDN). This is an additional set of computers that can be used to deliver static
content, such as images or videos. For example, when an RMO customer
requests a page from the catalog, the application software determines all the
information that is to be returned on the page. The page is dynamically created
based on request by using data from the database. However, many of the
images that may need to be returned are static images that seldom change. In
other words, they aren’t dynamically changing. Rather than take up bandwidth
going into and out of the data center firewall and load balancer, RMO could
use a CDN server to deliver all the images and videos that it uses. Figure 6-14
is an example of such a configuration, with multiple servers and a separate
location for content delivery.

Finally, performance is limited by the RMO user’s Internet connection point
and the available Internet capacity between that connection and the application
server. Unreliable or overloaded local Internet connections can render the
application unusable. RMO has no control over the user’s connections.

Hosting Alternatives for Internet Deployment
Software applications that are developed for purely external use open up many
hosting alternatives. Hosting refers to running and maintaining a computer
system on someone’s behalf where the application software and the database
reside. There are several critical issues that must be considered in the

content delivery network (CDN)
a set of server computers, separate from the
hosting computers, used to deliver such static
content as images or videos

Database servers

Application servers

Firewall

Content delivery network servers

Load-balancing computer

Internet

FIGURE 6-14
Multiple server configuration with
content delivery network

hosting the process of providing physical
servers at a secure location and selling those
services to other businesses that wish to deploy
Web sites

174 PART 3 ■ Essentials of Systems Design

deployment of any system for external use, especially for systems utilized by cus-
tomers or other outside parties. They include:

■ Reliability—The hardware environment must be completely reliable because
customers and other outside parties usually have a very low tolerance for
systems that aren’t available. This often requires mirroring computers, hard
drives, and database records. Backup and recovery must be well established.

■ Security—The systems—hardware and software—must be secure. The
current legal regulations for financial and health care data require a very
high level of security. Penalties are severe.

■ Physical facilities—To ensure reliability and security, special rooms or even
special buildings are often required. In addition, Internet connectivity
frequently requires multiple access routes to the Internet backbone.
Electrical power must be secure, which often means having backup
generators on-site. And air conditioning units must be adequate, with
backup facilities, to ensure a constant physical environment.

■ Staff—To ensure reliability and security, a well-qualified technical staff
needs to be on-site 24/7.

■ Growth—External systems often grow dramatically as a business expands,
increasing the number of servers needed to respond to the traffic. When
the number of application servers and database servers increases, there is
the need for more sophisticated load balancing. Growth can also leave the
physical facilities outstripped, necessitating multiple data centers.

Because of these issues, many companies are outsourcing their hardware
environments. In recent years, there has been a large expansion of the services
offered to companies to host their applications. A few of the more popular alter-
natives are now discussed.

Colocation In a colocation arrangement, one company provides a secure data
center where other companies (i.e., clients) house their server computers. One
feature that comes with the data center includes a securely locked and protected
site that meets all regulatory requirements for financial and health care records.
The site also often has multiple high-capacity connections to the Internet back-
bone. And it is often integrated into multiple power grids and has its own emer-
gency power generators. A client can rent rack space to house its own computer
servers or it may lease computers from the host provider. Managing the server—
its operating system, Internet software, database management software, data
backup, and so forth—is done remotely. After the initial setup, the client
seldom, if ever, goes to the site. The advantage of this kind of service is that it
doesn’t incur the costs of a physical, secure, complex data center.

Managed Services A client may want to purchase additional services, such as
installing and managing the operating system, the Internet servers, database
servers, and load balancing software. The client maintains its own software but
doesn’t have to hire staff to manage the operating environment. These services are
usually called managed services, and almost all hosting companies will provide
them. Usually, the client company either owns or leases a specific number of com-
puters for its servers. The advantage of this service is that the client company
doesn’t have to hire special technical staff to manage the server system software.

Virtual Servers In this arrangement, the client company leases a virtual server
that is configured as a real server, with a certain amount of CPU capacity,
internal memory, hard drive memory, and bandwidth to the Internet. How the
computer hardware is configured is unknown to the client, which just buys
(usually on a monthly or annual lease) a specific server configuration. The
client company can purchase virtual servers with or without managed services.
The provider company uses special system software to configure a virtual

colocation a hosting service with a secure
location but in which the computers are usually
owned by the client businesses

virtual server a method to partition the
services of a physical Web server so it appears
as multiple, independent Internet servers

CHAPTER 6 ■ Essentials of Design and the Design Activities 175

world for that client company. Companies use this type of service for applica-
tions with very low volume that don’t require the computing power of a
whole computer. Prices for these types of services range from only a few
dollars a month to one or two thousand dollars a month depending on the
size and power of the virtual server. The advantage of this service (in addition
to those just listed) is that the client company can start small and add more
capacity as needed. Typically, the client purchases a virtual server and
increases capacity in a stepwise fashion, adding either a larger virtual server
or additional virtual servers as needed.

Cloud Computing There are two philosophies behind cloud computing. First, a
client should be able to buy computing capacity much like one purchases such a
utility as water or electricity. In other words, the client only purchases as much
as is needed and used. Second, the client shouldn’t have to be concerned with
such environmental issues as how or where this computing capacity is provided,
just as an individual doesn’t have to worry about how electricity is generated.
With cloud computing, the client company purchases computing capacity (with
related memory, hard drive storage, and bandwidth) in very small increments
for very short time periods. The client company specifies a required environ-
ment, such as a Unix operating system with an Apache Web server, but doesn’t
have any contact with the operating environment. In other words, the client’s
application software runs “in the cloud.” When growth occurs, the cloud auto-
matically provides more capacity. Supposedly, this arrangement saves the client
company money because it doesn’t have to buy capacity that it doesn’t need. At
present, this is the ultimate in the separation of application software and the
operating environment.

One major selling point with all the hosting companies is the reliability of
their equipment and Internet access. Most contracts for these kinds of services
include a Service Level Agreement (SLA), which guarantees a specific level
of system availability. The volume and activity on a Web site (i.e., a particular
software application) makes availability extremely important. For example, how
much revenue would Amazon lose if its system weren’t available for even a
minute during a peak time of day? It isn’t unusual to see SLAs that guarantee
availability 99.9 percent of the time, with penalties for nonperformance. Some
providers even guarantee 100 percent availability. Providers are able to make
this guarantee because they have multiple server farms with several layers of
redundancy and backup built in.

Figure 6-15 lists hosting options and their various capabilities.

FIGURE 6-15 Attributes of hosting options

Scalability

Maintenance

Backup and recovery

Yes No Possible No

Client adds more

computers

Client adds more

computers

Client buys larger or more

virtual servers

Client adds small increments

of computing power

Client provides

Client provides Host provides

Host provides Host provides Host provides

Available Available

Client manages computer

configuration

Client owns computer Yes Perhaps No No

Hosting service provides

building and infrastructure

Yes Yes Yes Yes

Service options Colocation Managed services Virtual servers Cloud computing

HOSTING OPTIONS

cloud computing an extension of virtual
servers in which the resources available include
computing, storage, and Internet access and
appear to have unlimited availability

Service Level Agreement (SLA) part
of the contract between a business and a
hosting company that guarantees a specific
level of system availability

176 PART 3 ■ Essentials of Systems Design

Diversity of Client Devices with Internet Deployment
Another critical issue with applications deployed for external use is the
extremely wide range of client devices. The problem is that the various devices
have different screen sizes, screen display characteristics, Internet browsers, and
operating environments. This issue is ameliorated somewhat by the fact that the
devices used to view Web pages usually provide some type of browser applica-
tion as part of their standard software. However, browsers on different devices
differ in their capabilities. Designing and implementing the user interface for
these browsers is always a challenge.

Client devices fall into three categories by size: full-sized computers, mid-
sized tablet computers, and small mobile computing devices.

The full-sized devices include desktop and laptop computers. These nor-
mally have full-sized 15-inch or 17-inch screens, although it isn’t uncommon to
see monitors with 24-inch or 28-inch screens. In addition, these full-sizes devices
offer levels of resolution that allow them to display a high level of detail.

The mid-sized tablet devices have more standard display sizes. Most have a
screen size of approximately 10 inches, although a few have a screen size of
12 inches. Most tablets can be viewed in either landscape or portrait mode,
which the Web designer may need to take into consideration. The resolution is
usually lower and less detail can be viewed on these smaller screens.

The number of mobile computing devices has grown enormously in recent
times. Not only are these devices viewable in landscape or portrait mode, but
there is also a much wider variation of screen size and resolution. Designing the
user interface is a big challenge if users are to receive the best possible viewing
experience. The small screen size puts a big limitation on the amount of detail
that can be presented, but this can be offset somewhat by the devices’ zooming
capabilities.

It isn’t uncommon to build two or three separate view layers so a software
application can be viewed on all three types of devices. In fact, most new
Internet software applications do have at least two separate view layers to
accommodate the disparity in these devices. In some cases, the difference
between the view layers is nothing more than the way the HTML is formatted.
In other cases, entirely different screens are presented by the various types of
devices.

Design for Remote, Distributed Environment
A remote, distributed environment has characteristics of the internal environ-
ment and the external, Web-based environment. As with internal configuration,
the software applications for a remote, distributed environment are often inter-
nal systems used by employees of a business. As with the external, Web-based
deployment, the employees aren’t constrained to a single location; in fact, they
can range throughout the world. Historically, many companies have built their
own WANs to service these employees. However, the expense of building and
maintaining these individual communication networks has become prohibitive
for most companies. Today, almost all these systems are built by using the
Internet and are called Virtual Private Networks (VPNs). A VPN is a network
built on top of a public network such as the Internet, which offers security and
controlled access for a private group.

Remote Deployment via Virtual Private Network
Earlier, we described an RMO buyer who is on the road and needs access to
a home office system. If the buyer just needs access to a few pages, a secure
TCP/IP connection with HTTPS is sufficient. However, if the buyer needs access
to other secure systems within the home office, a VPN might be a better solu-
tion. With a VPN, the buyer can access the home office servers as though he or
she were working within the home office building.

Virtual Private Networks (VPNs) a
closed network with security and closed access
built on top of a public network, such as the
Internet

CHAPTER 6 ■ Essentials of Design and the Design Activities 177

Figure 6-16 illustrates a VPN over the Internet using TCP/IP. As indicated
in the figure, there is a secure “pipe” between the remote computers and the
home office server. This indicates the presence of a VPN using Internet proto-
cols but with more security and control. In order to implement this type of
VPN, special software is used to establish a secure connection and to encrypt
all data transmissions. Only computers with the exact software and keys can
access the VPN network.

A variation of this configuration can occur when two remote computers
need to communicate directly with each other. They can use the home office
server to facilitate the connection between them, but after they are connected,
they can establish a peer-to-peer connection that continues the communica-
tion without any other assistance. A peer-to-peer connection is one that goes
directly between the remote computers and doesn’t require access to the home
computer. That configuration can be represented by a pipe directly between
the remote computers. The advantage of this configuration is that the speed of
the connection can handle high-volume transfers or immediate responses, which
is beneficial for, say, online chatting.

An alternative way for a buyer to implement remote access is to construct
an application that uses a Web-browser interface. The application executes on a
Web server, communicates with a Web browser using HTML, and is accessible
from any computer with an Internet connection. Buyers can use a Web browser
on their laptop computers and connect to the application via a local Internet
service provider. They can also access the application from any other computer
with Internet access (e.g., a computer in a vendor’s office, a hotel business suite,
or a copy center, such as FedEx Kinko’s).

An important aspect of all VPNs is that the communication links are always
encrypted to maintain security. Because the objective of a VPN is to allow
private communications between persons in the same organization, the commu-
nication is encrypted. VPN servers and software not only use the secure HTTP
protocol (HTTPS://), they include additional authorization, more secure encryp-
tion, and a higher level of transport monitoring.

Diversity of Client Devices
In the previous section, we discussed the difficulties of deploying software on a
wide range of devices. Software applications deployed remotely have even more
complex rendering requirements. Often, specialized equipment is needed to

Database
server

Application
server

VPN-enabled devices

VPN gateway/server

Tunnel (logical connection)

Internet

FIGURE 6-16
Virtual Private Network using TCP/IP

peer-to-peer connection when
independent computers communicate and share
resources without the need of a centralized
server computer

178 PART 3 ■ Essentials of Systems Design

deploy an application to remote employees—for example, when a courier
service transmits customer signatures back to the home office upon a package’s
delivery. Other types of monitoring devices have data capture and data commu-
nication requirements unique to a particular software application.

RMO Corporate Technology Architecture
RMO’s main offices consist of the corporate headquarters as well as a large
retail store, a manufacturing plant, and a large distribution warehouse in Park
City, Utah. Park City is where the company got its start and where it opened its
first retail store. Salt Lake City is, in many ways, the hub for RMO’s daily
operations. The primary data center is located in a separate building in Park
City. There are two distribution centers: one in Portland, Oregon, and the other
in Albuquerque, New Mexico. Additional manufacturing is done in Seattle,
Washington. The map shown in Figure 6-17 indicates where the 10 retail stores
are located.

Along with the major data center in Park City, RMO has internal LANs in
every office, warehouse, manufacturing plant, and retail store. In addition, the
distribution centers and manufacturing plants are all on a VPN that connects
these facilities to the central data center and to the corporate offices in Park
City. All the retail outlets are connected to the central site, with a separate
VPN that connects with the retail applications. Within each building, LANs are

Retail stores
Distribution warehouse centers
Manufacturing plants

Montana

Billings

Boise

Idaho

Wyoming

Denver

Colorado

Albuquerque

Salt
Lake City

Nevada

California

Reno

Sacramento

Oregon

Portland

Washington

Seattle

New Mexico

Arizona

Utah

Park City

FIGURE 6-17
Map showing RMO’s warehouses,
manufacturing plants, and retail stores

CHAPTER 6 ■ Essentials of Design and the Design Activities 179

configured to provide common connectivity. Figure 6-18 provides a network
diagram describing the current technology configuration.

Part of the new CSMS project will consist of assessing the feasibility of
hosting the new system with a large-capacity provider. Although none of the
alternatives have been eliminated, early analysis indicates that utilizing virtual
servers with managed services is the most favorable option. Hosting companies in
Utah and in California appeared to be the most attractive options. Further
analysis needs to be done, and project time is scheduled for more thorough inves-
tigation and site visits to the two or three most promising hosting companies.

Chapter Summary
Systems design is the process of organizing and structur-
ing the components of a system to allow the construction
(i.e., programming) of the new system. The design of a
new system consists of those activities that relate specifi-
cally to the design of the various new system components.
The components include the deployment environment,
the application architecture and software, the user inter-
faces, the system interfaces, the database, and the system
controls associated with system security.

The inputs to the design activities consist of the models
that were built during analysis. The outputs of the design
consist of a set of diagrams, or models, that describe the
architecture of the new system and the detailed logic within
various programming components.

Designing the application architecture can be subdi-
vided into architectural and detail design. Detail design
often refers to the design of the software programs.
Architectural design adapts the application to the

FIGURE 6-18 RMO’s current technology architecture

VPN gateway
to LAN

RMO customers
on PCs and MACs

Retail client
workstations with
Windows 7 and
MacOS

Distribution and
manufacturing
client workstations
with Windows 7
and MacOS

VPN gateway
to LAN

VPN gateway
for retail stores

Firewall
for customer
applications

VPN gateway
for warehouses and

manufacturing

High-capacity database
server cluster with Unix and
Oracle database

Application servers running
Windows server and IIS

Internet

High-speed LAN at
Park City data center

External credit
approval services

180 PART 3 ■ Essentials of Systems Design

deployment environment, including hardware, software,
and networks. Modern application software is usually
deployed in a distributed multicomputer environment and
is organized according to client/server architecture—
usually in a three-layer architecture.

In today’s widely connected computing environ-
ment, the design of the software application must
consider client computer characteristics and server

environments. Client computing environment options
range from simple desktop systems to tablet computers
to very small mobile devices. On the server side of
the design, there are many options—from in-house
equipment to colocation or cloud computing. The
specific requirements of the potential client equipment
and the server computers impact the final design and
the operation of the new system.

Key Terms

architectural design 158

business logic layer 170

client computer 168

client-server architecture 168

cloud computing 176

colocation 175

content delivery network (CDN) 174

data layer 170

detail design 158

domain layer 170

hosting 174

Hypertext Markup Language (HTML) 169

Hypertext Transfer Protocol Secure (HTTPS) 173

local area network (LAN) 168

network diagram 156

peer-to-peer connection 178

server computer 168

Service Level Agreement (SLA) 176

three-layer architecture 169

Transmission Control Protocol/
Internet Protocol (TCP/IP) 169

Transport Layer Security (TLS) 173

view layer 169

Virtual Private Networks (VPNs) 177

virtual server 175

Review Questions
1. What is the primary objective of systems design?

2. What is the difference between systems analysis and
systems design?

3. List the major elements that must be designed for a
new software application.

4. List the models that are used for systems analysis.

5. List the models that are used for systems design.

6. What is the difference between user-interface design
and system-interface design?

7. On a project that uses iterations to develop the
system, in which iteration does systems design
begin? Explain why.

8. What is the difference between architectural design
and detail design?

9. Designing the security and controls impacts the
design of which other elements?

10. Describe what is required for database design.

11. What is a LAN? When would it be used in
deploying a new system?

12. What is three-layer design?

13. Describe the contents of each layer in three-layer
design.

14. List the different types of client devices in a client/
server architecture.

15. What is the difference between HTTPS and HTTP?

16. In the use of software over the Internet, what are
the two main security issues that must be
considered?

17. Describe the primary factors that affect throughput
for Internet systems.

18. List five issues that are important when considering
an external hosting company.

19. What is the difference between cloud computing
and virtual servers?

20. Why do companies use colocation facilities?

21. Describe the issues to be considered when designing
for multiple clients.

22. What is a VPN? Why would a company use a VPN?

CHAPTER 6 ■ Essentials of Design and the Design Activities 181

Problems and Exercises
1. A financial corporation has desktop applications

running in several different offices that are all
supported by a centralized application bank of two
computers. In addition, there is a centralized
database, which requires three servers. Draw a
network diagram representing this requirement.

2. A sales organization has an Internet-based customer
support system that needs to support every type of
client device. The server configuration should be a
normal layered application server and database
server. Draw a network diagram representing this
requirement.

3. A medium-sized engineering firm has three separate
engineering offices. In each office, a local LAN
supports all the engineers in that office. Due to the
requirement for collaboration among the offices, all
the computers should be able to view and update
the data from any of the three offices. In other
words, the data storage server within each LAN
should be accessible to all computers, no matter
where they are located. Draw a network diagram
that will support this configuration.

4. A small start-up company has a Web-based
customer sales system that is written by using PHP
and JavaScript. The company is deciding whether to
host the system on its own servers, contract with a
hosting company for a virtual server, or go to
Amazon’s cloud. Volumes are expected to be low at

the beginning, and it is hard to predict a growth
pattern, although there is potential for rapid
growth. Decide which alternative the company
should choose. Defend your decision by giving
advantages and disadvantages of each solution
based on the characteristics of the start-up
company.

5. Describe the differences between HTTPS and a
VPN. What kinds of computing and networking
situations are better suited to HTTPS? What kind of
computing and networking situations are better
suited to VPN?

6. Find four separate hosting providers and compare
their offerings, including prices. Put your answer in
a table showing the results of your research.

7. Compare screen size, resolution, and other impor-
tant display characteristics of five popular Internet-
enabled smartphones. Which would you rate as the
best? Defend your answer.

8. Research the issues related to supporting a very
large database that must be distributed across
multiple servers. Write a list of the issues that
need to be addressed and the alternative solutions
for a distributed and partitioned database where
(a) all servers are colocated in the same data center
and (b) the servers are located in separate data
centers.

Case Study

County Sheriff Mobile System for Communications
(CSMSC)

Law enforcement agencies thrive on information. They
need it to respond to emergencies and to anticipate what
they will encounter when they arrive on the scene. In
previous eras, it was sufficient to receive information
through the police dispatch radio. Today, much more than
voice-based information is required. Officers often need to
check vehicle registrations, personal identities, outstanding
warrants, mug shots, maps, and the locations of other
officers.

One major difficulty with meeting this need for more
information is figuring out how to transmit the data to
remote and mobile locations. Local police agencies are
sometimes able to restrict their transmission needs to
within the city limits. However, county sheriffs and state
troopers often have to travel to remote locations that
aren’t within a metropolitan area’s boundaries.

Let us say a local county sheriff’s department has
received a grant to upgrade its existing communication
system and the system must satisfy certain requirements.
First, there must be complete coverage throughout the
county. This county includes metropolitan areas as well
as desert and mountains that are often outside normal
radio or wide-area Wi-Fi coverage. About 95 percent of
the county is within cell phone coverage, and 5 percent is
in uncovered mountainous areas.

Officers normally have access to customized laptops
in their vehicles. However, some officers are required to
patrol ATV trails and campgrounds. Those officers will still
need to be connected with a portable computing device.
Hence, another requirement is being able to use smaller
portable devices.

Your assignment: Recommend a communication and
network solution for the county sheriff’s department. It can
be any combination of Internet, VPN, Wi-Fi, telephone, and
satellite communication. The applications can be custom

182 PART 3 ■ Essentials of Systems Design

built, with device-specific or HTML-based user interfaces.
Although HTML tends to be more versatile, it has draw-
backs regarding security; display can also be an issue on
devices that don’t have browser support.

As always, the budget is tight, so your solution should
be as economical as possible. Develop a network diagram
that depicts your proposed solution. Also, explain your
solution and justify your design.

RUNNING CASE STUDIES

Community Board of Realtors

The Community Board of Realtors Multiple Listing
Service (MLS) will be a Web-based application with
extensions to allow wireless smartphone interaction
between the agents and their customers. Review the
functional and nonfunctional requirements you have
developed for previous chapters. Then, for each of

the six design activities discussed in this chapter, list
some specific tasks to design the environment, applica-
tion architecture and software, user interfaces, system
interfaces, database, and system controls and security.
You may want to refer back to the Tradeshow System
discussed in Chapter 1 for some design specifics.

The Spring Breaks ‘R’ Us Travel Service

Let us say that the SBRU information system includes
four subsystems: Resort relations, Student booking,
Accounting and finance, and Social networking. The
first three are purely Web applications, so access to
those will be through an Internet connection to a
Web server at the SBRU home office. The Social
networking subsystem has built-in chat capabilities. It
relies on Internet access for the students, as students
compare notes before they book their travel reserva-
tions and as they chat while traveling. To function
properly, the system obviously requires a wireless
network at each resort during the trip. SBRU isn’t
responsible for installing or maintaining the resort
wireless network; they only plan to provide some
design specifications and guidelines to each resort.

The resort will be responsible for connecting to the
Internet and for providing a secure wireless environ-
ment for the students.

1. Design the environment for the SBRU information
system by drawing a network diagram. Include
what might be necessary to support online
chatting capabilities.

2. Considering that everything is designed to operate
through the Internet with browsers or smart-
phones, how simple does this architecture appear
to be? Can you see why Web and smartphone
applications are so appealing?

3. What aspect of design becomes extremely impor-
tant to protect the integrity of the system?

On the Spot Courier Services

In previous chapters, we have described the technolog-
ical capabilities that Bill Wiley wants for servicing his
customers. One of the problems that Bill has is that his
company is very small, so he cannot afford to develop
any special-purpose equipment or even sophisticated
software.

Given this limitation, Bill’s request for advanced
technological capabilities is coming at an opportune
time. Equipment manufacturers are developing equip-
ment with advanced telecommunications capabilities.
And freelance software developers are producing

software applications—many of which provide the
capabilities that Bill needs.

The one caveat is that since this will be a live
production system, it needs to be reliable, stable,
error-free, dependable, and maintainable

Let us review some of the required capabilities of the
new system,whichhas beendescribed inprevious chapters:

Customers

■ Customers can request package pickup online via
the Internet.

(continued on page 184)

CHAPTER 6 ■ Essentials of Design and the Design Activities 183

■ Customers can check the status of packages online
via the Internet.

■ Customers can print mailing labels at their offices.

Drivers

■ Drivers can view their schedules via a portable
digital device while on their routes.

■ Drivers can update the status of packages while on
their routes.

■ Drivers can allow customers to “sign” for
packages that are delivered.

■ The system “knows” where the driver is on his
route and can send updates in real time.

■ Drivers can accept payments and record them on
the system.

Bill Wiley (management)

■ Bill can record package pickups from the
warehouse.

■ Bill can schedule delivery/pickup runs.
■ Bill can do accounting, billing, etc.

■ Bill can access the company network from his
home.

Given these requirements, do the following:

1. Make a list of the equipment that Bill should
purchase to support his new system. Include
all equipment that will be needed for the home
office, the drivers, and at Bill’s residence.
Identify and describe actual equipment that
can be purchased today. Estimate the cost of
the equipment.

2. Describe any special software that may be
needed. The software engineer is developing
the application software (package scheduling
and processing, accounting, etc.), but no
special software is required for connecting
the devices or communications between
them.

3. Develop a network diagram showing how all
the equipment will be connected. Identify
Internet connections, VPNs, and telephony
links as appropriate.

Sandia Medical Devices

As described in previous chapters, the Real-Time
Glucose Monitoring (RTGM) system will include
processing components on servers and on mobile
devices, such as smartphones, with data exchange via
3G and 4G phone networks. Users will include such
patient and health care personnel as physicians, nurses,
and physician assistants. In the United States, the
Health Insurance Portability and Accountability Act
of 1996 (HIPAA) mandates certain responsibilities
regarding the privacy and security of electronic
protected health information (ePHI). The law applies
to what are collectively called covered entities—that is,
health plans, health care clearinghouses, and any
health care providers who transmit health information
in electronic form. More information can be obtained
from the U.S. Department of Health & Human
Services Web site (www.hhs.gov).

In general, covered entities should:

■ Ensure the confidentiality, integrity, and avail-
ability of all ePHI they create, receive, maintain, or
transmit.

■ Identify and protect against reasonably anticipated
threats to the security or integrity of the
information.

■ Protect against reasonably anticipated, impermis-
sible uses or disclosures of the information.

■ Ensure compliance by their workforces.

Specifically, covered entities should implement
policies, procedures, and technologies that:

■ Specify the proper use of and access to worksta-
tions and electronic media.

■ Regard the transfer, removal, disposal, and reuse
of electronic media to ensure appropriate protec-
tion of ePHI.

■ Allow only authorized persons to access ePHI.
■ Record and examine access and other activity in

information systems that contain or use ePHI.
■ Ensure ePHI isn’t improperly altered or destroyed.
■ Guard against unauthorized access to ePHI that is

being transmitted over an electronic network.

Answer these questions in light of HIPPA
requirements:

1. Does HIPAA apply to the RTGM system?
Why or why not?

2. How should the system ensure data security
during transmission between a patient’s
mobile device(s) and servers?

(continued on page 185)

(continued from page 183)

184 PART 3 ■ Essentials of Systems Design

www.hhs.gov

3. Consider the data storage issues related to a
patient’s mobile device and the possible
ramifications if the device is lost or stolen.
What measures should be taken to protect the
data against unauthorized access?

4. Consider the issues related to health care
professionals accessing server data by using
workstations and mobile devices within a
health care facility. How will the system meet
its duty to record and examine access to ePHI?
If a health care professional uses a mobile

device outside a health care facility, what
protections must be applied to the device
and/or any data stored within it or transmitted
to it?

5. Consider the issues related to wired and
wireless data transmission between servers
and workstations within a health care
facility. What security duties, if any, apply to
transmissions containing ePHI? Does your
answer change if the servers are hosted by a
third-party provider?

Further Resources

Frederick P. Brooks, The Design of Design: Essays

from a Computer Scientist, Addison-Wesley,
2010.

Priscilla Oppenheimer, Top-Down Network Design

(3rd ed.), Cisco, 2010.

Doug Kaye, Strategies for Web Hosting and

Managed Services, Wiley, 2001.

(continued from page 184)

CHAPTER 6 ■ Essentials of Design and the Design Activities 185

This page intentionally left blank

7
Designing the User and
System Interfaces

Chapter Outline

■ User and System Interfaces

■ Understanding the User Interface

■ User-Interface Design Concepts

■ The Transition from Analysis to User-Interface Design

■ User-Interface Design

■ Identifying System Interfaces

■ Designing System Inputs

■ Designing System Outputs

Learning Object ives

After reading this chapter, you should be able to:

■ Describe the difference between user interfaces and system interfaces

■ Describe the historical development of the field of human-computer interaction (HCI)

■ Discuss how visibility and affordance affect usability

■ Describe user-interface guidelines that apply to all types of user-interface types
and additional guidelines specific to Web pages and mobile applications

■ Create storyboards to show the sequence of forms used in a dialog

■ Discuss examples of system interfaces found in information systems

■ Define system inputs and outputs based on the requirements of the application
program

■ Design printed and on-screen reports appropriate for recipients

187

OPENING CASE

Interface Design at Aviation Electronics

Bob Crain was admiring the user interface for the
manufacturing support system that was recently installed
at Aviation Electronics (AE). Bob is the plant manager for
AE’s Midwest manufacturing facility, which produces avia-
tion devices used in commercial aircraft. These aviation
devices provide guidance and control functions for flight
crews, and they provide the latest safety and security fea-
tures that pilots need when flying commercial aircraft.

The manufacturing support system is used for all
facets of the manufacturing process, including product
planning, purchasing, parts inventory, quality control, fin-
ished goods inventory, and distribution. Bob was exten-
sively involved in the development of the system for
several years, including the initial planning and develop-
ment. The system reflected almost everything he knew
about manufacturing. The information systems team that
developed the system relied extensively on Bob’s exper-
tise. That was the easy part for Bob.

What particularly pleased Bob was the final user inter-
face. He had insisted that the development team consider
the entire user experience from the very beginning. He
didn’t want just another cookie-cutter transaction processing
system. He wanted a system that acted as a partner in the
manufacturing process—much the way that AE’s guidance
and control system interfaces acted as a pilot’s partner.

The first manager assigned to the project placed a low
priority on user-interface design. When Bob asked why user-
interface design wasn’t a key focus of early iterations, the
manager replied, “We’ll add the user interface later, after
we work out the accounting controls.” When Bob insisted
that the project manager be replaced, the information sys-
tems department sent Sara Robinson to lead the project.

Sara had a completely different attitude; she started
out by asking about events that affect the manufacturing
process and about cases in which users needed support
from the system. Although she had a team of analysts
working on the accounting transaction details from the
beginning, she always focused on how the user would
interact with the system. Bob and Sara conducted meet-
ings to involve users in discussions about how they might
use the system, even asking users to act out the roles of
the user and the system in carrying on a conversation.

At other meetings, Sara presented sketches of screens
and asked users to draw on them to indicate the information
they wanted to see and options they wanted to be able to
select. These sessions producedmany ideas. For example, it
appeared that many users didn’t sit at their desks all day;
they needed larger and more graphic displays they could
see from across the room. Many users needed to refer to
several displays, and they needed to be able to read them
simultaneously. Several functions were best performed by
using graphical simulations of the manufacturing process.
Users made sketches showing how the manufacturing pro-
cess actually worked, and the team used these sketches to
define much of the interface. Sara and her team kept coming
back every month or sowith more examples to show, asking
for more suggestions.

When the system was finally completed and installed,
most users already knew how to use it because they had
been so involved in its design. Bob knew everything the
system could do, but he had his own uses for it. He sat
at his desk and clicked the Review Ongoing Processes
button on the screen, and the manufacturing support sys-
tem gave him his morning briefing.

Overview
Information systems interact with people and with other systems. Because few
systems operate autonomously or in isolation, designing the interfaces (inputs
and outputs) between a system and its users and environment is an important
system development task. Poorly designed interfaces with people can result in
a system that operates less than optimally or doesn’t fulfill its purpose. For
example, a human resources system that has a poorly designed user interface
may reduce organizational efficiency and be a source of data entry errors. A
customer-facing system with a poorly designed user interface might motivate
customers to take their business elsewhere. As with user-oriented interfaces,
poorly designed interfaces to other automated systems can be a source of errors
or inefficiency. Thus, the design of a system’s interfaces is an important part of
a system development project.

Inputs and outputs of the system are an early concern of any system
development project. The project plan lists key inputs and outputs that the
analyst identified when defining the scope of the system. During the analysis
phase, analysts will have discussed inputs and outputs early and often with

188 PART 3 ■ Essentials of Systems Design

system stakeholders to identify users and actors that affect the system and
that depend on the information it produces. Requirements models produced
during analysis also emphasize inputs and outputs. For example, use case
descriptions define inputs and outputs that occur during a use case. The
inputs and outputs are further defined as messages and returns in system
sequence diagrams (SSDs).

User and System Interfaces
A key step in systems design is to classify the inputs and outputs for each event
as either a system interface or a user interface. System interfaces are inputs
and outputs that require minimal human intervention. They might be inputs
captured automatically by such special input devices as scanners, electronic mes-
sages to or from another system, or transactions captured by another system.
Many outputs are considered system interfaces if they primarily send messages
or information to other systems (e.g., a pickup notification to a shipping com-
pany) or if they produce reports, statements, or documents for external agents
or actors without much human intervention (e.g., end-of-month credit card
statements e-mailed to cardholders).

User interfaces are inputs and outputs that more directly involve a system
user. User interfaces can be for internal or external users. Their design varies
widely depending on such factors as interface purpose, user characteristics, and
characteristics of a specific interface device. For example, although all user inter-
faces should be designed for maximal ease of use, other considerations, such as
operational efficiency, may be important for internal users who can be trained to
use a specific interface optimized for a specific hardware device (e.g., a keyboard,
a mouse, and a large high-resolution display). In contrast, a quite different user
interface might be designed for a customer-facing system that assumes a cell
phone as the input/output device.

In most system development projects, analysts separate the design of system
interfaces from the design of user interfaces because the each requires its own
expertise and technology. But as with the design of any system component, con-
siderable coordination is required.

Understanding the User Interface
Many people think the user interface is developed and added to the system near
the end of the development process, but the user interface is much more impor-
tant than that. It is everything that the end user comes in contact with while
using the system—physically, perceptually, and conceptually (see Figure 7-1).

From a user perspective, the user interface is the entire system. The pro-
grams, scripts, databases, and hardware behind the interface are irrelevant.
Design techniques that embody this view of user interfaces are collectively called
user-centered design, which emphasizes three important principles:

■ Focus early on the users and their work.
■ Evaluate designs to ensure usability.
■ Use iterative development.

The early focus on users and their work is consistent with the approach to
systems analysis in this text. User-oriented analysis and design tasks are per-
formed as early as possible and are often given higher priority than other tasks.
For example, such user-oriented analysis tasks as stakeholder identification and
interviews occur early in the project. User interfaces are designed in early itera-
tions, and user-related design decisions drive other design decisions and tasks.

The early focus on users and their work goes beyond issues of task ordering
and priority. It embodies an all-encompassing attempt to understand users and
answer such questions as: What do they know? How do they learn? How do

system interfaces inputs or outputs that
require minimal human intervention

user interfaces system interfaces that
directly involve a system user

user-centered design design
techniques that embody the view that the
user interface is the entire system

CHAPTER 7 ■ Designing the User and System Interfaces 189

they prefer to work? What motivates them? The extent of user-oriented focus
does vary with the type of system being developed. For example, if the system
is a shrink-wrapped desktop application marketed directly to end users, the
focus on users and their preferences is intense.

The second principle of user-centered design is to evaluate designs to ensure
usability. Usability refers to the degree to which a system is easy to learn and
use. Ensuring usability isn’t easy; there are many different types of users with
different preferences and skills. Features that are easy for one person to use
might be difficult for another. If the system has a variety of end users, how can
the designer be sure that the interface will work well for all of them? For exam-
ple, if it is too flexible, some end users might feel lost. On the other hand, if the
interface is too rigid, some users will be frustrated.

Ease of learning and ease of use are often in conflict. For example, menu-
based applications with multiple forms, many dialog boxes, and extensive
prompts and instructions are easy to learn; indeed, they are self-explanatory.
And easy-to-learn interfaces are appropriate for systems that end users use infre-
quently. But if internal users use the system all day, it is important to make the
interface fast and flexible, with shortcuts, hot keys, voice commands, and
information-intensive screens. This second interface might be harder to learn,
but it will be easier to use after it is learned. Internal users (with the support of
their managers) are willing to invest more time learning the system in order to
become efficient users.

Developers employ many techniques to evaluate interface designs to ensure
usability. User-centered design requires testing all aspects of the user interface.
Some usability testing techniques collect objective data that can be statistically
analyzed to compare designs. Some techniques collect subjective data about
user perceptions and attitudes. To assess user attitudes, developers conduct for-
mal surveys, focus group meetings, design walk-throughs, paper-and-pencil
evaluations, expert evaluations, formal laboratory experiments, and informal
observation.

The third principle of user-centered design is iterative development—that is,
doing some analysis, then some design, then some implementation, and then
repeating the processes. After each iteration, the project team evaluates the work
on the system to date. Iterative development keeps the focus on the user by

FIGURE 7-1
User-centered design

usability degree to which a system is easy
to learn and use

190 PART 3 ■ Essentials of Systems Design

continually returning to the user requirements during each iteration and by evalu-
ating the system after each iteration. As with the principle of early focus on users
and their work, this principle is reflected throughout this textbook in its approach
to system development in general and analysis and design tasks in particular.

Metaphors for Human-Computer Interaction
Widespread use of visually oriented user interfaces debuted in the mass market
with the Apple Macintosh in the 1980s and became widespread with various
versions of Microsoft Windows in the 1990s. To make computers easier to use
and learn, designers of early visually oriented interfaces adopted metaphors,
which are analogies between features of the user interface and aspects of physi-
cal reality that users are familiar with. Metaphors are still widely applied to
user-interface design, as described in Table 7-1.

Figure 7-2 is a screen capture of a computer running Windows that illus-
trates the direct manipulation, desktop, and document metaphors. The
entire display is visually similar to the surface of a physical desktop. Icons and
pictures for commonly used tools are located on the left and right sides. The
icons can be directly manipulated with a mouse or another pointing device.
The windows in the center frame are documents that are visually similar to
paper pages laid on the surface of a desk, with a sticky note attached to one
of the pages.

The direct manipulation, desktop, and document metaphors emphasize dis-
played objects with which the user interacts. The dialog metaphor emphasizes
the communication that occurs between a user and a computer, conceptualized
as a conversation. In a conversation or dialog between two people, each person
listens and responds to questions and comments from the other person, with the
information being exchanged in a sequence. The dialog metaphor is another way
of thinking about human-computer interaction because the computer “listens to”
and “responds” to user questions or comments, and the user “listens to” and
“responds” to the computer’s questions and comments. Figure 7-3 illustrates a
conceptual dialog between user and computer.

TABLE 7-1 Commonly used metaphors for user-interface design

Metaphor Description Example

Direct
manipulation

Manipulating objects on a display that look
like physical objects (pictures) or that repre-
sent them (icons)

The user drags a folder icon to an image of a
recycle bin or trash can to delete a collection of
files.

Desktop Organizing visual display into distinct regions,
with a large empty workspace in the middle
and a collection of tool icons around the
perimeter

At computer startup, a Windows user sees a
desktop, with icons for a clock, calendar,
notepad, inbox and sticky notes (the computer
interface version of a physical Post-It note).

Document Visually representing the data in files as paper
pages or forms. These pages can be linked
together by references (hyperlinks)

The user fills in a form field for a product he or
she owns, and the manufacturer’s Web site
finds and displays the product’s manual as an
Adobe Acrobat file, which contains a hyper-
linked table of contents and embedded links to
related documents.

Dialog The user and computer accomplishing a task
by engaging in a conversation or dialog by
using text, voice, or tools, such as labeled
buttons

The user clicks a button labeled “troubleshoot”
because the printer isn’t working. The com-
puter prints questions on the display, and the
user responds by typing answers or selecting
responses from a printed list.

metaphors analogies between features of
the user interface and aspects of physical
reality that users are familiar with

direct manipulation metaphor
metaphor in which objects on a display are
manipulated to look like physical objects
(pictures) or graphic symbols that represent
them (icons)

desktop metaphor metaphor in which
the visual display is organized into distinct
regions, with a large empty workspace in the
middle and a collection of tool icons around the
perimeter

document metaphor metaphor in
which data is visually represented as paper
pages or forms

dialog metaphor metaphor in which
user and computer accomplish a task by
engaging in a conversation or dialog via text,
voice, or tools such as labeled buttons

CHAPTER 7 ■ Designing the User and System Interfaces 191

The dialog metaphor can be implemented in various ways in user interfaces.
A direct approach uses speech generation and recognition over a voice commu-
nication channel, as commonly encountered when calling the customer support
number of a large company. A computerized voice asks a series of questions, lis-
tens for the answer to each question, and responds to the answers. Another
implementation of the dialog metaphor uses questions or instructions displayed
by a user through text and responses as well as counter-questions displayed by
the computer through text. To minimize the need for user typing, responses to
computer questions might be limited to a specific set of possibilities displayed to
the user in the form of a list from which the user selects the most appropriate
response with a mouse click or by touching a display surface.

Regardless of the specific form of implementation, specifying dialogs between
user and computer is one of the more powerful tools used by user-interface
designers. Although written and spoken languages vary across the globe, conversa-
tion and dialog are fundamental and universal human skills. Modeling the

FIGURE 7-3
The dialog metaphor for user-computer
interaction

FIGURE 7-2 The direct manipulation, desktop, and document metaphors on a typical computer display

192 PART 3 ■ Essentials of Systems Design

interaction between user and computer as a dialog enables the user to incorporate
language and related skills that have been honed from an early age.

User-Interface Design Concepts
Many IT researchers and practitioners have published articles, books, and Web
sites that offer guidance in user-interface design. Although some guidelines have
changed as user-interface technology has changed, many guidelines are univer-
sal, having been around for many decades and technology generations. We
review some of these universal guidelines in this section and then move on to
user-interface development, with specific guidelines for specific interface types,
later in this chapter.

Affordance and Visibility
Donald Norman is a leading researcher in human-computer interaction (HCI),
a field of study concerned with the efficiency and effectiveness of user interfaces
to computer systems, human-oriented input and output technology, and psycho-
logical aspects of user interfaces. Norman proposes two key principles to ensure
good interaction between a person and a machine: affordance and visibility. Both
principles apply to user-interface controls, which are elements of a user interface
that a user manipulates to perform tasks. Examples of controls include menus,
buttons, pull-down lists, sliders, and text entry boxes.

Affordance means that the appearance of a specific control suggests its
function—that is, the purpose for which the control is used. For example, a con-
trol that looks like a steering wheel suggests that it is used for turning.
Affordance can also be achieved by a user-interface control that the user is
familiar with in another context. For example, the media player control icons
shown in Figure 7-4 were first widely used on audiotape and videotape players
in the 1970s and have continued to be used in such devices as DVD and portable
music players. They are widely incorporated into computer interfaces because so
many users are familiar with them.

Visibility means that a control is visible so users know it is available; it also
means that the control provides immediate feedback to indicate that it is respond-
ing. For example, the mute button shown in Figure 7-4(a) changes its appearance
when the user moves the mouse pointer over it, as shown in Figure 7-4(b). When
the user presses the button, it changes its appearance, as shown in Figure 7-4(c).

Visibility and affordance are relatively easy to achieve when the design tar-
get is a commonly used platform, such as an iPad, a cell phone running the
Android operating system, or a PC running Windows. Such platforms have
well-defined user-interface design guidelines and a library of user-interface fea-
tures and functions that can be reused by application software. When a designer
incorporates user-interface objects and styles from these libraries, he or she is
tapping into users’ experience with similar user interfaces from other applica-
tions on those platforms.

Web user-interface design is less standardized because Web browsers are
intentionally platform-neutral. Designers can choose from a wide variety of user-

(a)

(b)

(c)

FIGURE 7-4 a-c
Visibility and affordance in media player
controls

human-computer interaction (HCI)
field of study concerned with the efficiency and
effectiveness of user interfaces vis-à-vis com-
puter systems, human-oriented input and output
technology, and psychological aspects of user
interfaces

affordance when the appearance of a
specific control suggests its function

visibility when a control is visible so that
users know it is available, the control providing
immediate feedback to indicate that it is
responding to the user

CHAPTER 7 ■ Designing the User and System Interfaces 193

interface libraries, each with its own user-interface objects and styles. Attention to
visibility and affordance is especially important in Web interface design because
there are no real standards that provide a preexisting framework of user familiarity.

Consistency
User interfaces should be designed for consistency in function and appearance.
The way that information is arranged on forms, the names and arrangement of
menu items, the size and shape of icons, and the sequence followed to carry out
tasks should be consistent throughout the system. Why? People are creatures of
habit. After we learn one way of doing things, it is difficult to change. When
we operate a computer application, many of our actions become automatic; we
don’t think about what we are doing.

Figure 7-5 shows the display of Microsoft Word, which illustrates many
aspects of consistency among applications that run under Windows and across the
various components of the Microsoft Office suite. Icons that appear in the upper-
left and upper-right corners of the window frame are standardized across many
Windows applications; thus, users know where to look for them and what their
functions are at a glance. Similarly, the scrollbar on the right and the zoom in/out
slider and resize handles in the lower-right corner are standard across many
Windows applications. The top menus and toolbars are similar across Word,
PowerPoint, Publisher, and other programs within Microsoft Office. An experi-
enced user of one program learns others more quickly due to these similarities.

Shortcuts
User interfaces and dialogs designed for novices are often an annoyance and
impediment to experienced users’ productivity. Users who work with an applica-
tion repeatedly or for long time periods want shortcuts for frequently used func-
tions, which minimize the number of keystrokes, mouse clicks, and menu
selections required to complete tasks. Examples include voice commands as well
as shortcut keys, such as Windows keyboard sequences Ctrl+C for copy and
Ctrl+V for paste. Application designers should use standard shortcuts when
available or build their own.

FIGURE 7-5 Microsoft Word interface features used in various Windows applications

194 PART 3 ■ Essentials of Systems Design

Feedback
Every action a user takes should result in some type of feedback from the com-
puter so the user knows the action was recognized. Feedback can take many
forms in a user interface, including:

■ Audible feedback, such as clicking sounds when keys are pressed and beeps
when on-screen buttons are pressed

■ Visible feedback, such as the icon changes shown in Figures 7-4(b) and 7-4(c),
or the progress meter shown during the download of a large file

Feedback provides the user with a sense of confirmation and the feeling that
a system is responsive and functioning correctly. Lack of feedback leaves the
user wondering whether a command or input was recognized or whether the
system is malfunctioning. When subsequent processing is delayed by more than
a second or two, users may repeatedly press controls or reenter information,
resulting in processing errors and user frustration.

Dialogs That Yield Closure
Each dialog should be organized with a clear sequence—a beginning, middle,
and end. Any well-defined task has a beginning, middle, and end, so users’
tasks on the computer should also feel this way. The user can get lost if it is
not clear when a task starts and ends. In addition, users often focus intently on
tasks, so when it is confirmed that a task is complete, the user can clear his or
her mind and get ready to focus on the next task.

If the system requirements are defined initially as events to which the system
responds, each event leads to the processing of one specific, well-defined activ-
ity. Each use case can be defined as one or more dialogs, each with a flow of
steps and well-defined interactions. Event decomposition sets the stage for dia-
logs with closure.

Error Handling
User errors are a waste of the time to commit and to correct them. A good user-
interface design anticipates common errors and helps the user to avoid them.
One way to do this is to limit available options, presenting the user with only
valid options for a specific point in a dialog. Adequate feedback, as discussed
previously, also helps reduce errors.

When errors do occur, the user interface needs mechanisms to detect then.
Validation techniques discussed later in this chapter are useful for catching
errors, but the system must also help the user correct the error. When the sys-
tem does find an error, the error message should state specifically what is
wrong and explain how to correct it. Consider this error message that occurs
after a user has typed in a full screen of information about a new customer:

The customer information entered is not valid. Try again.

This message doesn’t explain what is wrong or what to do next.
Furthermore, after this message appears, what if the system cleared the data-entry
form and redisplayed it? The user would have to reenter everything previously
typed but still have no idea what is wrong. The error message didn’t explain it,
and now that the typed data has been cleared, the user cannot tell what might
have been wrong. A better error message would read more like this:

The date of birth entered is not valid. Check to be sure only numeric
characters in appropriate ranges are entered in the Date of Birth field.

The system also should streamline corrective actions. For example, if the
user enters an invalid customer ID, the system should tell the user that this has
occurred and then place the insertion point in the customer ID text box, with
the previously typed number displayed and ready to edit. That way, the user

CHAPTER 7 ■ Designing the User and System Interfaces 195

can see the mistake and edit it rather than having to retype the entire ID. The
system might also suggest valid values based on past experience or other infor-
mation that the user has already entered.

Easy Reversal of Actions
Users need to feel that they can explore options and take actions that can be
cancelled or reversed without difficulty. This is one way that users learn about
the system—that is, by experimenting. It is also a way to prevent errors; as users
recognize they have made a mistake, they cancel the action. In the game of check-
ers, a move isn’t final until the player takes his or her fingers off the game piece;
it should be the same when a user drags an object on the screen. In addition,
designers should be sure to include cancel buttons on all dialog boxes and allow
users to go back a step at any time. Finally, when the user deletes something
substantial—a file, a record, or a transaction—the system should ask the user to
confirm the action and, where possible, delay implementing the action.

A key issue in permitting action reversal is structuring dialogs and corre-
sponding system actions. Novice designers and programmers often assume that
user dialog structure and the sequence of corresponding system actions must
precisely correspond. For example, a complex transaction may require several
discrete steps, each of which accepts data from the user and some of which
modify data stored by the system. Although the user dialog should reflect this
structure, internal programming doesn’t always have to process data as it is
received. Instead, it might collect the data as the dialog proceeds and build an
internal “to do” list. When the user completes the final step in the dialog, the
system can then complete processing for the entire dialog at once. If the user
decides near the end of the dialog to cancel the entire sequence, there are no
internal changes to undo. Also, user-interface performance may be improved
because there are fewer potential processing delays between steps.

Reducing Short-Term Memory Load
People have many limitations, and short-term memory is one of the biggest.
Psychologists have demonstrated that people can remember only about seven
chunks of information at a time. User-interface designers should avoid requiring
the user to remember anything from one form to another or from one dialog box
to another during an interaction with the system. If the user has to stop and ask
“What was the filename? The customer ID? The product description?” then the
design is placing too much of a burden on the user’s memory. Memory limita-
tions also apply to steps in a complex process. The interface should help users
keep track of where they are in a complex process via visual cues and other aids.

The Transition from Analysis to
User-Interface Design
The foundation for user-interface design is laid when use cases are identified and
documented, as described in Chapter 3. Use cases that require direct user inter-
action (i.e., interactive use cases) are the starting point for a dialog, and the cor-
responding use case, activity, and system sequence diagrams are the initial
dialog documentation. Interactive use cases may require the user to input
choices and data into the system (such as when making an online order) or may
generate outputs in response to a user request (such as when tracking a ship-
ment). During design, dialogs for interactive use cases are further refined by
developing menus, forms, and other user-interface elements.

Dialog and user-interface design can proceed in either a top-down or
bottom-up fashion. In the top-down approach, menus (groups of related use
cases, dialogs, and user interfaces) are defined first, followed by a detailed
description of each interactive use case dialog and development of the related

196 PART 3 ■ Essentials of Systems Design

user-interface elements. In the bottom-up approach, interactive use cases are pri-
oritized, and related dialogs and user interfaces are developed one at a time.
Menus are added later in the project when related sets of fully implemented
user interfaces are completed. Neither approach is inherently better; either or
both can be a good match for a specific project.

Use Cases and the Menu Hierarchy
Menus are a way of grouping large numbers of related use cases or dialogs within
a user interface. In all but the smallest systems, menus are needed to present the
user with a tractable number of choices per screen, to group related functions
together so users can more easily locate them, and to properly sequence related
interfaces for a complex event decomposition. Figure 7-6 shows two different
menu styles. In Figure 7-6(a), the mouse pointer is positioned over the Shop item
of the upper menu in a Web page. Clicking Shop would display a second Web
page containing another menu. Figure 7-6(b) shows a more complex menu
design, with three menu levels displayed.

How does a designer decide which use cases and user interfaces to include
in which menus, which menus are required, and how many menu levels are
required? These decisions are primarily driven by the number of uses cases or
menu choices and the limits of human cognition. Menus usually contain five
to 10 choices in order to avoid overloading the user (see Figure 7-6(a)). With
careful design, more choices can be provided, especially for experienced users
(see Figure 7-6(b)). For a typical business system, dividing the total number of
interactive use cases by five provides an initial estimate of the number of
menus that include all interactive use cases and allows for additional menu
items, such as setting options or preferences. If the number of menus is greater
than 10, higher-level menus that contain links to other menus are required.
For example, in Figure 7-6(b), the upper menu options, such as File, Home,
and Review, each link to a second-level menu formatted as a toolbar. Some
choices within the toolbar are links to lower-level menus, such as the displayed
Show Markup menu.

FIGURE 7-6 Two different menu styles

(a)

(b)

CHAPTER 7 ■ Designing the User and System Interfaces 197

Use cases with common actors and event decomposition or that implement
CRUD actions for a specific domain class are good candidates to be grouped
into a single menu or related group of menus. For example, consider the RMO
CSMS use cases shown in Table 7-2. An initial grouping of these cases by actor
and subsystem is a good starting point for menu design.

Table 7-3 shows a grouping of the use cases in Table 7-2 into four menus.
Each menu collects uses cases from one subsystem for a customer or internal
sales representative. The number of menu choices ranges from four to seven,
which won’t overload any one menu and may enable multiple menu levels to
displayed at one time. A dialog design is created for each menu option. After
dialog design proceeds, the designer may redefine the menu options or structure.
In fact, designers often discover missing or incomplete use cases during user-
interface design, which results in a brief return to analysis activities to complete
the documentation.

Menus usually include options that are not activities or use cases from the event
list. Many options are related to the system controls, such as account maintenance
or database backup and recovery, which are discussed later in this chapter. Other
added items include help links as well as links to other menus or subsystems.

TABLE 7-2 RMO use cases grouped by actor and subsystem

Subsystem Use Case Users/Actors

Sales Search for item Customer, customer service representative,
store sales representative

Sales View product comments and ratings Customer, customer service representative,
store sales representative

Sales View accessory combinations Customer, customer service representative,
store sales representative

Sales Fill shopping cart Customer

Sales Empty shopping cart Customer

Sales Check out shopping cart Customer

Sales Fill reserve cart Customer

Sales Empty reserve cart Customer

Sales Convert reserve cart Customer

Sales Create phone sale Customer service representative

Sales Create store sale Store sales representative

Order fulfillment Ship items Shipping

Order fulfillment Manage shippers Shipping

Order fulfillment Create backorder Shipping

Order fulfillment Create item return Shipping, customer

Order fulfillment Look up order status Shipping, customer, management

Order fulfillment Track shipment Shipping, customer, marketing

Order fulfillment Rate and comment on product Customer

Order fulfillment Provide suggestion Customer

198 PART 3 ■ Essentials of Systems Design

Dialogs and Storyboards
After identifying all required dialogs, the designers must document the dialogs.
Many options exist; there are no de facto standards. One approach is to list the
key steps followed for the dialog with a written description of what the user and
computer do at each step. The format for writing these steps can follow the
activity diagram described in Chapter 2 or the use case description format in
Chapter 4 or it can be more free form.

Designers can also document dialog designs by writing out how the user
and system might interact if they were two people engaged in conversation.
Sometimes, the designer can go right from the dialog to sketching a series of
screens that make the design more visible. Consider the Check out shopping
cart use case for the RMO CSMS. A dialog between the system and user might
follow this pattern:

SYSTEM: What would you like to do?

USER: I’d like to check out.

SYSTEM: Okay. What is your e-mail address or account number?

USER: My e-mail address is nwells22@gmail.com.

SYSTEM: Fine. You are Nancy Wells at 1122 Silicon Avenue. Correct?

USER: Yes.

SYSTEM: All items in your cart are in stock and can be shipped today.
Because your order subtotal is over $100, you qualify for free
UPS ground shipping (3–5 days). Other shipping options
include next day ($35.00), two day ($20.00), and USPS parcel
post ($11.70, 5–7 days). How would you like your items to be
shipped?

TABLE 7-3 RMO CSMS use cases grouped into first-cut menus by similar function and user

Menu Description Menu Choices (Use Cases) Intended User(s)

Shopping cart functions
(primary or reserve)

■ Search for item
■ View product comments and ratings
■ View accessory combinations
■ Switch carts (primary to reserve or vice versa)
■ Fill shopping cart
■ Empty shopping cart
■ Check out shopping cart

Customer

Sale creation ■ Search for item
■ View product comments and ratings
■ View accessory combinations
■ Create sale

Customer service and store sales
representatives

Order shipment ■ Ship items
■ Manage shippers
■ Create backorder
■ Create item return
■ Look up order status
■ Track shipment

Customer service and store sales
representatives

Customer order control ■ Look up order status
■ Track shipment
■ Create item return
■ Rate and comment on product
■ Provide suggestion

Customer

CHAPTER 7 ■ Designing the User and System Interfaces 199

USER: Free UPS ground shipping.

SYSTEM: We have a shipping address on file for you (1122 Silicon
Avenue). Do you want your order shipped to that address?

USER: No.

SYSTEM: To what address would you like the order shipped?

USER: John Wells, 1612 Jefferson Street NE, Albuquerque, NM 87123.

SYSTEM: Okay, the total charge is $125.56 ($117.90 item subtotal plus
$7.66 sales tax). Shall I charge that amount to your credit card
on file (a Visa with an account number ending in 0899)?

USER: Yes.

SYSTEM: Your payment has been approved, and your order is being
prepared for shipment. A confirmation e-mail has been sent to
you, and another will be sent with a shipment tracking number
when the order is shipped later today. Can I help you with
anything else?

USER: No.

There are many possible implementations of this scenario. Before decid-
ing on a specific implementation, an analyst often uses a technique called
storyboarding—that is, showing a sequence of sketches of the display screen
during a dialog. The sketches don’t have to be very detailed to show the basic
design concept. Designers can implement a storyboard with a visual programming
tool, such as Visual Basic, but using simple sketches drawn with a graphics pack-
age can help keep the focus on the fundamental design ideas and avoid biasing the
design to the capabilities of one specific application development tool.

Figure 7-7 shows the storyboard for the dialog based on the Check out
shopping cart use case. The screen formats are primitive though sufficiently
detailed to show all the information presented to and entered by the user. The
storyboard can be reviewed by users and designers to identify missing or extra-
neous information and to discuss various options for final implementation,
which might be based on a Web page shown on a large display, a traditional
Windows dialog, or the user interface for a mobile device app.

User-Interface Design
As computing devices have proliferated, available devices and technologies for
user interfaces have grown more powerful and diverse. Displays range from
large-format, flat-panel monitors used with desktop computers to much smaller
displays on tablets and cell phones. Displays can be supplemented with such
simple sounds as clicks and beeps, music, or speech. User input can be captured
via speech, touch screen, keyboard and mouse, or digital imaging (scanning).

As the range of user-interface technologies has increased, so has the need to
create multiple user interfaces. For example, e-commerce applications typically
have one user interface for desktop and laptop computers with large displays,
another for cell phones with small displays, and sometimes a third for midsized
displays, such as an iPad’s. There may even be variations in the user interface
among similar devices. For example, a user interface intended for a cell phone
might be a generic version designed to run within the phone’s Web browser or
it might be a customized app with different versions for iPhones and Android-
based phones.

Despite user interfaces’ wide range of sizes and capabilities, some of their
features are used on nearly all computing devices. We begin with a discussion
of the common features and then delve into differences.

storyboarding sequence of sketches of
the display screen during a dialog

200 PART 3 ■ Essentials of Systems Design

Guidelines for Designing Windows and Forms
After identifying dialogs, menus, and forms with a storyboard or another tech-
nique, the system developer can construct the user interface by using one of the
many prototyping tools available. Major issues to consider at this stage of inter-
face design include interface layout and formatting, data keying and entry, and
navigation controls.

Interface Layout and Formatting
High-quality interfaces are well laid out, with the fields easily identified and
understood. One of the best methods to ensure that interfaces are well laid out
is to prototype various alternatives and let users test them. Users will let you
know which characteristics are helpful and which are distracting. As you design
your interfaces, you should think about these:

■ Consistency—All the forms within a system need to have the same look and
feel. Consistent use of function keys, shortcuts, control buttons, color, and
layout makes a system much more useful and professional looking. If

FIGURE 7-7
Storyboard for the Check out shopping
cart dialog

CHAPTER 7 ■ Designing the User and System Interfaces 201

designing for an OS-supported interface (for example, Windows, iPhone, or
Android), follow published guidelines to improve app and form consistency.

■ Labels and headings—Labels should also be easy to identify and read. A
clear, descriptive title at the top of the interface helps to minimize confusion
about a form’s use.

■ Distribution and order—Related fields are usually placed next to each other
and can be grouped within a box. Tab order (movement of the cursor or
input focus) should follow the users’ usual reading order (left to right and
top to bottom in the United States and Europe). Blank space should be used
so content is easy to distinguish and read.

■ Fonts and colors—Variations in font face and size can help users distinguish
different parts of the form, but only a handful of font and size variations should
be used for larger screens and as few as possible should be used for small
screens. Too much variation is visually distracting and can cause eyestrain.
Follow similar guidelines for colors. Avoid using too many colors and ensure
that they are complementary. Also, be careful about mixing blue with yellow or
mixing red with green, lest you make it difficult for color-blind users.

Figure 7-8 shows the home page displayed when a customer views the
RMO Web site. The form includes two menu bars near the top that group
related functions within the same part of the page. If the user points to the item
Shop for Clothing, a submenu is displayed immediately below it with a similar
color scheme and font. If the user points to the item Shop for Gear, Shop for
Clothing is displayed in black text against a white background, Shop for Gear
is displayed in white text with a blue background, and the latter’s submenu
items are displayed instead. Labels for the menu items are widely spaced and
use an easy-to-read font. Except for the logo and picture, the page uses a small
number of complementary colors. The title is positioned near the top of the pic-
ture and stands out well from the picture background and other page elements.

Data Entry
Several types of data-entry controls are widely used in user interfaces, including:

■ Text box—a rectangular box that accepts text typed on a keyboard or
recognized from speech input. Example: Product ID in Figure 7-9.

■ List box—a text box that contains a list of predefined data values.
Example: Size in Figure 7-9.

FIGURE 7-8
The RMO home page

text box a rectangular box that accepts
text typed on a keyboard or recognized from
speech input

list box a text box that contains a list of
predefined data values

202 PART 3 ■ Essentials of Systems Design

■ Combo box—a text box that contains a predefined list of acceptable
entries but permits the user to enter a new value when the list doesn’t con-
tain the desired value.

■ Radio buttons—a group of choices from which the user selects only one;
the system then automatically turns off all other buttons in the group.
Example: Shipping Method in screen #4 of Figure 7-7.

■ Check boxes—similar to radio buttons, but the user can select multiple
items within the group.

These data-entry controls were developed for the Apple Macintosh and later
adopted by Windows and other operating systems. Early Web-browser stan-
dards had limited support for data-entry controls, but current versions support
the controls described previously and many others. iPhone and Android inter-
faces support similar controls.

The form in Figure 7-9 could be used by an RMO employee to look up
information about a product or to modify information in the catalog. Notice
how the title and labels make the form easy to read. The natural flow of the
form is top to bottom, with related fields placed together. Navigation and close
buttons are easily found but aren’t in the way of data-entry activity. The form
uses standard Microsoft Windows controls, including text, list, and combo
boxes. Though not visible in the figure, the form includes features that optimize
it for frequent users, including standard Windows keyboard shortcuts, top-
to-bottom and left-to-right tab order, and autocompletion of some fields based
on database lookups and patches to partially entered text.

Navigation and Support Controls
Standard window interfaces provide several controls for navigation and window
manipulation. For Microsoft applications, these controls consist of the
Minimize, Maximize, and Close buttons in the upper-right corner, horizontal
and vertical scrollbars, and so forth (see Figure 7-5 for specific examples). To
maintain consistency across applications, it is a good idea to use built-in or stan-
dardized navigation controls whenever possible.

FIGURE 7-9
The RMO Product Detail form
illustrating typical Microsoft Windows
data-entry controls

combo box a text box that contains a
predefined list of acceptable entries but permits
the user to enter a new value when the list
doesn’t contain the desired value

radio buttons a group of choices from
which the user selects only one; the system
then automatically turns off all other buttons in
the group

check boxes similar to radio buttons, but
the user can select multiple items within the
group

CHAPTER 7 ■ Designing the User and System Interfaces 203

Additional Guidelines for Web Browser User Interfaces
Most user-interface designers first learn to develop Web-based interfaces that
operate within a Web browser, such as Internet Explorer, Mozilla, Chrome, or
Safari. As Web technologies and standards have matured, the differences in
capability between browser-based interfaces (e.g., see Figure 7-11) and those
that use operating system support libraries (e.g., see Figure 7-9) have all but
disappeared. In many respects, browser-based interfaces have become more
powerful. Nonetheless, there are some differences that should be considered
when designing Web pages and browser-based forms.

Consistency
Consistency is especially critical within Web sites because most sites contain a
large number of pages that serve many different purposes and audiences. For
example, a typical corporate Web site provides e-commerce functions (e.g., online
ordering), information to investors, directory and public contact information, and
such product information as specifications and manuals. In essence, a corporate
Web site is the gateway to a large collection of systems serving many different
users and tasks. Despite the wide variety of users and tasks, the site as a whole is
a single system that should support a single look and feel and should project a
consistent, appealing, and desirable image for the corporation as a whole.

Most corporations spend considerable resources developing and maintain-
ing their Web pages and ensuring consistency among them. Thus, user-
interface designers of specific parts of the Web site must operate within the
constraints of a corporate-wide design. Cascading style sheets (CSS) are a
Web page encoding standard, and they enable a Web site designer to specify
parts of a page that will always look the same and parts that will vary by task
or audience. They can also constrain choices within the “variable” parts of
a page, including placement and appearance of toolbars and menus, fonts,
colors, and background images.

Figures 7-10 and 7-11 show additional pages from the RMO Web site that
are displayed as the customer searches for items and completes an order. The
menus, the outline surrounding detailed content, and the color and font options
are all constrained by CSS. When the user selects menu items or clicks links or
controls, the pages that are displayed reuse these elements to ensure consistent
appearance and user interaction.

FIGURE 7-10
Product detail page from RMO’s
Web site

cascading style sheets (CSS) Web
page encoding standard that enables a Web
site designer to specify parts of a page that will
always look the same and parts that will vary
by task or audience

204 PART 3 ■ Essentials of Systems Design

Performance Considerations
Web sites in general and browser-based forms in particular are sensitive to
application design and to the quality of the network connections between the
user’s computing device and the servers that host the site. When a user clicks a
hyperlink or a control that acts like a hyperlink, the browser sends information
entered by the user (if any) to a Web server, along with a request for a new
page. That information traverses multiple networks, is received and processed
by a server, and then the response (a new page to be displayed) is sent back
over the network. The delay between clicking a hyperlink and the display of the
requested page depends on the amount of data to be transmitted, the display
and network connection speed of the user computing device, the capacity of the
networks that carry the messages, and the number of other users and applica-
tions that are competing for that network capacity.

A trade-off exists between the amount of information transmitted between
the user’s computing device and the server and the time it takes for the page to
refresh; the more information that is transmitted, the longer the delay. That
trade-off is especially important for communication over the Internet, although
it is also a significant issue within corporate networks when user desktops and
servers share high-speed connections.

There is also a trade-off between the amount of information and other
data contained within a Web page and a Web-based application’s perfor-
mance. Pages with extensive information content or with embedded program-
ming can avoid or postpone page refreshes. For example, a page containing a
blank order form may be quite small. But many page refreshes will be
required if the browser must interact with the server to validate every input
as the user enters it. If the page containing the form also contains embedded
validation programs, then many server interactions and page refreshes can
be avoided. However, the initial download of the page will take longer
because there is more content and the validation programs may be slow if
the user computing device isn’t very powerful (e.g., a relatively inexpensive
cell phone).

Designers of Web-based user interfaces must perform a careful balancing
act, providing embedded “intelligence” within a page to avoid refreshes but not
overloading page content so as to avoid long delays when the user moves from
page to page. Thorough testing is the best way to ensure that the right balance

FIGURE 7-11
Shopping cart page from RMO’s
Web site

CHAPTER 7 ■ Designing the User and System Interfaces 205

has been found. For example, in Figure 7-12, the RMO Web page includes the
list of menu items for each of the main menus (e.g., Shop for Clothing) and sub-
menus (e.g., Women’s Apparel). As the user points to menu items, submenu
content appears automatically without the need for a page refresh. Contrast this
to the menu style shown in Figure 7-6(a), where the user must click a menu item
and wait for a new page with the next level menu to be downloaded and dis-
played. The RMO page takes longer to download due to its embedded menu
content and related programming, but it avoids page refreshes and their associ-
ated delays when displaying submenus.

Pictures, Video, and Sound
Web-based interfaces are often preferred for their inherent ability to mix text,
images, and sound. Powerful and compelling interfaces can be constructed, and
they are especially important in customer-facing systems. However, heavy use
of sound and images exacerbates the previously discussed performance issues
and also creates issues of compatibility. The performance implications are most
significant for video and high-resolution still images, which consume large
amounts of network capacity. For example, the background image in Figure 7-8
would require several hundred kilobytes of downloaded data for high-quality
display on a laptop or desktop computer. A smaller image could be substituted
for the smaller screen of a cell phone.

Compatibility issues arise for sound and video because there are so many
ways in which they can be encoded. Most Web browsers rely on add-on compo-
nents (sometimes called plug-ins) to play sounds and music and to display video.
Unfortunately, all plug-ins don’t work with all browsers, particularly older
browser versions. Thus, Web site designers must carefully choose which formats
and plug-ins will be used. In many cases, designers must create different pages
for different plug-ins and write complex programs to query browsers for which
plug-ins are present so the proper page can be downloaded.

Users with Disabilities
Designers of all user interfaces must be sensitive to the special needs of persons
with disabilities. Because the Web is such a fundamental resource in the modern
world, standards have been developed to ensure maximal usability for those who
are visually impaired or have limited dexterity. Visually impaired users typically
interact with Web pages via text-to-speech software that examines the content of

FIGURE 7-12
RMO’s home page, with three menu
levels

206 PART 3 ■ Essentials of Systems Design

a web page and reads it aloud. Users with limited dexterity often used voice-
recognition software to navigate through elements in a page and perform tasks
normally done with a keyboard, mouse, or touch screen. Both types of software
are examples of a general software class called assistive technologies.

The World Wide Web Consortium (W3C) is an organization that sets
standards for many aspects of the Web, including compatibility with assistive
technologies. As of June 2010, it has published a working draft of the User Agent
Accessibility Guidelines (UAAG), version 2.0. Although the draft hasn’t received
final approval as of this writing, many organizations use its guidelines or those of
earlier standards to guide the development of their Web-based user interfaces.

Additional Guidelines for Handheld Devices
Designing Web and app-based user interfaces for handheld devices presents
additional design challenges, including:

■ Small screen size
■ Small keyboards and touch screens
■ Limited network capacity
■ App design guidelines and toolkits

As of 2012, the size of a typical mobile phone screen is approximately
3.5�2.25 inches and approximately 480�320 pixels. The small screen area
provides relatively limited space in which to display content. Thus, designers
must pare down the user-interface content to ensure readability and to avoid
cluttering the screen. Figure 7-13 shows a sample mobile RMO Web page.
Compared to the larger Web pages shown earlier, the mobile page eliminates
many elements, including all images except a scaled-down logo. The remaining
textual content is abbreviated, and special attention has been paid to contrast
and layout in order to ensure maximal readability.

Small keyboards and touch screens also provide limited capabilities for user
input. Mobile device user interfaces must avoid detailed textual input whenever
possible and must provide touch controls that are well spaced and easy to
locate. On many phones, speech-to-text capabilities provided by the phone’s
operating system can be used to streamline data entry and navigation, although
the state of this technology still makes errors relatively common. Thus, designers
must not rely too heavily on speech recognition and must ensure that errors are
easily detected and corrected.

As of 2012, most mobile phones include connectivity through cell phone
networks and Wi-Fi. Most current cell phone networks, described as third-

FIGURE 7-13
RMO Web page layout for a
mobile phone

assistive technologies software (such
as text-to-speech and voice-recognition utilities)
that adapts user interfaces to the special needs
of persons with disabilities

CHAPTER 7 ■ Designing the User and System Interfaces 207

generation (3G) networks, were originally designed for voice communication,
with data communication grafted on as an afterthought. The throughput for 3G
networks is usually no more than one-tenth the throughput of a Wi-Fi network.
In 2010, deployment of 4G networks began in the United States. 4G networks
increase data throughput to approximately that of Wi-Fi, although many users
compete for access to that bandwidth.

Because mobile phone data throughput is much more limited than for other
computing devices, the performance issues described earlier become much more
significant design constraints. Page sizes must be limited to achieve acceptable
download and page-refresh rates. High-resolution graphics are used only when
absolutely necessary, and bandwidth-consuming video is typically avoided
entirely. For RMO’s mobile Web site, background graphics are completely
avoided and high-resolution images are only used when a customer wants to
view product details.

Some organizations deploy custom-developed apps that users can install on
their mobile devices. Those apps run within a mobile operating system, such as
the iPhone OS, iPad OS, or Google Android OS. Each OS provides a toolkit for
user-interface developers and a set of development guidelines that ensure maxi-
mal compatibility among apps. Whenever possible, user-interface developers
should use these toolkits and guidelines.

Identifying System Interfaces
The user interface includes inputs and outputs that directly involve system
users. But there are many other system interfaces that process inputs, interact
with other systems in real time, and distribute outputs with minimal human
intervention. We define system interfaces broadly as any inputs or outputs
with minimal or no human intervention. Included in this term are displayed
and printed outputs for people, such as billing notices, reports, printed
forms, and electronic outputs to other automated systems. Inputs that are
automated or come from nonuser-interface devices are also included. For
example, inputs from automated scanners, bar-code readers, optical character
recognition devices, and other computer systems are included as part of a
system interface.

The full range of inputs and outputs in an information system is illustrated
in Figure 7-14 and described here:

■ Inputs from and outputs to other systems—These are direct interfaces with
other information systems, normally formatted as network messages.
Electronic data interchange (EDI) and many Web-based systems are inte-
grated with other systems through direct messaging. For example, in
RMO’s integrated supply chain management system and its customer sup-
port system, the arrival of inventory items from a supplier might trigger the
shipment of a back-ordered item to a customer.

■ Highly automated inputs and outputs—These are captured by devices
(such as scanners) or generated by persons who start a process that pro-
ceeds without further human intervention. For example, an item in a
warehouse might pass a bar-code scanner that records its location as it
moves by on a conveyor belt. Also, monthly statements can be printed
and mailed through highly automated systems that place the statements
within envelopes, apply postage, presort them by ZIP code, and batch
them for delivery to the post office.

■ Inputs and outputs to external databases—These can supply input to or
accept output from a system. EDI messages are more commonly used, but
direct interaction with another system’s database may be more efficient. For
example, RMO’s purchasing system could directly place product orders into
a supplier’s database.

208 PART 3 ■ Essentials of Systems Design

One of the main challenges of EDI is defining the format of the transac-
tions. For example, General Motors—one of the early users of EDI—has thou-
sands of suppliers and thousands of different transaction types, each in a
different format. To complicate the situation further, each of these suppliers
may be linked via EDI with tens or hundreds of customers, many of whom may
also use EDI. So, a single type of transaction may have a dozen or more defined
formats. It is easy to see why it is so costly to set up and maintain EDI systems.
Even so, EDI is much more efficient and effective than paper transactions, which
must be printed and reentered.

Modern EDI messages are generally formatted in Extensible Markup
Language (XML). XML is an extension of HTML that embeds self-defining
data structures within textual messages. So, a transaction that contains data fields
can be sent with XML codes to define the meaning of the data fields. Many
newer systems are using XML to provide a common system-to-system interface.
Figure 7-15 illustrates a simple XML transaction that can be used to transfer
customer information between systems. Data are surrounded by XML tags, such
as <name> and </name>, that define the beginning, end, and meaning of the text
that appears between them.

FIGURE 7-14 The full range of inputs and outputs in an information system

Extensible Markup Language
(XML) extension of HTML that embeds
self-defining data structures within textual
messages

XML tags character sequences (such as
<name> and </name>) that define the
beginning, end, and meaning of the text
that appears between them

CHAPTER 7 ■ Designing the User and System Interfaces 209

XML is called an extensible language because users can define any tags
they want to use. For XML-based EDI, both systems must recognize the
tags, but after a complete set of codes is established, transactions can include
many different formats and still be recognized and processed. Many indus-
tries and professional organizations have standards committees that define
tags used for EDI.

Designing System Inputs
When designing inputs for a system, the system developer must focus on three
areas:

■ Identifying the devices and mechanisms that will be used to enter input
■ Identifying all system inputs and developing a list with the data content of

each
■ Determining what kinds of controls are necessary for each system input

Automated Input Devices
The primary objective is to enter or update error-free data into the system. The
key term here is error-free. Several good practices can help reduce input errors:

■ Use electronic devices and automatic entry whenever possible.
■ Avoid human involvement as much as possible.
■ If the information is available in electronic form, use that instead of reenter-

ing the information.
■ Validate and correct information at the time and location it is entered.

Automating data entry and avoiding human involvement are essentially differ-
ent sides of the same coin, although using electronic devices doesn’t automatically
avoid human involvement. When system developers think carefully about minimiz-
ing human input and using electronic input media, they can design a system with
fewer electronic input forms and avoid one of the most pervasive sources of input
error: typing mistakes by users. Here are some of the more common devices used
to avoid human keystroking:

■ Magnetic card strip readers
■ Bar-code readers

<customer record>

<accountNumber>RMO10989</accountNumber>

<name>William Jones</name>

<billingAddress>

<street>120 Roundabout Road</street>

<city>Los Angeles</city>

<state>CA</state>

<zip>98115</zip></billingAddress>

<shippingAddress>

<street>120 Roundabout Road</street>

<city>Los Angeles</city>

<state>CA</state>

<zip>98115</zip></shippingAddress>

<dayPhone>215.767.2334</dayPhone>

<nightPhone>215.899.8763</nightPhone>

</customer record>

FIGURE 7-15
Customer information formatted as
an XML message

210 PART 3 ■ Essentials of Systems Design

■ Optical character recognition readers and scanners
■ Radio-frequency identification tags
■ Touch screens and devices
■ Electronic pens and writing surfaces
■ Digitizers, such as digital cameras and digital audio devices
■ Speech-recognition software

The next principle of error reduction is to reuse the information already
captured in automated form whenever possible. For example, consider the
automated airline check-in process for customers without checked baggage.
The customer swipes a credit card or driver’s license, and the system
queries its own database or an external database to identify the customer
and retrieve the reservation information. The retrieved information is dis-
played to the customer for confirmation. Because the retrieved information
is almost always correct, the task of data entry is reduced to a card swipe
and the press of a button on a touch screen, eliminating manual data entry
and its associated error rate. If the displayed data is incorrect, the final
principle of error reduction is applied by having the customer directly enter
corrected data.

Defining the Details of System Inputs
The fundamental approach that analysts use to identify user and system inputs
is to search documents developed during analysis activities for information
flows that cross the system boundary. The analyst examines system sequence
diagrams to identify the incoming and outgoing messages for each activity
or use case, and the design class diagrams to identify and describe the data
content.

Figure 7-16 is a partial system sequence diagram for an object-oriented ver-
sion of a payroll system. Various use cases have been combined to consolidate
the major inputs on a single diagram. The messages that cross the system
boundary identify inputs—system inputs and user-interface inputs. Three inputs
cross the system boundary:

■ updateEmployee (empID, empInformation)
■ updateTaxRate (taxTableID, rateID, rateInformation)
■ inputTimeCard (empID, date, hours)

The first input is part of a user interface. The other two inputs are from
external systems and don’t require user involvement. The information from
the tax bureau can be sent as a set of real-time messages or in the form of
a downloaded input file. The time card information could come into the
system in various formats. Perhaps physical time cards are entered via an
electronic card reader. Or an input from a subsystem, such as an electronic
employee ID card reader, might send time card information at the end of
every workday. These last two input messages need to be precisely defined,
including their transmission methods, contents, and formats. The point to
note here is that a sequence diagram provides a detailed perspective of the
user and system inputs to support the use case and the corresponding busi-
ness event.

Designing System Outputs
The primary purpose of system outputs is to present information in the right
place at the right time to the right people. The tasks in this activity focus on
four areas:

■ Determining the type of each system output
■ Making a list of required system outputs based on application design

CHAPTER 7 ■ Designing the User and System Interfaces 211

■ Specifying any necessary controls to protect the information provided in the
output

■ Designing and prototyping the output layout

The purpose of the first two tasks is to evaluate the various alternatives and
design the most appropriate approach for each needed output. The list of
required system outputs is normally specified during the analysis activities as
part of modeling system requirements. During design, the task is to coordinate
the production of those outputs with the methods that are identified during the
application architecture design.

The third task ensures that the designer evaluates the value of the informa-
tion to the organization and protects it. Frequently, organizations implement
controls on the inputs and system access but forget that output reports often
have sensitive information.

As with system inputs, outputs are indicated by messages in sequence dia-
grams that cross the system boundary—originating from an internal system
object and flowing to an external actor. Output messages that are based on an
individual object (or record) are usually part of the methods of that object
class. To report on all objects within a class, a class-level method is used. A
class-level method is a method that works on the entire class of objects, not a
single object. For example, a customer confirmation of an order is an output
message that contains information for a single order object. However, to pro-
duce a summary report of all orders for the week, a class-level method looks at
all the orders in the Order class and sends output information for each one
with an order date within the week’s time period.

Manager

updateEmployee (empID, empInformation)

:System

*updateTaxRate (taxTableID, rateID, rateInformation)

Employee

TaxBureauSystem

*inputTimeCard (empID, date, hours)

*signOut (time)

*signIn (time)

TimeCardSystem

FIGURE 7-16
Partial system sequence diagram for
payroll system use cases

212 PART 3 ■ Essentials of Systems Design

Designing Reports, Statements, and Turnaround Documents
Modern information systems have made information much more widely
available, with a proliferation of all types of reports—paper and electronic.
One of the major challenges organizations face today is to organize the over-
whelming amount of information in order to support managerial decision-
making. One of the most difficult aspects of output design is to decide what
information to provide and how to present it to avoid a confusing mass of
complex data.

Report Types
There are four types of output reports commonly provided by an information
system:

■ Detailed reports—These contain specific information on business
transactions—for example, a list of all overdue accounts, with each line of
the report presenting information about a particular account. A credit
manager could use this report to research overdue accounts and determine
actions to collect past-due amounts.

■ Summary reports—These are often used to recap periodic activity. An
example of this is a daily or weekly summary of all sales transactions, with
a total dollar amount of sales. Managers often use this type of report to
track departmental or division performance.

■ Exception reports—These provide details or summary information about
transactions or operating results that fall outside of a predefined normal
range of values. When business is progressing normally, no report is
needed. For example, a manufacturing organization might produce a
report that lists parts that fail quality control tests more than 0.2 percent
of the time.

■ Executive reports—These are used by high-level managers to assess over-
all organizational health and performance. They thus contain summary
information from activities within the company. They might also show
comparative performance with industry-wide averages. Using these reports,
executives can assess the competitive strengths or weaknesses of their
companies.

Internal versus External Outputs
Printed outputs are classified as either internal outputs or external outputs.
Internal outputs are produced for use within the organization. The types of
reports just discussed fall under this category. External outputs include state-
ments, notices, and other documents that are produced for people outside the
organization. Because they are official business documents for an outside audi-
ence, they need to be produced with the highest-quality graphics and color.
Examples include monthly bank statements, late notices, order confirmation
and packing slips (such as those provided to Ridgeline Mountain Outfitters’ cus-
tomers), and legal documents (such as insurance policies). Some external outputs
are referred to as turnaround documents because they are sent to a customer
but include a tear-off portion that is returned for input later, such as a bill that
contains a payment stub to be returned with a check. All these printed outputs
must be designed with care, but organizations have many more options for
printed output. Today’s high-speed color laser printers enable all types of
reports and other outputs to be produced.

An example of a detailed report for an external output is shown in
Figure 7-17. When a customer places an order on the Web, the system will
be able to print the order information as a confirmation. Of course, a user
can always print the Web screen display by using the browser’s print capabil-
ity, but doing so is time consuming because it includes all the graphics and

detailed reports reports that contain
specific information on business transactions

summary reports reports that summa-
rize detail or recap periodic activity

exception reports reports that provide
details or summary information about transac-
tions or operating results that fall outside a
predefined normal range of values

executive reports reports used by high-
level managers to assess overall organizational
health and performance

internal outputs reports or other outputs
produced for use within the organization

external outputs reports or other out-
puts produced for use by people outside the
organization

turnaround documents external out-
puts that includes one or more parts intended to
be returned with new data or information

CHAPTER 7 ■ Designing the User and System Interfaces 213

index links on the page. It is much more user friendly to provide shoppers
with a “printer friendly” order confirmation in addition to a Web-based dis-
play, as shown in Figure 7-11.

Figure 7-18 is an example of an internal output based on inventory
records. The report includes detailed and summary sections, although the figure
doesn’t show the summary section. A control break is the data item that divides
the detailed section into groups. In this example, the control break is on the
product item number—called ID on the report. Whenever a new value of the ID
is encountered on the input records, the report begins a new control break sec-
tion. The detailed section lists the transactions of records from the database,
and the summary section provides totals and recaps of the information. The
report is sorted and presented by product. However, within each product is a
list of each inventory item showing the quantity currently on hand.

External outputs can consist of complex, multiple-page documents. A
well-known example is the set of reports and statements that you receive with
your car insurance statement. This statement is usually a multipage document
consisting of detailed automobile insurance information and rates, summary
pages, turnaround premium payment cards, and insurance cards for each auto-
mobile. Another example is a report of employment benefits, with multiple
pages of information customized to the individual employee. Sometimes, the
documents are printed in color, with special highlighting or logos. Figure 7-19
is one page of an example report for survivor protection from an employee
benefit booklet. The text is standard wording, and the numbers are customized
to the individual employee.

FIGURE 7-17 RMO shopping cart order report

05 / 15

Description

Customer Name: Fred Westing

Customer Number: 6747222

Product ID Color Price
Extended

PriceSizeQty

 Payment Information:

Account Number

American Express MasterCard VISA Discover

Expiration Date

MO YR

Shipping Information:

Shipping Method: Normal 7–10 day

Shipping Company: UPS

Tracking Number: To be sent via email

Email Address: FredW253@aol.com

Shipping Address:

936 N Swivel Street

Hillville, Ohio 59222

Order Number: 4673064

Today's Date: May 18, 2013

Billing Address:

936 N Swivel Street

Hillville, Ohio 59222

Ridgeline Mountain Outfitters—Shopping Cart Order

1 458238WL

1 347827OP

2 8759425SH

1 5858642OR

Jordan Men's Jumpman Team J

Woolrich Men's Backpacker Shirt

Nike D.R.I. – Fit Shirt

Puma Hiking Shorts

Oatmeal Plaid

Black

Tan

$119.99

$41.99

$30.00

$15.00

$119.99

$41.99

$60.00

$15.00

$236.98

Shipping

Subtotal

Tax

Total

$8.50

$11.25

$256.73

X X X X – X X X X – X X X X – 5 7 8 4

Thank you for your order. It is a pleasure to serve you.
Check back next week for new weekly specials!!

X

12

XL

M

L

White/ Light Blue

214 PART 3 ■ Essentials of Systems Design

Electronic Reports
Organizations use various types of electronic reports, each serving a different
purpose and each with its respective strengths and weaknesses. Electronic
reports provide great flexibility in the organization and presentation of informa-
tion. In some instances, screen output is formatted like a printed report but
displayed electronically. However, electronic reports can also present informa-
tion in many other formats. Some have detailed and summary sections, some
show data and graphics together, others contain boldface type and highlighting,
others can dynamically change their organization and summaries, and still
others contain hotlinks to related information. An important benefit of elec-
tronic reporting is that it is dynamic; it can change to meet the specific needs
of a user in a particular situation. In fact, many systems provide powerful

FIGURE 7-18 RMO inventory report

Ridgeline Mountain Outfitters — Products and Items

ID Season Category Supplier DiscontinuedUnit Price Special Price

Description Outdoor Nylon Jacket with Lining

RMO12587 Spr/Fall Mens C 8201 $39.00 $34.95 No

Size Color Style Units in Stock Reorder Level Units on Order
Small

Medium

Large

Xlarge

Blue

Green

Red

Yellow

Blue

Green

Red

Yellow

Blue

Green

Red

Yellow

Blue

Green

Red

Yellow

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

ID Season Category Supplier DiscontinuedUnit Price Special Price

Description Hiking Walkers with Patterned Tread Durable Uppers
RMO28497 All Footwe 7993 $49.95 $44.89 No

Size Color Style Units in Stock Reorder Level Units on Order

 7

 8

 9

10

11

12

13

Brown

Tan

Brown

Tan

Brown

Tan

Brown

Tan

Brown

Tan

Brown

Tan

Brown

Tan

389

422

597

521

633

654

836

954

862

792

754

788

830

921

100

100

100

100

100

100

100

100

100

100

100

100

100

100

691

723

569

827

722

756

698

590

1289

1455

1329

1370

1498

1248

1266

1322

CHAPTER 7 ■ Designing the User and System Interfaces 215

ad hoc reporting capabilities so users can design their own reports on the fly.
For example, an electronic report can provide links to further information.
One technique, called drill down, allows the user to activate a “hot spot
hyperlink” on the report, which tells the system to display a lower-level report
that provides more detailed information. For example, Figure 7-20 contains a
monthly sales summary. The report provides sales totals grouped by product
category and season. However, if the user clicks the hotlink for any season, a
detailed report pops up with more detailed sales data.

Another variation of this hotlink capability lets the user correlate informa-
tion from one report to related information in another report. Most people are
familiar with hotlinks from using their Internet browsers. In an electronic
report, hotlinks can refer to other information that correlates or extends the
primary information. This same capability can be very useful in a business
report that, for example, links the annual statements of key companies in a
certain industry.

Another dynamic aspect of electronic reports is the capability to view the
data from different perspectives. For example, it might be beneficial to view sales
commission data by region, by sales manager, by product line, or by time period

FIGURE 7-19 A sample employee benefit report

drill down user-interface design technique
that enables a user to select summary infor-
mation and view supporting detail

216 PART 3 ■ Essentials of Systems Design

or to compare the current data with last season’s data. Instead of printing all
these reports, you can use an electronic format to generate the different views as
needed. Sometimes, long or complex reports include a table of contents, with
hotlinks to the various sections of the report. Some report-generating programs
provide an electronic reporting capability that includes all the functionality found
on Web pages, including frames, hotlinks, graphics, and even animation.

Graphical and Multimedia Presentation
The graphical presentation of data is one of the greatest benefits of the informa-
tion age. Tools that permit data to be presented in charts and graphs have made
information reporting much more user friendly for printed and electronic for-
mats. Information is being used more and more for strategic decision-making as
businesspeople examine their data for trends and changes. In addition, today’s
systems frequently maintain massive amounts of data—much more than people
can review. The only effective way to use much of this data is by summarizing
and presenting it in graphical form. Figure 7-21 presents a pie chart and a bar
graph—two common ways to present summary data.

Multimedia outputs have become available recently as multimedia tool
capabilities have increased. Today, it is possible to see a graphical (possibly ani-
mated) presentation of the information on a screen and have an audio descrip-
tion of the salient points. Combining visual and audio output is a powerful way
to present information. (Of course, video games are pushing the frontier of vir-
tual reality to include visual, audio, tactile, and olfactory outputs.)

FIGURE 7-20 RMO summary report with drill down to the detailed report

Monthly Sales Summary

Year 2013 Month January

Category Season Web Telephone Mail Total
 Code Sales Sales Sales Sales

Footwear All $ 289,323 $ 1,347,878 $ 540,883 $ 2,178,084

Men’s Clothing Spring $ 1,768,454 $ 2,879,243 $ 437,874 $ 4,691,484
Summer 213,938 387,121 123,590 724,649
Fall 142,823 129,873 112,234 384,930
Winter 2,980,489 6,453,896 675,290 10,109,675
All 1,839,729 4,897,235 349,234 7,086,198

Totals $ 6,945,433 $14,747,368 $ 1,698,222 $ 23,391,023

Women’s Spring 387,432 $ 454,329 $ 123,849 965,610
Clothing Summer 89,322 187,987 34,879 312,188

Fall 78,398 99,873 56,890 235,161
Winter 782,982 899,490 278,389 1,960,861
All 778,394 678,987 328,122 1,785,503

Totals $ 2,116,528 $ 2,320,666 $ 822,129 $ 3,359,323

782,92,982 899,49090 278,389 1,960,8611
77778,394 678,98,987 328,12222 1,785,,50503
116,528 $ 2,3,3220,666 $ 8222 1,129 $ 3,353599,323

Monthly Sales Detail

Year 2013 Month January Category Men’s Clothing Season Winter

Product Product Web Telephone Mail Total
 ID Description Sales Sales Sales Sales

RMO12987 Winter Parka $ 1,490,245 $ 3,226,948 $ 337,640 $ 5,054,833
RMO13788 Fur-Lined Gloves 149,022 322,695 33,765 505,482
RMO23788 Wool Sweater 596,097 1,290,775 135,058 2,021,930
RMO12980 Long Underwear 298,050 645,339 68,556 1,003,005
RMO32998 Fleece-Lined Jacket 447,075 1,258,079 100,271 1,805,425
Total $ 2,980,489 $ 6,743,836 $ 675,290 $ 10,394,615

CHAPTER 7 ■ Designing the User and System Interfaces 217

As the design of system outputs progresses, it is beneficial to evaluate the var-
ious presentation alternatives. Reporting packages can be integrated into the sys-
tem to provide a full range of reporting alternatives. Developers should carefully
analyze each output report to determine the objective of the output and to select
the form of the output that is most appropriate for the information and its use.

Chapter Summary
Inputs and outputs can be classified as system interfaces or
user interfaces. The user interface is everything the user
comes into contact with while using the system—physically,
perceptually, and conceptually. There are many different
ways to describe the user interface, including the desktop
metaphor, the document metaphor, and the dialog meta-
phor. Dialog design starts with identifying dialogs based
on activities or use cases. A storyboard showing sketches
of screens in sequence can be drawn to convey the design
for review with users, or prototypes can be created using a
tool such as Visual Basic. The object-oriented approach
provides UML models that can document dialog designs,
including sequence diagrams, activity diagrams, and class
diagrams.

Each screen and form used in a dialog needs to be
designed, and there are guidelines for the layout, selection

of input controls, navigation, and help. These guidelines
apply to windows forms and to browser forms used in
Web-based systems. Designing a dialog for a Web site is
similar to creating any other dialog, except users need
more information and more flexibility. Additional Web
design guidelines apply to designing for the computer
medium, designing the whole site, and designing for the
user. In addition, because a Web site reflects the com-
pany’s image to customers, graphic designers and market-
ing professionals should be involved.

When designing system inputs, the developer identi-
fies the input devices and identifies all system inputs and
lists the data content of each. To develop a list of the
inputs to the system, designers use sequence and design
class diagrams. The process to design the outputs from
the system consists of the same steps as for input design.

FIGURE 7-21 Sample pie chart and bar graph reports

Men’s Clothing Sales - January 2013

Web Sales

Telephone Sales

Store Sales

Men’s Clothing Sales by Season - January 2013

Web Sales

Telephone Sales

Store Sales

7,000,000

6,000,000

5,000,000

4,000,000

3,000,000

2,000,000

1,000,000

0
Spring Summer Fall Winter

218 PART 3 ■ Essentials of Systems Design

Key Terms

affordance 193

assistive technologies 207

cascading style sheets (CSS) 204

check boxes 203

combo box 203

desktop metaphor 191

detailed reports 213

dialog metaphor 191

direct manipulation metaphor 191

document metaphor 191

drill down 216

exception reports 213

executive reports 213

Extensible Markup Language (XML) 209

external outputs 213

human-computer interaction (HCI) 193

internal outputs 213

list box 202

metaphors 191

radio buttons 203

storyboarding 200

summary reports 213

system interfaces 189

text box 202

turnaround documents 213

usability 190

user interfaces 189

user-centered design 189

visibility 193

XML tags 209

Review Questions
1. Why is interface design often referred to as dialog

design?

2. What are the three aspects of the system that make
up the user interface for a user?

3. What are some examples of the physical, percep-
tual, and conceptual aspects of the user interface?

4. What are the three metaphors used to describe
human-computer interaction?

5. A desktop on the screen is an example of which of
the three metaphors used to describe human-
computer interaction?

6. What type of document allows the user to click a
link and jump to another part of the document?

7. List and briefly describe four guidelines for interface
layout and formatting that apply to all types of user
display and input devices. What additional guide-
lines apply to Web sites/pages and user interfaces
for mobile computing devices?

8. What is the technique that shows a sequence of
sketches of the display screen during a dialog?

9. What UML diagram can be used to show how the
interface objects are plugged in between the actor
and the problem domain classes during a dialog?

10. What are some of the input controls that can be
used to select an item from a list?

11. What two types of input controls are included in groups?

12. What popular analogy is used for direct customer
access with a Web site when customers shop online?

13. What does XML stand for? Explain how XML is
similar to HTML. Also discuss the differences
between XML and HTML.

14. How do you identify the data fields of a system
interface by using UML and the object-oriented
approach?

15. What are the different considerations for output
screen design and output report design?

16. What is meant by drill down? Give an example of
how you might use it in a report design.

17. What is the danger from information overload?
What solutions can you think of to avoid it?

Problems and Exercises
1. Think of all the software you have used. What are

some examples of ease of learning conflicting with
ease of use?

2. Visit some Web sites and then identify all the con-
trols used for navigation and input. Are they all

obvious? Discuss some differences in visibility and
affordance among the controls.

3. A common maxim for designing a man-machine
interface is that it is better to change the machine
than to try to change the human to accommodate

CHAPTER 7 ■ Designing the User and System Interfaces 219

the machine. Are there machines (or systems) that
you use in your daily life that have room for
improvement? Are the current generations of
Windows PC and Apple Mac as usable as they
might be? If not, what improvements can you sug-
gest? Is the World Wide Web as usable as it might
be? If not, what improvements can you suggest? Are
we just beginning to see some breakthroughs in
usability, or have most of the big improvements
already been made?

4. Download and install App Inventor from Google.
Use it to develop a prototype interface that imple-
ments the storyboard in Figure 7-7.

5. Evaluate the course registration system at your
university. List the basic steps of a user’s dialog
with the system. What are some of the problems
with the system from the perspective of ease of
learning and ease of use? In what ways is the system

inflexible? In what ways is needed information not
available? Is too much information provided that
distracts from the task at hand?

6. Evaluate the online catalog system at your univer-
sity library. Write a dialog that shows the interac-
tion between the user and the system. Rewrite the
dialog to improve it. Create a storyboard to show
how your design would look and feel.

7. Find aWeb sitewith direct customer ordering. Browse
through some product descriptions and note the
design of the dialog and the Web pages. What do you
like and dislike about the design? Evaluate the Web
site based on visibility and affordance. Does the site
achieve an optimal balance between the number of
page refreshes and the delay between page refreshes?
Would your answer change if you were using a
different computing device, a different network, or
accessing the system at a different time of day?

Case Study

Video Rental Service

Develop a storyboard that encompasses the following
sample dialog. The system supports rental and download
of movies or television shows to a computer or digital
video recording and playback device. A dialog between
the system and user might follow this pattern:

SYSTEM: What would you like to do?

USER: I’d like to rent a movie.

SYSTEM: Okay. What is your e-mail address or
account number?

USER: My e-mail address is nwells22@gmail.com.

SYSTEM: Fine. You are Nancy Wells at 1122
Silicon Avenue. Correct?

USER: Yes.

SYSTEM: What movie do you want to rent?

USER: Titanic.

SYSTEM: I have two available movies named Titanic.
The first was released in 1953 and stars
Barbara Stanwyck and Clifton Webb. The

second was released in 1997 and stars
Leonardo DiCaprio and Kate Winslet. Which
do you want to rent?

USER: Both.

SYSTEM: Fine. That is Titanic (the 1953 release) with a
rental charge of $2.99 for seven days and
Titanic (the 1997 release) with a rental charge
of $5.99 for seven days. Would you like to
add more rentals?

USER: That’s all.

SYSTEM: Okay. The total charge is $8.98. Shall I
charge that amount to your credit card file
(a Visa with an account number ending in
0899)?

USER: Yes.

SYSTEM: Your movies are downloading to your
computer now. They will expire at midnight
seven days from now.

USER: Okay. Thanks.

220 PART 3 ■ Essentials of Systems Design

RUNNING CASE STUDIES

Community Board of Realtors

One of the key use cases for the multiple listing service
system is Create new listing, where the realtor enters
all the important information about a new listing he or
she has obtained. Realtors want to be able to create a
new listing as soon as possible so other realtors and
potential buyers will find the listing online. Some like
to enter the information while talking with the owner
or while inspecting the property. Realtors are rarely in
their offices these days, so being able to create a new
listing on a mobile device is a key feature of the multi-
ple listing service system.

Consider the information that must be entered
when creating a new listing, and list the dialog steps
that are necessary. Keep in mind that when designing
for a smartphone, less information can be entered in
each step compared to a full screen Web application.

Also keep inmind that typing is error-prone and awk-
ward for many users, so think about opportunities to use
check boxes, radio buttons, and list boxes to aid selection.
Create a storyboard of this use case for a mobile device,
showing each step of the dialog that maximizes the use of
check boxes, radio buttons, and list boxes.

On the Spot Courier Services

Review the case description and your solution for the
Web scenario of the use case Request package pickup
from Chapter 5. Then, using a presentation tool, such as
Microsoft PowerPoint or Apple Keynote, create a story-
board of theWeb pages necessary to support the use case.

The case description in Chapter 5 also identified
a new use case, which we can call View scheduled
pickups/deliveries. Based on current technology, write

a dialog showing how this might be supported with
a portable digital device. You may use any current
technology that you deem applicable, such as GPS
tracking, map and directions software, and real-time
updates of pickup locations. Consider the possibility
that the driver may want to get an overview of his or
her stops for the entire run, view the next few stops, or
just get directions to the next stop.

The Spring Breaks ‘R’ Us Travel Service

The Spring Breaks R Us social networking subsystem
requires an intuitive and engaging user-interface design
for mobile devices. But the social networking subsystem
can also play an important role in resort security. For
example, each resort could use traveler location, interests,
activities, and “likes”—all ofwhich are available through
the application—to monitor the well-being of travelers
staying at the resort. Most spring break travelers are
young, and their parents are concerned about their
safety—particularly at isolated resorts in foreign coun-
tries. SBRU and the participating resorts could keep
track of where travelers are andwho they are near, moni-
tor messages about activities and parties, and anticipate
crowded conditions or vulnerable travelers wandering
off-site. Alerts could notify security if conditions veer
away from normal or if messages indicate there are pro-
blems. For example, if the pool is overcrowded, some
action can be taken. If messages refer to places off-site

that are known to be dangerous, security can make an
extra patrol. Although many people find this use of
private information objectionable, others—particularly
parents—find it essential.

Imagine resort security with a large, wide-screen
monitor tracking traveler activities. Design a main screen
that includesmultiple locations, paths and roads, traveler
location and status, messages traveling from traveler to
traveler, and other features that security should monitor.
Create a storyboard that shows an example of a pop-up
alert and amenuof options that securitymight select after
an alert. Should you also show security the staff mem-
bers’ locations and status? How about clicking security
staff members to send them amessage? How about click-
ing a location to turn up the lights or to close a security
gate? Be creative as you think through the design possi-
bilities. You should include four or five screen layouts for
the storyboard.

(continued on page 222)

CHAPTER 7 ■ Designing the User and System Interfaces 221

Sandia Medical Systems Real-Time Glucose Monitoring

Developers have made these choices regarding format
and transmission methods between the cell phone app
and server-based software components:

■ Glucose-level readings within a normal range will
be sent to the server once per hour as XML mes-
sages via secure HTTP. Because glucose levels are
stored every five minutes by the cell phone app, a
normal message to the server will contain 12 glu-
cose levels and time stamps. If more than two
glucose levels in a row are outside the normal
range, the cell phone app will transmit them to the
server immediately.

■ Physicians and other medical personnel will initi-
ate direct contact with a patient via text message,
voice message, or real-time voice call.

■ Changes to alert conditions and updates to soft-
ware will be sent from the server to a patient’s cell
phone app as XML messages. The XML messages

will be sent immediately after the cell phone app
has transmitted glucose levels to the server.

No industry group has yet defined XML tags suit-
able for the RTGM application. Thus, designers must
develop appropriate tags for this application.

If you aren’t already familiar with XML, do at
least 30 minutes of background research on the Web.
Refer to the class diagram in the Chapter 4 RTGM
case to determine required data content. Then, design
XML tags and message formats suitable to transmit
time-stamped glucose levels from the cell phone app
to the server and to transmit updated alert conditions
from the server to the cell phone app.

If medical personnel choose to send a text message
to the patient, how will the server transmit that mes-
sage? To help answer that question, research Short
Message Service (SMS), Enhanced Messaging Service
(EMS), and SMS gateways.

Further Resources

Randolph G. Bias and Deborah J. Mayhew, Cost-
Justifying Usability: An Update for the Internet

Age (2nd ed). Morgan Kaufmann, 2005.

Paul C. Brown, Implementing SOA: Total

Architecture in Practice. Addison-Wesley, 2008.

Patrick Carey, New Perspectives on Creating Web

Pages with HTML, XHTML, and XML (3rd ed.).
Cengage Learning, 2010.

Donald Norman, The Design of Everyday Things.
Basic Books, 2002.

Janice Redish, Letting Go of the Words: Writing

Web Content that Works. Morgan Kaufmann,
2007.

Ben Shneiderman, Catherine Plaisant,
Maxine Cohen, and Steven Jacobs, Designing
the User Interface: Strategies for Effective

Human-Computer Interaction (5th ed.). Addison
Wesley, 2009.

Joel Sklar, Principles of Web Design (5th ed.).
Cengage Learning, 2012.

(continued from page 221)

222 PART 3 ■ Essentials of Systems Design

PART 4

Projects and Project Management

Chapter 8
Approaches to System
Development

Chapter 9
Project Planning and Project
Management

Optional Online Chapter C
Project Management
Techniques

223

This page intentionally left blank

8
Approaches to System
Development

Chapter Outline

■ The Systems Development Life Cycle

■ The Support Phase

■ Methodologies, Models, Tools, and Techniques

■ Two Approaches to Software Construction and Modeling

■ Agile Development

Learning Object ives

After reading this chapter, you should be able to:

■ Compare the underlying assumptions and uses of a predictive and an adaptive
system development life cycle (SDLC)

■ Describe the key activities and tasks of information system support

■ Explain what comprises a system development methodology—the SDLC as
well as models, tools, and techniques

■ Describe the two overall approaches used for software construction and
modeling: the structured approach and the object-oriented approach

■ Describe the key features of Agile development

225

OPENING CASE

Development Approaches at Ajax Corporation, Consolidated
Concepts, and Pinnacle Manufacturing

Kim, Mary, and Bob, graduating seniors, were discussing
their recent interview visits to companies that recruit com-
puter information system (CIS) majors on their campus. All
agreed that they had learned a lot by visiting the compan-
ies, but they also all felt somewhat overwhelmed.

“At first, I wasn’t sure I knew what they were talking
about,” Kim said. During her on-campus interview, she had
impressed Ajax Corporation with her knowledge of data
modeling. And when she visited the company’s home
office data center for her second interview, the inter-
viewers spent a lot of time describing the company’s sys-
tem development methodology.

“They said to forget everything I learned in school,”
Kim continued. “That got my attention.”

Ajax Corporation had purchased a complete develop-
ment methodology called IM One from a small consulting
firm. Most of its employees agreed that it worked fairly
well, having invested a lot of time and money learning
and adapting to it. Those who had worked for Ajax for a
long time thought IM One was unique, and they were
very proud of it.

“Then, they started telling me about their SDLC, itera-
tions, business events, data flow diagrams, and entity-
relationship diagrams—things like that,” Kim said. She had
recognized that many of the key concepts in the IM One
methodology were fairly standard models and techniques
from the structured approach to system development.

“I know what you mean,” said Mary, a very talented
programmer who knew just about every popular program-
ming language available. “Consolidated Concepts went on
and on about things like OMG, UML, UP, and people

named Booch, Rumbaugh, and Jacobson. It turns out
they use the object-oriented approach to develop their sys-
tems, and they like the fact that I know Java and C# and
.NET. There was no problem once I got past all the termi-
nology they used.”

Bob, who interviewed with Pinnacle Manufacturing,
had a different story to tell. “A few people said analysis
and design are no longer a big deal,” he said. “And I’m
thinking, ‘Knowing that would have saved me some time
in school.’”

Pinnacle has a small system development group sup-
porting its manufacturing and inventory control. “They said
they like to jump in and get to the code as soon as possi-
ble,” Bob said. “Little documentation and not much of a
project plan. They showed me some books on their
desks, and it looked like they had been doing a lot of read-
ing about analysis and design. I could see they were using
Agile development and Agile modeling techniques and
focusing on best practices required for their small projects.
It turns out they just organize their work differently by look-
ing at risk and writing user stories while building proto-
types. I recognized some sketches of class diagrams and
sequence diagrams on the boss’s whiteboard, so I felt
fairly comfortable.”

Kim, Mary, and Bob agreed that there was much to
learn in these work environments but also that there are
many different ways to describe the key concepts and
techniques they learned in school. They were all glad
they focused on the fundamentals in their CIS classes
and that they had been exposed to a variety of approaches
to system development.

Overview
As the experiences of Kim, Mary, and Bob demonstrate, there are many ways to
develop an information system, and doing so is very complex. Project managers
rely on a variety of aids to help them with every step of the process. So far in
this text, you have learned about analysis and design models and techniques,
and now you will learn more about the overall system development process.
You learned about the systems development life cycle (SDLC) in Chapter 1.
That particular SDLC included six core processes and multiple iterations. This
chapter discusses the SDLC in more detail, including some variations found in
industry. Additionally, an information system requires extensive support after
deployment, so the support phase of the SDLC is also discussed.

The entire process of developing an information system requires more than
just an SDLC. A system development methodology includes more specific
instructions for completing the activities of each core process by using specific
models, tools, and techniques. This chapter also reviews two main approaches
to defining the information system technology and software development used
for business systems: the traditional approach and the object-oriented approach.

226 PART 4 ■ Projects and Project Management

The traditional approach refers to structured software development, which
describes software as a hierarchy of programs and modules and uses structured
analysis, structured design, and structured programming. The object-oriented
approach refers to object-oriented software development, which describes soft-
ware as a set of interacting objects. It uses such models as object class diagrams,
sequence diagrams, state charts, and object-oriented programming (OOP).
Finally, Agile development is discussed as a philosophy that guides a develop-
ment project. It focuses on techniques and methods that encourage more user
involvement and allow for more flexible projects with changing requirements.

The Systems Development Life Cycle
Chapter 1 demonstrated how analysis and design models and techniques are used
to solve business problems by building an information system. For problem-
solving work to be productive, it needs to be organized and goal oriented.
Analysts achieve these results by organizing the work into projects. As defined in
Chapter 1, a project is a planned undertaking, with a beginning and end, that
produces a well-defined result or product. The term information system develop-
ment project refers to a planned undertaking that produces a new information
system. Some system development projects are very large, requiring thousands of
hours of work by many people and spanning several calendar years. In the RMO
case study introduced in Chapter 2, the system being developed is a moderately
sized computer-based information system requiring a moderately sized project.
Many system development projects are smaller, lasting a few months.

For a system development project to be successful, it must be planned and
organized. The plan must include a comprehensive set of activities that flow in the
proper sequence. Otherwise, activities are omitted or work may need to be done
multiple times. The end result, of course, is producing a high-quality information
system as measured by its reliability, robustness, efficiency, and fitness for purpose.
The systems development life cycle (SDLC), which was introduced in Chapter 1, is
a fundamental concept in the success of information system development projects.

The SDLC provides a way to think about the development of a new system
as a progressive process, much like a living entity. We can expand this concept
and view the information system as having a life itself; in fact, we often refer to
the life cycle of a system. During its life cycle, an information system is first con-
ceived, then it is designed, built, and deployed as part of a development project,
and, finally, it is put into production and used to support the business.
However, even during its productive use, a system is still a dynamic, living
entity that is updated, modified, and repaired through smaller projects.

Several projects may be required during the life of a system, first to develop
the original system and then to upgrade. In this chapter—and in the rest of this
textbook—we will focus on the initial development project, not on the support
projects. In other words, our primary concern is with getting the system devel-
oped and deployed.

In today’s diverse development environment, there are many approaches to
developing systems, and they are based on different approaches to the SDLC.
Although it is difficult to find a single, comprehensive classification system that
encompasses all the approaches, one useful way to categorize them is along a
continuum from predictive to adaptive (see Figure 8-1).

A predictive approach to the SDLC assumes that the development project
can be planned and organized and that the new information system can be
developed according to the plan. Predictive SDLCs are useful for building
systems that are well understood and defined. For example, a company may
want to convert its old networked client/server system to a newer Web-based
system that includes a smartphone app. In this type of project, the staff already
understands the requirements very well, and no new processes need to be

predictive approach to the SDLC
an approach that assumes the project can be
planned in advance and that the new information
system can be developed according to the plan

CHAPTER 8 ■ Approaches to System Development 227

added. Thus, the project can be carefully planned, and the system can be built
according to the specifications.

An adaptive approach to the SDLC is used when the system’s requirements
and/or the users’ needs aren’t well understood. In this situation, the project can’t
be planned completely. Some system requirements may need to be determined
after preliminary development work. Developers should still be able to build the
solution, but they need to be flexible and adapt the project as it progresses. Recall
that the Tradeshow system described in Chapter 1 used this approach.

In practice, any project could have—and most do have—predictive and
adaptive elements. That is why Figure 8-1 shows them as endpoints along a
continuum, not as mutually exclusive categories. The predictive approaches are
more traditional and were conceived during the 1970s through the 1990s.
Many of the newer, adaptive approaches have evolved with object-oriented
technology and Web development; they were created during the late-1990s and
into the 21st century. Let us look at the more predictive approaches and then
examine the newer adaptive approaches.

Traditional Predictive Approaches to the SDLC
The development of a new information system requires a number of different but
related sets of activities. In predictive approaches, there is a group of activities
that identifies the problem and secures approval to develop a new system; this is
called project initiation. A second group of activities, called project planning,
involves planning, organizing, and scheduling the project. These activities map
out the project’s overall structure. A third group—analysis—focuses on discover-
ing and understanding the details of the problem or need. The intent here is to
figure out exactly what the system must do to support the business processes. A
fourth group—design—focuses on configuring and structuring the new system
components. These activities use the requirements that were defined earlier to
develop the program structure and the algorithms for the new system. A fifth
group—implementation—includes programming and testing the system. A sixth
group—deployment—involves installing and putting the system into operation.

These six groups of activities—project initiation, project planning, analysis,
design, implementation, and deployment—are sometimes referred to as phases
of the system development project, and they provide the framework for man-
aging the project. Another phase, called the support phase, includes the activi-
ties needed to upgrade and maintain the system after it has been deployed.
The support phase is part of the overall SDLC, but it isn’t normally considered
part of the initial development project. Figure 8-2 illustrates the six phases of
a traditional predictive SDLC plus the support phase.

The most predictive SDLC approach (i.e., farthest to the left on the predictive/
adaptive scale) is called a waterfall model, with the phases of the project
flowing down, one after another. As shown in Figure 8-3, this model assumes
that the phases can be carried out and completed sequentially. First, a detailed
plan is developed, then the requirements are thoroughly specified, then the sys-
tem is designed down to the last algorithm, and then it is programmed, tested,
and installed. After a project drops over the waterfall into the next phase,

The choice of SDLC varies depending on the project

Predictive
SDLC

Adaptive
SDLC

Requirements well understood
and well defined.
Low technical risk.

Requirements and needs
uncertain.
High technical risk.

FIGURE 8-1
Predictive versus adaptive approaches
to the SDLC

adaptive approach to the SDLC an
approach that assumes the project must be
more flexible and adapt to changing needs as
the project progresses

phases related groups of development
activities, such as planning, analysis, design,
implementation, and support

waterfall model an SDLC approach that
assumes the phases can be completed
sequentially with no overlap

228 PART 4 ■ Projects and Project Management

there is no going back. In practice, the waterfall model assumes rigid planning
and final decision-making at each step of the development project. As you
may have guessed, the waterfall model doesn’t always work very well. Being
human, developers are rarely able to complete a phase without making mis-
takes or leaving out important components that had to be added later.
However, even though we don’t use the waterfall model in its purest form
anymore, it still provides a valuable foundation for understanding develop-
ment. No matter what system is being developed, we need to include initia-
tion, planning, analysis, design, implementation, and deployment activities.

A little farther to the right on the predictive/adaptive scale are modified water-
fall models. These are still predictive—that is, they still assume a fairly thorough
plan—but there is a recognition that the project’s phases must overlap, influencing
and depending on each other. Some analysis must be done before the designing
can start, but during the design, there is a need for more detail in the requirements
or perhaps it is discovered that a requirement cannot be met in the manner origi-
nally requested. Figure 8-4 illustrates how these activities can overlap.

Another reason phases overlap is for efficiency. While the team members are
analyzing needs, they may also be thinking about and designing various forms or
reports. To help them understand the needs of the users, they may want to design
some of the final system. But when they do early design, they will frequently throw
some components away and save others for later inclusion in the final system. In
addition, many components of a computer system are interdependent, which
requires analysts to do analysis and some design at the same time.

Newer Adaptive Approaches to the SDLC
In an adaptive approach, project activities—including plans and models—
are adjusted as the project progresses. There are many ways to depict an adap-
tive SDLC. All include iterations, which were discussed in Chapter 1. Rather

FIGURE 8-2 Traditional information system development phases

Project
planning Analysis Design Implementation

Project
initiation

SupportDeployment

FIGURE 8-3 Waterfall model of the SDLC

Project
initiation

Deployment

Implementation

Design

Analysis

Initiation and
planning

specifications frozen

Analysis
specifications

frozen

System built and
delivered exactly

as specified

Design
specifications

frozen

Project
planning

CHAPTER 8 ■ Approaches to System Development 229

than having the analysis, design, and implementation phases proceed sequentially
with some overlap, iterations can be used to create a series of mini-projects that
address smaller parts of the application. One of these smaller parts is analyzed,
designed, built, and tested during a single iteration; then, based on the results,
the next iteration proceeds to analyze, design, build, and test the next smaller
part. Using iterations, the project is able to adapt to any changes as it proceeds.
Also, parts of the system are available early on for user evaluation and feedback,
which helps ensure that the application will meet the needs of the users.

At the far right on the predictive/adaptive scale is the spiral model. It
contains many adaptive elements, and it is generally considered to be one of
the earliest conceptualizations of adapting the project based on the results of
each iteration. The life cycle is shown as a spiral, starting in the center and
working its way outward, over and over again, until the project is complete
(see Figure 8-5). This model looks very different from the static waterfall

FIGURE 8-4 Overlap of system development phases

Additional project planning and control tasks

Analysis

Design

Implementation

Additional analysis tasks

Deployment

Additional design
tasks

Support

=
Decision points and
completion of major
components of project

Project
initiation

Project
planning

Construct fourth prototype

Construct third prototype
Construct secondprototype

Construct first
prototype

Plan first
iteration

Plan next
iteration

Test
and

integrate

Analyze
and

design

FIGURE 8-5
Spiral life cycle model

spiral model an adaptive SDLC approach
that cycles over and over again through devel-
opment activities until completion

230 PART 4 ■ Projects and Project Management

model and sets the tone for the project to be managed differently. For another
representation of an adaptive SDLC, which shows several iterations, including
analysis, design, and implementation activities, see Figure 8-6.

Figure 8-6 illustrates multiple iterations of development activities. Those two
dimensions can also be represented as rows and columns of a table. The develop-
ment activities are placed as rows, and the iterations are defined as columns. You
first saw this concept in Figure 1-4, which is repeated here as Figure 8-7. The

Some analysis

Some design

Some
implementation

More analysis

More design

More
implementation

Even more
analysis

Even more
design

Even more
implementation

FIGURE 8-6
The iteration of system development
activities

Core
processes

1 2 3 4 5 6

Identify problem and obtain

approval

Plan and monitor project

Discover and understand details

Design system components

Build, test, and integrate system
components

Complete system tests and deploy

solution

Iterations
FIGURE 8-7
Adaptive SDLC with six core pro-
cesses and multiple iterations

CHAPTER 8 ■ Approaches to System Development 231

core processes defined in Chapter 1, which are repeated throughout the text, are
extensions of the development activities shown in Figure 8-6. The columns, of
course, are the multiple iterations of the project. In fact, as we compare the core
processes of this adaptive, iterative life cycle with the phases of the waterfall life
cycle from Figure 8-3, we see a very close correspondence between the two. The
primary difference between these two life cycles is that the waterfall approach
attempts to do all planning, all analysis, all design, and so forth, with a single
pass. Our iterative approach is adaptive because with each iteration’s analysis,
design, and implementation, modifications can be made to adapt to the changing
requirements of the project. The adaptive approach presented in this textbook is
a simplification of and variation on a more formal iterative approach called the
Unified Process (UP). You will learn more about the UP in Chapter 14.

A related concept to an iterative SDLC is called incremental development.
Incremental development is always based on an iterative life cycle. The basic idea
is that the system is built in small increments. An increment may be developed
within a single iteration or it may require two or three iterations. As each incre-
ment is completed, it is integrated with the whole. The system, in effect, is
“grown” in an organic fashion. The advantage of this approach is that portions
of the system get into the users’ hands much sooner so the business can begin
accruing benefits as early as possible.

Yet another related concept, which is also based on an iterative approach, is
the idea of a walking skeleton. A walking skeleton, as the name suggests, pro-
vides a complete front-to-back implementation of the new system but with only
the “bare bones” of functionality. The walking skeleton is developed in a few
iterations early in the project. Later iterations then flesh out the skeleton with
more functions and capabilities. It should be obvious that this approach also
gets working software into the hands of the users early in the project. Both
these approaches have the additional advantage of extensive user testing and
feedback to the project team as the project is progressing—another example of
how an iterative project is also adaptive.

The Support Phase
The predictive waterfall SDLC explicitly includes a support phase, but adaptive,
iterative SDLCs typically don’t. In fact, newer adaptive SDLCs consider support
to be an entirely separate project worthy of its own support methodology.

The objective of the support activities is to keep the system running pro-
ductively during the years following its initial deployment. They begin only after
the new system has been installed and put into production, and they last
throughout the productive life of the system. Most business systems are expected
to last for years. During the support phase, upgrades or enhancements may be
carried out to expand the system’s capabilities, and these will require their own
development projects. Three major activities occur during support:

■ Maintaining the system
■ Enhancing the system
■ Supporting the users

Every system, especially a new one, contains components that don’t function
correctly. Software development is complex and difficult, so it is never free of
error. Of course, the objective of a well-organized and carefully executed project is
to deliver a system that is robust and complete and that gives correct results.
However, because of the complexity of software and the impossibility of testing
every possible combination of processing requirements, there will always be errors.
In addition, business needs and user requirements change over time. Key tasks in
maintaining the system include fixing the errors (also known as fixing bugs) and
making minor adjustments to processing requirements. Usually, a system support
team is assigned responsibility for maintaining the system.

incremental development an SDLC
approach that completes portions of the system
in small increments across iterations, with each
increment being integrated into the whole as it
is completed

walking skeleton a development
approach in which the complete system struc-
ture is built but with bare-bones functionality

support activities the activities in the
support phase whose objective is to maintain
and enhance the system after it is installed and
in use

232 PART 4 ■ Projects and Project Management

Most newly hired programmer analysts begin their careers working on sys-
tem maintenance projects. Tasks typically include changing the information pro-
vided in a report, adding an attribute to a table in a database, or changing the
design of Windows or browser forms. These changes are requested and
approved before the work is assigned, so a change request approval process is
always part of the system support phase.

During the productive life of a system, it is also common to make major modi-
fications. At times, government regulations require new data to be maintained
or information to be provided. Also, changes in the business environment—new
market opportunities, new competition, or new system infrastructure—necessitate
major changes to the system. To implement these major modifications, the
company must approve and initiate an upgrade development project. An upgrade
project often results in a new version of the system. During your career, you may
participate in several upgrade projects.

The other major activity during the support phase is providing assistance to
the system users. A help desk, consisting of knowledgeable technicians, is a
popular method for answering users’ questions quickly and helping increase
their productivity. Training new users and maintaining current documentation
are important elements of this activity. As a new systems analyst, you may
conduct training sessions or staff the help desk to gain experience with user
problems and needs. Many newly hired information systems professionals start
their careers working at a help desk for part of their work week.

Methodologies, Models, Tools, and Techniques
Aside from an SDLC, systems developers have a variety of aids at their disposal
to help them complete activities and tasks. Among them are methodologies,
models, tools, and techniques. The following sections discuss each of these aids.

Methodologies
A system development methodology provides guidelines for every facet of
the systems development life cycle. For example, within a methodology, certain
models, such as diagrams, are used to describe and specify the requirements.
Related to these models are the techniques for how the project team will do its
work. An example of a technique is the guidelines for conducting a user inter-
view that you learned about in Chapter 2. Finally, each project team will use a
set of tools—usually computer-based tools—to build models, record informa-
tion, and write the code. These tools are considered part of the overall method-
ology used for a given project. Figure 8-8 illustrates that the techniques,

Methodology

Techniques Models

Tools

FIGURE 8-8
Components of a methodology

help desk the availability of support staff
to assist users with technical or processing
problems of the information system

system development methodology
a set of comprehensive guidelines for the SDLC
that includes specific models, tools, and
techniques

CHAPTER 8 ■ Approaches to System Development 233

models, and tools support one another to provide a comprehensive, integrated
methodology. Some methodologies are developed by systems professionals
within the company based on their experience. Others are purchased from con-
sulting firms or vendors.

Some methodologies (whether built in-house or purchased) contain massive
written documentation that defines everything the developers may need to pro-
duce at any point in the project, including how the documentation itself should
look and what reports to management should contain. Other methodologies are
much more informal, such as a single document that contains general descrip-
tions of what needs to be done. Sometimes, the methodology a company adopts
isn’t only informal, it is ad hoc and almost undefined, but such freedom of
choice is becoming rare. Management in most IT departments prefers to adopt
a flexible methodology so it can be adapted to different types of projects and
systems. The methodology used by the organization determines how predictive
or adaptive the approach to a system development project should be.

Models
Anytime people need to record or communicate information, it is useful to
create a model. As discussed in Chapter 2, a model is a representation of an
important aspect of the real world. Sometimes, the term abstraction is used
because we abstract (separate out) an aspect that is of particular importance to
us. For example, consider an airplane model. To talk about the aerodynamics
of the airplane, it is useful to have a model that shows the plane’s overall shape
in three dimensions. Sometimes, a drawing of the cross-sectional details of the
plane’s wing is what is needed. In other cases, a mathematical formulation of
the plane’s aerodynamic characteristics might be necessary to understand how
it will behave.

Some models are physically similar to the real product. Some are graphical
representations of important details. And some are abstract mathematical nota-
tions. Each emphasizes a particular type of information. In airplane design, engi-
neers use lots of different models. Learning to be an aerospace engineer involves
learning how to create and use all the various models. That is true for an infor-
mation system developer too, although the models for information systems
aren’t as standardized or precise as aerospace models. System developers are
making progress, but the field is very young, and many senior analysts were
self-taught. More importantly, an information system is much less tangible than
an airplane; you can’t really see, hold, or touch it. Therefore, the models of the
information system can seem much less tangible too.

The models used in system development include representations of inputs,
outputs, processes, data, objects, object interactions, locations, networks, and
devices, among other things. Most of the models are graphical models, which
are drawn representations that employ agreed-upon symbols and conventions.
These are often called diagrams and charts, and the UML diagrams you have
encountered so far in this book are examples. Much of this text describes how
to read and create a variety of models that represent an information system.

Another important kind of model is a project-planning model, such as
a Gantt chart or net present value (NPV), both of which are discussed in
Chapter 9. These models represent the system development project itself,
highlighting its tasks and other considerations. Yet another model related to
project management is a chart showing all the people assigned to the project.
Figure 8-9 lists some models used in system development.

Tools
In the context of system development, a tool is software support that helps cre-
ate models or other components required in the project. Tools might be simple
drawing programs for creating diagrams. They might also include an application

tool a software application that assists
developers in creating models or other
components required for a project

234 PART 4 ■ Projects and Project Management

that stores information about the project, such as data definitions, use case
descriptions, and other artifacts. A project management software tool, such as
Microsoft Project, is another example of a tool used to create models. The proj-
ect management tool creates a model of the project tasks and task dependencies.

Tools have been specifically designed to help system developers.
Programmers should be familiar with integrated development environments
(IDEs), which include many tools to help with programming tasks—for exam-
ple, smart editors, context-sensitive help, and debugging tools. Some tools can
generate program code for the developer. Some tools reverse-engineer old pro-
grams, generating a model from the code so the developer can determine what
the program does if its documentation is missing (or was never done). Visual
modeling tools are available to systems analysts to help them create and ver-
ify important system models. These tools are used to draw such diagrams as
class diagrams or activity diagrams. Other visual modeling tools help design
the database or even generate program code. Figure 8-10 lists the types of
tools used in system development.

Techniques
You learned several techniques for gathering information in Chapter 2. You
learned several techniques for defining functional requirements in Chapters 3, 4,
and 5. You learned some user-interface design techniques in Chapter 7. In system
development, a technique is a collection of guidelines that helps an analyst
complete an activity or task. It often includes step-by-step instructions for creating
a model, or it might include more general advice on collecting information from
system users. Examples include data-modeling techniques, software-testing techni-
ques, user-interviewing techniques, and relational database design techniques.

Sometimes, a technique applies to an entire life cycle phase and helps you
create several models and other documents. The modern structured analysis
technique (discussed later) is an example of this. Figure 8-11 lists some techni-
ques commonly used in system development.

Some models of system components

Flowchart
Data flow diagram (DFD)
Entity-relationship diagram (ERD)
Structure chart
Use case diagram
Class diagram
Sequence diagram

Some models used to manage the development process

Gantt chart
Organizational hierarchy chart
Financial analysis models - NPV, payback period

FIGURE 8-9
Some models used in system
development

Project management application
Drawing/graphics application
Word processor/text editor
Visual modeling tool
Integrated development environment (IDE)
Database management application
Reverse-engineering tool
Code generator tool

FIGURE 8-10
Types of tools used in system
development

integrated development
environments (IDEs) a set of tools that
work together to provide a comprehensive
development and programming environment for
software developers

visual modeling tools tools that help
analysts create and verify graphical models and
may also generate program code

technique guidelines to specify a method
for how to carry out a development activity
or task

CHAPTER 8 ■ Approaches to System Development 235

How do methodologies, models, tools, and techniques fit together? A
methodology includes a collection of techniques that are used to complete activ-
ities within each phase of the systems development life cycle. The activities
include the completion of a variety of models as well as other documents and
deliverables. Like any other professionals, system developers use software tools
to help them complete their activities.

Two Approaches to Software Construction
and Modeling
System development is done in many ways, and this diversity can confuse new
system developers. Sometimes, it seems as if every company uses its own meth-
odology. In fact, even the various development groups within the same company
may use their own methodologies, with each person coming up with his or her
own way of developing systems.

Still, there are many common concepts. In virtually all development groups,
some variation of the systems development life cycle is used, with phases for
project initiation, project planning, analysis, design, implementation, deployment,
and support. In addition, virtually every development group uses models, tools,
and techniques that make up an overall system development methodology.

All system developers should be familiar with two very general approaches
to software construction and modeling because these form the basis of virtually
all methodologies: the structured approach and the object-oriented approach.
This section reviews the major characteristics of both approaches and provides
a bit of history.

The Structured Approach
Earlier in this chapter, we discussed a traditional, predictive approach to the
SDLC. Those concepts focused on the phases and activities of the development
project itself. This section focuses on the models, including analysis and design
models, as well as the programming constructs that are used to develop the soft-
ware itself. This software construction approach is called structured system
development. Sometimes, these two ideas—the predictive approach to the SDLC
and the structured approach to software construction—can cause confusion
because they are both referred to as the traditional approach. We will be more
precise in the terminology in this book, but you should be aware that the indus-
try in general isn’t as precise.

Structured System Development
Structured analysis, structured design, and structured programming are the three
techniques that make up the structured approach. Sometimes, these techniques

Strategic planning techniques
Project management techniques
User interviewing techniques
Data-modeling techniques
Relational database design techniques
Structured programming technique
Software-testing techniques
Process modeling techniques
Domain modeling techniques
Use case modeling techniques
Object-oriented programming techniques
Architectural design techniques
User-interface design techniques

FIGURE 8-11
Some techniques used in system
development

structured approach system develop-
ment using structured analysis, structured
design, and structured programming techniques

236 PART 4 ■ Projects and Project Management

are collectively referred to as the structured analysis and design technique
(SADT). Developed in the 1960s, the structured programming technique was
the first attempt to provide guidelines to improve the quality of computer pro-
grams. You certainly learned the basic principles of structured programming in
your first programming course. The structured design technique was developed
in the 1970s to make it possible to combine separate programs into more com-
plex information systems. The structured analysis technique evolved in the
early-1980s to help clarify requirements for a computer system before develo-
pers designed the programs.

Structured Programming High-quality programs not only produce the correct
outputs each time the program runs, they also make it easy for other program-
mers to read and modify the program later. And programs need to be modified
all the time. Structured programming produces a program that has one
beginning and one ending, with each step in the program execution consisting
of one of three programming constructs:

■ A sequence of program statements
■ A decision point at which one set or another set of statements executes
■ A repetition of a set of statements

Figure 8-12 shows these three structured programming constructs.
A concept related to structured programming is top-down programming.

Top-down programming divides more complex programs into a hierarchy of
program modules (see Figure 8-13). One module at the top of the hierarchy con-
trols program execution by “calling” lower-level modules as required. Sometimes,
the modules are part of the same program. For example, in COBOL, one main
paragraph calls another paragraph by using the Perform keyword. In Visual
Basic, a statement in an event procedure can call a general procedure. The
programmer writes each program module (paragraph or procedure) by using the

FIGURE 8-12 Three structured programming constructs

Stop

Sequence Decision Repetition

No

Yes yes

No

Stand up

Walk to the
window

Wear sunscreen

Look outside

Take an umbrella

Turn right Is it raining?

Take a step

Are you
at your

destination?

structured programming a program-
ming approach where each module has one
start point and one end point and uses
sequence, decision, and repetition constructs
only

top-down programming the concept
of dividing a complex program into a hierarchy
of program modules

CHAPTER 8 ■ Approaches to System Development 237

rules of structured programming (one beginning and one end as well as sequence,
decision, and repetition constructs).

Sometimes, separate programs are produced that work together as one
“system.” Each of these programs follows top-down programming and struc-
tured programming rules, but the programs themselves are organized into a
hierarchy, as with top-down programming. One program calls other programs.
When the hierarchy involves multiple programs, such an arrangement is some-
times called modular programming.

Structured Design As information systems became increasingly complex during
the 1970s, each system involved many different functions. Each function per-
formed by the system might be made up of dozens of separate programs. The
structured design technique was developed to provide some guidelines for
deciding what the set of programs should be, what each program should accom-
plish, and how the programs should be organized into a hierarchy. The modules
and the arrangement of modules are shown graphically by using a model called
a structure chart (see Figure 8-14).

There are two main principles of structured design: Program modules
should be (1) loosely coupled and (2) highly cohesive. Loosely coupled means
that each module is as independent of the other modules as possible, which
allows each module to be designed and later modified without interfering with
the performance of the other modules. Highly cohesive means that each module
accomplishes one clear task. That way, it is easier to understand what each
module does and ensure that if changes to the module are required that none
will accidentally affect other modules.

The structured design technique defines different degrees of coupling and
cohesion and provides a way of evaluating the quality of the design before the
programs are actually written. As with structured programming, quality is
defined in terms of how easily the design can be understood and modified when
the need arises.

Structured design assumes the designer knows what the system needs to do:
what the main system functions are, what the required data are, and what the
needed outputs are. Designing the system is obviously much more than designing
the organization of the program modules. Therefore, it is important to realize

FIGURE 8-13 Top-down, or modular, programming

Module 1
begin
do 1
do 2
do 3

return control to Boss

Module 1
begin
do 1
do 2
do 3

return control to Boss

Module 2
begin
do x
do y
do z

return control to Boss

Module 2
begin
do x
do y
do z

return control to Boss

Module 3
begin

if x then y
else z
do abc

return control to Boss

Module 3
begin

if x then y
else z
do abc

return control to Boss

Boss or control module
start

call module 1
call module 2
call module 3

stop

Boss or control module
start

call module 1
call module 2
call module 3

stop

structured design the design process of
organizing a program into a set of modules and
organizing those modules into a hierarchical
structure

structure chart a graphical diagram
showing the hierarchical organization of
modules

238 PART 4 ■ Projects and Project Management

that the structured design technique helps the designer complete only part of the
entire design life cycle phase.

By the 1980s, file and database design techniques were used along with
structured design. Newer versions of structured design assumed that database
management systems are used in the system, and program modules were
designed to interact with the database. In addition, because nontechnical people
were becoming involved with information systems, user-interface design techni-
ques were developed. For example, menus in an interactive system determine
which program in the hierarchy gets called. Therefore, a key aspect of user-
interface design is done in conjunction with structured design.

Structured Analysis Because the structured design technique requires the
designer to know what the system should do, techniques for defining system
requirements were developed. System requirements define in great detail what
the system must do but without committing to a specific technology. By defer-
ring decisions about technology, the developers can focus their efforts on what
is needed, not on how to do it. If these requirements aren’t fully and clearly
worked out in advance, the designers cannot possibly know what to design.

The structured analysis technique helps the developer define what the sys-
tem needs to do (the processing requirements), what data the system needs to
store and use (data requirements), what inputs and outputs are needed, and
how the functions work together to accomplish tasks. The key graphical model
of the system requirements that are used with structured analysis is called the
data flow diagram (DFD); it shows inputs, processes, storage, and outputs as
well as the way these function together (see Figure 8-15).

The most recent variation of structured analysis defines systems processing
requirements by identifying all the events that will cause the system to react in
some way. For example, in an order-entry system, if a customer orders an

Calculate amounts

Get employee
pay rates

Payroll system

Calculate pay
amounts

Output payrollEnter time cards

Rates
Employee

pay/tax rates

Payroll
amounts

Payroll
information

Validated
time card

Payroll
amounts

Validated
time card

information

FIGURE 8-14
A structure chart created by using the
structured design technique

structured analysis a technique to
determine what processing is required and to
organize those requirements by using structured
analysis models

data flow diagram (DFD) a structured
analysis model showing inputs, processes,
storage, and outputs of a system

CHAPTER 8 ■ Approaches to System Development 239

item, the system must process a new order (a major system activity). Each
event leads to a different system activity. The analyst takes each of these activ-
ities and creates a data flow diagram showing the processing details, including
inputs and outputs.

A model of the needed data is also created based on the types of things the
system needs to store information (data entities) about. For example, to process
a new order, the system needs to know about the customer, the items wanted,
and the details about the order. You learned in Chapter 4 that this model is
called an entity-relationship diagram (ERD). The data entities from the entity-
relationship diagram correspond to the data storage shown on data flow dia-
grams. Figure 8-16 shows an example of an entity-relationship diagram.
Figure 8-17 illustrates the sequence followed when developing a system using
structured analysis, structured design, and structured programming.

FIGURE 8-15 A data flow diagram (DFD) created by using the structured analysis technique

Offered course Enroll
student

2

Schedule
course

1

Course enrollment

Student
Produce
class list

3

Student

Schedule

Enrollment
request

Class list

Offered courseAcademic
department

Faculty
member

Customer

cust number–PK

name
bill address

home phone
office phone

order ID–PK
order date

amount

Order Order Item

item ID–PK
quantity

price

FIGURE 8-16
An entity-relationship diagram (ERD)
created by using the structured analy-
sis technique

240 PART 4 ■ Projects and Project Management

The Object-Oriented Approach
An entirely different approach to information systems—the object-oriented
approach—views an information system as a collection of interacting objects
that work together to accomplish tasks (see Figure 8-18). Conceptually, there
are no processes or programs; there are no data entities or files. The system
consists of objects. An object is a thing in the computer system that is capa-
ble of responding to messages. This radically different view of a computer system
requires a different approach to systems analysis, systems design, and
programming.

The object-oriented approach began with the development of the Simula
programming language in Norway in the 1960s. Simula was used to create com-
puter simulations involving such “objects” as ships, buoys, and tides in fjords. It
is very difficult to write procedural programs that simulate ship movement, but
a new way of programming simplified the problem. In the 1970s, the Smalltalk
language was developed to solve the problem of creating graphical user inter-
faces (GUIs) that involved such “objects” as pull-down menus, buttons, check
boxes, and dialog boxes. More recent object-oriented languages include C++,
Java, and C#. These languages focus on writing definitions of the types of
objects needed in a system; as a result, all parts of a system can be thought of
as objects, not just the graphical user interface.

Given that the object-oriented approach views information systems as
collections of interacting objects, object-oriented analysis (OOA) defines the
objects that do the work and determines what user interactions (called use
cases) are required to complete the tasks. Object-oriented design (OOD)
defines all the additional types of objects that are necessary to communicate
with people and devices in the system, it shows how the objects interact to
complete tasks, and it refines the definition of each type of object so it can
be implemented with a specific language or environment. Object-oriented
programming (OOP) is the writing of statements in a programming language
to define what each type of object does.

FIGURE 8-17 How structured analysis leads to structured design and structured programming

Structured analysisStructured analysis

Events
Data flow diagrams

Entity-relationship diagram

Events
Data flow diagrams

Entity-relationship diagram

Structured designStructured design

Structure charts
(one for each event)

that define program modules
based on the data flow diagrams

Structure charts
(one for each event)

that define program modules
based on the data flow diagrams

Structured programmingStructured programming

Program each module using
structured programming

constructs

Program each module using
structured programming

constructs

object-oriented approach system
development based on the view that a system
is a set of interacting objects that work
together

object a thing in an information system that
responds to messages by executing functions or
methods

object-oriented analysis (OOA) the
process of identifying and defining the use
cases and the sets of objects (classes) in the
new system

object-oriented design (OOD)
defining all of the types of objects necessary to
communicate with people and devices in the
system, showing how objects interact to
complete tasks, and refining the definition of
each type of object so it can be implemented
with a specific language or environment

object-oriented programming
(OOP) programming using object-oriented
languages that support object classes, inheri-
tance, reuse, and encapsulation

CHAPTER 8 ■ Approaches to System Development 241

An object is a type of thing. It could be a customer or an employee or it
could be a button or a menu. Identifying types of objects means classifying
things. Some things, such as customers, exist outside and inside the system.
There is the real customer, who is outside the system, and the computer repre-
sentation of the customer, which is inside the system. A classification or “class”
represents a collection of similar objects; therefore, object-oriented development
uses a UML class diagram (introduced in Chapter 4) to show all the classes of
objects that are in the system (see Figure 8-19). For every class, there may be
more specialized subclasses. For example, a savings account and a checking
account are two special types of accounts (two subclasses of the class Account).
Similarly, a pull-down menu and a pop-up menu are two special types
of menus. Subclasses exhibit or “inherit” the characteristics of the class
above them.

A UML sequence diagram shows how objects interact or collaborate while
carrying out a task. Figure 8-20 shows a use case realization sequence diagram
that includes an actor as a stick figure and five other objects that work together
by sending messages to complete a use case named Cancel order.

The object-oriented approach yields several key benefits, among them natu-
ralness and reusability. The approach is natural—or intuitive—for people because
we tend to think about the world in terms of tangible objects. It is less natural to
think about complex procedures found in procedural programming languages.
Also, because the object-oriented approach involves classes of objects and many
systems in the organization use the same objects, these classes can be used over
and over again whenever they are needed. For example, almost all systems use
menus, dialog boxes, windows, and buttons, but many systems within the same
company also use customer, product, and invoice classes. These can also be
reused. There is less need to “reinvent the wheel” to create an object.

“Create an order for
Susan Franks for an
executive desk and a

very comfortable chair.”

“Executive desk
#19874, add

yourself to this
order.”

“OK, here are the
details of new
order 134.... .”

“Very comfortable
chair # 76532, add

yourself to this
order.”

“Customer Susan
Franks, add yourself
as the customer for

this order.”

“OK, will do.”

A product object:
executive desk

serial number 19874

A new order object
order number 134

dated 4/23/10

A customer object: Susan
Franks,

customer number 386,
Seattle, WA

“OK, will do.”

A product object: very
comfortable chair

serial number 76532

“OK, will do.”

FIGURE 8-18
The object-oriented approach to
information systems (read clockwise
starting with the user)

242 PART 4 ■ Projects and Project Management

Many systems being developed today combine traditional and object-
oriented technology. Some integrated development environments (IDEs) also use
traditional and object-oriented technology in the same tool. For example, OOP
can be used for the user interface and procedural programming can be used for
the rest. Many Web applications are built by using structured programming
and modular design. For example, PHP supports both technologies. Many sys-
tem projects are exclusively traditional in analysis and design, and others are

FIGURE 8-20 A UML sequence diagram showing object interactions for a use case

:OrderItem:Order :InventoryItem :OrderTransaction«controller»
:OrderHandler

cancelOrder(orderID)

cancelOrder()

cancelItem()

updateQty (qty)

cancelPayment ()

Clerk

Loop for all items

name
address
phone

Customer

accountNumber
balance
dateOpened

Account

makeDeposit()
makeWithdrawal()

0..*1

interestRate

SavingsAccount

checkStyle
minimumBalance

CheckingAccount

calculateInterest()

FIGURE 8-19
A class diagram created during object-
oriented design

CHAPTER 8 ■ Approaches to System Development 243

exclusively object-oriented, even within the same information systems depart-
ment. Everyone should know the basic concepts of each, but your coursework
may emphasize one approach over the other. See Online Chapter B for more
about structured analysis and structured design.

Agile Development
The highly volatile marketplace has forced businesses to respond rapidly to new
opportunities. Sometimes, these opportunities appear in the middle of imple-
menting another business initiative. To survive, businesses must be agile—that
is, able to change directions rapidly, even in the middle of a project. Agile
development is a philosophy and set of guidelines for developing information
systems in an unknown, rapidly changing environment, and it can be used with
any system development methodology. Usually, Agile development complements
adaptive approaches to the SDLC and methodologies that support it. But the
emphasis is on taking an adaptive approach and making it agile in all develop-
ment activities and tasks. Related to Agile development, Agile modeling is a phi-
losophy about how to build models, some of which are formal and detailed,
others sketchy and minimal. All the models you have learned how to create in
this text can be used with Agile modeling.

Agile Development Philosophy and Values
The “Manifesto for Agile Software Development” (see the “Further Resources”
section) identifies four basic values, which represent the core philosophy of
Agile development:

■ Value responding to change over following a plan
■ Value individuals and interactions over processes and tools
■ Value working software over comprehensive documentation
■ Value customer collaboration over contract negotiation

The people involved in system development—whether as team members,
users, or other stakeholders—all need to accept these priorities for a project to
be truly agile. Adopting an Agile approach isn’t always easy. Managers and
executive stakeholders frequently have trouble accepting this less rigid view-
point, wanting instead to impose more controls on development teams and
enforce detailed plans and schedules. However, the Agile philosophy takes the
opposite approach, providing more flexibility in project schedules and letting
the project teams plan and execute their work as the project progresses.

Some industry leaders in the Agile movement coined the term chaordic to
describe an Agile project. Chaordic comes from two words: chaos and order.
The first two values in the list do seem to be a recipe for chaos, but software
projects always have unpredictable elements—hence, a certain amount of
chaos. The Agile philosophy recognizes this unpredictability, handling it with
increased flexibility and by trusting the project team to develop solutions to
project problems. Depending too heavily on a plan and predefined processes
exacerbates problems when unpredictable requirements arise. Developers need
to accept a certain amount of chaos and mix that with other Agile modeling
and development techniques that help to provide order and structure to the
project. Chapter 9 will cover many of these Agile project management
techniques.

Another important aspect of Agile development is that customers must con-
tinually be involved with the project team. They don’t just sit down with the
project team for a few sessions to develop the specifications and then go their
separate ways. They become part of the technical team. Because working soft-
ware is being developed throughout the project, customers are continually
involved in defining requirements and testing components.

agile development a guiding philosophy
and set of guidelines for developing information
systems in an unknown, rapidly changing
environment

chaordic a term used to describe adaptive
projects that are chaotic and ordered

244 PART 4 ■ Projects and Project Management

Historically, particularly with predictive projects, many systems develop-
ment efforts attempted to be fixed price endeavors. This was true for both in-
house groups and external development teams. However, the approach with
Agile development is that systems development projects should be more of a col-
laborative effort. Hence, contracts take on an entirely different flavor. Fixed
prices and fixed deliverables don’t make sense. Contracts for Agile projects
include other kinds of options for the customer. The approach to the scheduling
of activities, the delivery of system components, and the early termination of the
project allow the client to maintain control, but it is done with different options
than with fixed bid contracts.

Models and modeling are critical to Agile development, so we look next at
Agile modeling. Many of the core values are illustrated in the principles and
practices of building models.

Agile Modeling Principles
Much of this text teaches techniques for creating models. Your first impression
might be that an agile approach means less modeling or maybe even no model-
ing. Agile modeling (AM) isn’t about doing less modeling but about doing the
right kind of modeling at the right level of detail for the right purposes. AM
doesn’t dictate which models to build or how formal to make those models.
Instead, it helps developers stay on track with their models by using them as a
means to an end rather than end deliverables. AM’s basic principles express the
attitude that developers should have as they develop software. Figure 8-21 sum-
marizes Agile modeling principles. We discuss those principles next.

Develop Software as Your Primary Goal
The primary goal of a software development project is to produce high-quality
software. The primary measurement of progress is working software, not inter-
mediate models of system requirements or specifications. Modeling is always a
means to an end, not the end itself. Any activity that doesn’t directly contribute
to the end goal of producing software should be questioned and avoided if it
cannot be justified.

Enable the Next Effort as Your Secondary Goal
Focusing only on working software can also be self-defeating, so developers
must consider two important objectives. First, requirements models might be
necessary to develop design models. So, don’t think that if the model cannot be
used to write code, it is unnecessary. Sometimes, several intermediate steps are
needed before the final code can be written. Second, although high-quality soft-
ware is the primary goal, long-term use of that code is also important. So, some
models might be necessary to support maintenance and enhancement of the sys-
tem. Yes, the code is the best documentation, but some architectural design

Agile Modeling principles

• Develop software as your primary goal.
• Enable the next effort as your secondary goal.
• Minimize your modeling activity—few and simple.
• Embrace change, and change incrementally.
• Model with a purpose.
• Build multiple models.
• Build high-quality models and get feedback rapidly.
• Focus on content rather than representation.
• Learn from each other with open communication.
• Know your models and how to use them.
• Adapt to specific project needs.

FIGURE 8-21
Agile modeling principles

agile modeling (AM) a guiding philos-
ophy in which only models that are necessary,
with a valid need and at the right level of detail,
are created

CHAPTER 8 ■ Approaches to System Development 245

decisions might not be easily identified from the code. Look carefully at
what other artifacts might be necessary to produce high-quality systems in the
long term.

Minimize Your Modeling Activity—Few and Simple
Create only the models that are necessary. Do just enough to get by. This princi-
ple isn’t a justification for sloppy work or inadequate analysis. The models you
create should be clear, correct, and complete. But don’t create unnecessary mod-
els. Also, keep each model as simple as possible. Normally, the simplest solution
is the best solution. Elaborate solutions tend to be difficult to understand and
maintain. However, simplicity isn’t a justification for being incomplete.

Embrace Change, and Change Incrementally
Because the underlying philosophy of Agile modeling is that developers must
be flexible and respond quickly to change, a good Agile developer willingly
accepts—even embraces—change. Change is seen as the norm, not the excep-
tion. Watch for change, and have procedures ready to integrate changes into
the models. The best way to accept change is to develop incrementally. Take
small steps and address problems in small bites. Change your model incremen-
tally and then validate it to make sure it is correct. Don’t try to accomplish
everything in one big release.

Model with a Purpose
We indicated earlier that the two reasons to build models are to understand
what you are building and to communicate important aspects of the solution
system. Make sure your modeling efforts support those reasons. Sometimes,
developers try to justify building models by claiming that (1) the development
methodology mandates the development of the model, (2) someone wants a
model, even though the person doesn’t know why it is important, or (3) a
model can replace a face-to-face discussion of issues. Identify a reason and
an audience for each model you develop. Then, develop the model in
sufficient detail to satisfy the reason and the audience. Incidentally, the audience
might be you.

Build Multiple Models
Along with other modeling methodologies, UML has several models to represent
different aspects of the problem at hand. To be successful—in understanding the
problem or communicating the solution—you need to model the critical aspects
of the problem domain or the required solution. Don’t develop all of them; be
sure to minimize your modeling, but develop enough models to make sure you
have addressed all the issues.

Build High-Quality Models and Get Feedback Rapidly
Nobody likes sloppy work. It is based on faulty thinking and introduces errors.
One way to avoid error in models is to get feedback rapidly while the work is
still fresh. Feedback comes from users as well as from technical team members.
Others will have helpful insights and different ways to view a problem and iden-
tify a solution.

Focus on Content Rather Than Representation
Sometimes, a project team has access to a sophisticated visual modeling tool.
These can be helpful, but at times, they are distracting because developers
spend time making the diagrams pretty. Be judicious in the use of tools. Some
models need to be well drawn for communication or contractual issues.

246 PART 4 ■ Projects and Project Management

Sometimes, it is more productive to build a model with a tool because it is
expected that it will be changed frequently, and using a tool is usually more
productive than redrawing by hand. In other cases, a hand-drawn diagram
might suffice. Sometimes, developers work out a model on a whiteboard in a
conference room and take a digital photo to keep a record of the details
worked out.

Learn from Each Other with Open Communication
All the adaptive approaches emphasize working in teams. Don’t be defensive
about your models. Other team members have good suggestions. You can never
truly master every aspect of a problem or its models.

Know Your Models and How to Use Them
Being an Agile modeler doesn’t mean that you aren’t skilled. If anything, you
must be more skilled to know the strengths and weaknesses of the models,
including how and when to use them. An expert modeler applies the previous
principles of simplicity, quality, and development of multiple models.

Adapt to Specific Project Needs
Every project is different because it exists in a unique environment, involves dif-
ferent users, stakeholders, and team members, and requires a different develop-
ment environment and deployment platform. Adapt your models and modeling
techniques to fit the needs of the business and the project. Sometimes, models
can be informal and simple. For other projects, more formal, complicated mod-
els might be required. An Agile modeler is able to adapt to each project.

Chapter Summary
System development projects are organized around a sys-
tems development life cycle (SDLC). Some SDLCs are
based on a more predictive approach to the project, and
other SDLCs are based on a more adaptive approach. The
predictive approach to the SDLC includes phases that are
completed sequentially or with some overlap. The tradi-
tional SDLC phases are project initialization, project plan-
ning, analysis, design, implementation, deployment, and
support. The adaptive approach to the SDLC is used
when the requirements or technology are less certain and
it is difficult to plan everything about the project in
advance. Adaptive SDLCs use multiple iterations that
allow the analysis, design, and implementation of smaller
parts of the application to be completed and evaluated.
The SDLC used in this text is an example of an adaptive
SDLC, and the six core processes correspond to the phases
of the traditional predictive SDLC.

All development projects use an SDLC to manage
the project, but there is more to system development
than the SDLC. Models, techniques, and tools make up
a system development methodology that provides guide-
lines for completing every activity in the SDLC. Most

methodologies are based on one of two approaches to
software construction and modeling: the traditional
approach or the object-oriented approach. The tradi-
tional approach uses such models and techniques as use
cases, data flow diagrams, entity-relationship diagrams,
structure charts, the structured analysis technique, the
structured design technique, and structured program-
ming techniques. The object-oriented approach views
software as a collection of interacting objects that col-
laborate to complete tasks. Such models and techniques
as use cases, class diagrams, sequence diagrams, package
diagrams, state machine diagrams, object-oriented anal-
ysis, object-oriented design, and object-oriented pro-
gramming are used.

Agile development, the leading trend in system
development, helps keep system development projects
responsive to change. It is a philosophy that values
change over following a plan, individuals over process
and tools, working software over documentation, and
customer collaboration over contract negotiation.
Agile modeling describes principles for keeping a proj-
ect agile.

CHAPTER 8 ■ Approaches to System Development 247

Key Terms

adaptive approach to the SDLC 228

Agile development 244

Agile modeling (AM) 245

chaordic 244

data flow diagram (DFD) 239

help desk 233

incremental development 232

integrated development
environments (IDEs) 235

object 241

object-oriented analysis (OOA) 241

object-oriented approach 241

Object-oriented design (OOD) 241

Object-oriented programming (OOP) 241

phases 228

predictive approach to the SDLC 227

spiral model 230

structure chart 238

structured analysis 239

structured approach 236

structured design 238

Structured programming 237

support activities 232

system development methodology 233

technique 235

tool 234

Top-down programming 237

Visual modeling tools 235

walking skeleton 232

waterfall model 228

Review Questions
1. What is a project?

2. What is the range of sizes of an information system
development project?

3. What is the system development life cycle (SDLC)?

4. What characteristics of a project call for a predictive
approach to the SDLC?

5. What characteristics of a project call for an adaptive
approach to the SDLC?

6. What are the seven phases of the traditional
predictive SDLC?

7. What are the objectives of the support phase?

8. Explain how the waterfall model of the SDLC
controls the changes that occur during a project.

9. Explain the advantages of having the phases of a
predictive SDLC overlap.

10. What organizing concept is included in all adaptive
SDLCs?

11. What is considered the first adaptive SDCL? Sketch it.

12. For an adaptive SDLC, explain what goes on during
each iteration.

13. The SDLC used in this text is based on what
adaptive SDLC?

14. What are the core processes in the SDLC used in
this book, and what traditional predictive SDLC
phase corresponds to each process?

15. What is the iterative approach that involves complet-
ing and deploying part of an application over a few
iterations and then completing and deploying another
part of that application after a few more iterations?

16. Why do adaptive SDLCs not explicitly include the
support phase?

17. What are the three activities of the support phase?

18. What is a popular support technique used to answer
users’ questions and help them increase
productivity?

19. What is a system development methodology?

20. What are some examples of models included in a
methodology?

21. What are some examples of techniques included in
a methodology?

22. What are some examples of tools included in a
methodology?

23. What are the two approaches to software con-
struction and modeling?

24. What are the basic characteristics of the traditional
approach?

25. What are the basic characteristics of the object-
oriented approach?

26. What are the three main structured techniques?

27. What are three diagrams created by the structured
approach?

28. What are the main object-oriented techniques?

29. What is Agile development?

30. What are the four “values” reflected in Agile
development?

31. What is Agile modeling (AM)?

32. What are the 11 Agile modeling principles?

248 PART 4 ■ Projects and Project Management

Problems and Exercises
1. Write a one-page paper that distinguishes among

the fundamental purposes of the analysis phase, the
design phase, and the implementation phase of the
traditional predictive SDLC.

2. Describe an information system project that might
have three subsystems. Discuss how three iterations
might be used for the project.

3. Why might it make sense to teach analysis and
design phases and activities sequentially, like a
waterfall, even though iterations are, in practice,
used in nearly all development projects?

4. List some of the models that architects create to
show different aspects of a house they are designing.
Explain why several models are needed.

5. What models might an automotive designer use to
show different aspects of a car?

6. Sketch and write a description of the layout of your
room at home. Are both the sketch and the written
description considered models of your room?
Which is more accurate? More detailed? Which
would be easier to follow by someone unfamiliar
with your room?

7. Describe a technique you use to help you complete
the activity “Get to class on time.” What are some
of the tools you use with this technique?

8. Describe a technique you use to make sure you get
assignments done on time. What are some of the
tools you use with this technique?

9. What are some other techniques you use to help you
complete activities in your life?

10. There are at least two approaches to the SDLC, two
approaches to software construction and modeling,
and a long list of techniques and models. Discuss
the following reasons for this diversity of
approaches: The field is young; the technology
changes quickly; different organizations have dif-
ferent needs; there are many types of systems;
developers have widely different backgrounds.

11. Go to the campus placement office to gather some
information on companies that recruit information
systems graduates. Try to find any information
about the companies’ approaches to developing
systems. Is their SDLC described? Do any mention
an IDE or a visual modeling tool? Visit the compa-
nies’ Web sites to look for more information.

12. Visit the Web sites of a few leading information
systems consulting firms. Try to find information
about their approaches to developing systems. Are
their SDLCs described? Do the sites mention any
tools, models, or techniques?

Case Study

A “College Education Completion” Methodology

Given that you are reading this book, you are probably a
college student working on a degree. Think about complet-
ing college as a project—a big project lasting many years
and costing more than you might want to admit. Some
students do a better job managing their college completion
projects than others. Many fail entirely (certainly not you),
and most complete college late and way over budget
(again, certainly not you).

As with any other project, to be successful, you need
to follow some sort of “college education completion”
methodology—that is, a comprehensive set of guidelines
for completing activities and tasks from the beginning of
planning for college through to the successful completion.

1. What are the phases that your college education
completion life cycle might have?

2. What are some of the activities included with each
phase?

3. What are some of the techniques you might use to
help complete those activities?

4. What models might you create? Differentiate the
models you create to get you through college from
those that help you plan and control the process of
completing college.

5. What are some of the tools you might use to help you
complete the models?

CHAPTER 8 ■ Approaches to System Development 249

RUNNING CASE STUDIES

Community Board of Realtors

The Board of Realtors Multiple Listing Service (MLS)
system isn’t very large in terms of use cases and
domain classes. In that respect, the functional
requirements are simple and well understood. MLS
needs a Web site with public access to the listings,
and it also needs to allow agents and brokers to log
in to the system to add and update listings. There is
very little back-end administrative data maintenance
required, except to add or update a real estate office
or agent.

1. Compared to the Tradeshow application described
in Chapter 1, how long might this project take,
and which approach to the SDLC would be most
appropriate?

2. If you use a predictive SDLC, how much time
might each phase of the project take? How
much overlap of phases might you plan for?
Be specific about how you would overlap
the phases.

3. If you use an adaptive SDLC, how many iterations
might you plan to include? What use cases would
you analyze, design, and implement in the first

iteration? What use cases would you work on in
the second iteration? In additional iterations?
Think in terms of getting the core functionality
implemented early and then building the support-
ing functionality.

4. Let us say this project focused on Web access to
the MLS. If you also plan to deploy a smartphone
application for use by the public and by the agents
and brokers, how might this affect your choice of
the approach to the SDLC? What are the implica-
tions for including the smartphone application in
the initial project versus having a separate project
for wireless later?

5. Consider using incremental development to
include the Web application and the wireless sup-
port. Describe what would be included in the first
and second deployments of the project. Take into
consideration that you might want to work on
some initial problem solving for requirements,
design, and implementation of the wireless support
at the same time you are working on the Web
application.

The Spring Breaks ‘R’ Us Travel Service

Recall from Chapter 2 that SBRU’s initial system
included four major subsystems: Resort relations,
Student booking, Accounting and finance, and Social
networking. The project calls for an adaptive
approach to the SDLC for several reasons. One, it is
relatively large in scope. Two, there is a diverse set of
users in several functional areas, internal and external
to the company and in several foreign countries.
Three, the project needs to use an assortment of
newer technologies that can communicate anytime and
anywhere.

1. The SBRU information system includes four major
subsystems: Resort relations, Student booking,
Accounting and finance, and Social networking.
Although you have only worked with the domain
model class diagram for the Social networking
subsystem, list as many of the domain classes
that would probably be involved in each of the

subsystems. Note which classes are used by more
than one subsystem.

2. Based on the overlapping classes, what domain
classes seem to be part of the core functionality for
SBRU? Draw a domain model class diagram that
shows these classes and their associations.

3. Let us say you plan to implement the basic use
cases that create and maintain the classes that are
part of the core functionally you just modeled.
Describe what domain classes you would focus on
in each iteration if you assumed that you would
need two iterations for the initial core functional-
ity and two additional iterations to complete each
of the subsystems.

4. How might you use incremental development to
get some core functionality or some subsystems
deployed and put into use before the project is
completed?

(continued on page 251)

250 PART 4 ■ Projects and Project Management

On The Spot Courier Services

In the On the Spot system, package pickup and delivery
are closely integrated with route schedules. However,
recall the RMO system, where there is a Sales sub-
system, an Order fulfillment subsystem, a Customer
account subsystem, and a Marketing subsystem. We
could conceive of the On the Spot system as also con-
sisting of four subsystems:

■ Customer account subsystem (like customer
account)

■ Pickup request subsystem (like sales)
■ Package delivery subsystem (like order fulfillment)
■ Routing and scheduling subsystem

Assuming that On the Spot’s system developer
approached this new system from this point of view
and that the developer also decided to use an adaptive,
iterative approach, answer these questions:

1. In what order would you develop the four sub-
systems? Support your answer.

2. Reviewing your work from Chapter 3, assign each
of your use cases to a particular subsystem. Does
this change your answer or does it strengthen your
original premise? Support your answer.

3. Reviewing yourwork fromChapter 4, assign eachof
your classes to a subsystem. (Note: Some classes may
be in multiple subsystems. The primary subsystem is
the one that “creates” the objects in that class.) Does

this change your answer or does it strengthen your
original premise? Support your answer.

4. Considering the Agile modeling principles, discuss
each of the following:
a. In Chapter 3, you developed a list of use cases

and a use case diagram. If you follow the Agile
modeling philosophy, how much or how little
of this model do you think is necessary?
Support your answer.

b. In Chapter 4, you developed a class diagram. If
you follow the Agile modeling philosophy, how
much or how little of this model do you think is
necessary? Support your answer.

c. In Chapter 5, you developed some use case
descriptions, activity diagrams, and system
sequence diagrams. If you follow the Agile
modeling philosophy, how many or how few of
these models do you think are necessary?
Support your answer.

d. In Chapter 6, you developed a network dia-
gram and specified hardware requirements. If
you follow the Agile modeling philosophy, how
many or how few of these models do you think
are necessary? Support your answer.

Save your answers. These questions would be good
to review at the end of the semester—after you have
learned more about design and implementation.

Sandia Medical Systems Real-Time Glucose Monitoring

Review the original system description in previous
chapters and the use case diagram shown in Figure 8-22
to refamiliarize yourself with the proposed system.

Consider this additional information:

■ Sandia Medical Devices (SMD) and New Mexico
Health Systems (NMHS) are developing the system
jointly. Project staff will include analysts, designers,
and programmers from both organizations. Three
technical staff members from each organization
have been assigned initially, and the budget
includes sufficient funds to add other personnel for
short-term assignments as needed. In addition,
NMHS will assign a physician and a physician’s
assistant to the project one day per week.

■ It is anticipated that SMD personnel assigned to
the project will work primarily at NMHS facilities
in office space and with computer equipment
dedicated to developing the Real-Time Glucose
Monitoring (RTGM) system.

■ NMHS anticipates recruiting a handful of its own
diabetic employees to provide requirements and to
test the prototype RTGM software.

■ SMD and NMHS anticipate a six-month develop-
ment schedule for an initial version of the server
software and Android-based client-side software.
That will be followed by a three-month period for
evaluation and another three-month period for
development of improved software versions and

(continued from page 250)

(continued on page 252)

CHAPTER 8 ■ Approaches to System Development 251

support for a wider range of mobile phone oper-
ating systems.

Answer these questions:

1. Given the system goals, requirements, and scope as
they are currently understood, is the project
schedule reasonable? Why or why not?

2. How well understood are the system requirements
at the start of the project? What are the implica-
tions of your answer for using a predictive,

adaptive, or mixed SDLC? What are the implica-
tions of your answer for using Agile techniques?

3. Medical personnel at NMHS have very busy
schedules. NMHS’s decision to assign two medical
practitioners to the project for one day a week
represents a significant investment in salary and
lost revenue. How should project iterations be
structured to ensure rapid progress to completion,
high quality, and efficient use of medical practi-
tioner time?

Further Resources

Classic and more recent texts include:
Craig Larman, Agile and Iterative Development:

A Manager’s Guide. Addison-Wesley, 2004.

Scott W. Ambler, Agile Modeling: Effective

Practices for eXtreme Programming and the

Unified Process. Wiley Publishing, 2002.

D. E. Avison and G. Fitzgerald, Information

Systems Development: Methodologies,

Techniques, and Tools (3rd ed.). McGraw-Hill,
2003.

Tom DeMarco, Structured Analysis and System

Specification. Prentice Hall, 1978.

Ivar Jacobson, Grady Booch, and James
Rumbaugh, The Unified Software Development

Process. Addison-Wesley, 1999.

Steve McConnell, Rapid Development. Microsoft
Press, 1996.

Meilir Page-Jones, The Practical Guide to

Structured Systems Design (2nd ed.). Prentice
Hall, 1988.

John Satzinger, Robert Jackson, and Stephen
Burd, Object-Oriented Analysis and Design with

the Unified Process. Course Technology, 2005.

(continued from page 251)

FIGURE 8-22 Use cases for the patient and physician actors

View/respond to
alert

View history

Annotate history

Send message to
physician

View/hear
message from

physician

View/respond to
alert

Send message to
patient

View/hear
message from

patient

Set alert
conditions

Patient Physician

252 PART 4 ■ Projects and Project Management

9
Project Planning and Project
Management

Chapter Outline

■ Principles of Project Management

■ Activities of Core Process 1: Identify the Problem and Obtain Approval

■ Activities of Core Process 2: Plan and Monitor the Project

Learning Object ives

After reading this chapter, you should be able to:

■ Describe the factors that cause a software development project to succeed
or fail

■ Describe the responsibilities of a project manager

■ Describe the knowledge areas in the project management body of knowledge
(PMBOK)

■ Describe the Agile approach to the project management knowledge areas

■ Explain the activities required to get a project approved (Core Process 1)

■ Explain the activities required to plan and monitor a project (Core Process 2)

253

OPENING CASE

Blue Sky Mutual Funds: A New Development Approach

Jim Williams, vice president of finance for Blue Sky Mutual
Funds, spoke first. “There are some things I like about
this new approach, but other things worry me,” he
told Gary Johnson, the company’s director of information
technology.

“This idea of ‘growing’ the system through several
iterations makes a lot of sense to me. It is always hard
for my people to know exactly what they need a new
information system to do and what will work best
for the company. So, if they can get their hands on the
system early, they can begin acceptance testing and try
it out to see whether it addresses their needs in the best
way.

“Let me see if I understand the big picture, though.
Your development team and my investment advisors will
decide on a few core processes that the system needs to
support and then your team will design and build a system
to support those core processes. You will do that in a
mini-project that will last about six weeks. Then, you will
continue adding more functionality through several other
mini-projects until the system is complete and functioning
well. Is that right?”

Jim was becoming more enthusiastic about this new
approach to system development.

“Yes, that’s the basic idea,” Gary said. “Your users
need to understand that the first few versions of the
system won’t be complete and may not be completely
robust either. But these early versions will give them
something to work with and try out. We also need good
feedback from their acceptance testing so the system will
be thoroughly tested by the time we are through.”

“I realize that,” Jim said. “My people will like not
having to think from the very beginning about everything
they need the system to do. They’ll like being able to try
things out. As I said earlier, I like this approach. However,
the part I don’t like about this approach is that it will be
more difficult for you to give me a firm time schedule and
project cost. That worries me. In the past, those have
been two of the major tools we used to monitor a
project’s progress. Are you saying that now we won’t
have a schedule at all? And you want an open budget?”
Jim frowned.

“It’s not as bad as it first sounds,” Gary said. “This
approach is an ‘adaptive’ approach, by which I mean that
because the system is growing, the project is more open
ended. The project manager will still create a schedule
and estimate the project costs, but she won’t even try
to identify and lock in all the required functionality for
several of the iterations. Because the system’s scope is
going to continually be refined over the first few itera-
tions, there is the risk of ‘scope creep.’ That is one of
the biggest risks with adaptive approaches. You and I
should meet with the project manager fairly frequently
to ensure that the scope is controlled and the project
doesn’t get out of control.”

“Okay,” Jim said. “You have convinced me to try this
new approach. However, let’s treat this project as a pilot
and see how it works. If it’s successful, we will consider
using this iterative approach on our other projects.” Jim
and Gary agreed that a pilot was the best way to get
started. Gary then headed off to meet with the project
manager and get the project started.

Overview
Chapter 8 introduced you to the SDLC and the various alternatives for organiz-
ing software development activities. By now, you may be asking yourself such
questions as:

■ “How are all these activities coordinated?”
■ “How do I know which tasks to do first?”
■ “How is the work assigned to the different teams and team members?”
■ “How do I know which parts of the new system should be developed first?”

The purpose of project planning and project management is to bring
some order to all these (sometimes seemingly unrelated) tasks. As you will
learn in this chapter, the success of any given project highly depends on
the skills and abilities of those managing the project. You will also learn
that project management skills aren’t only for project managers—that all the
project team members contribute to the management of the project and thus
to its success.

254 PART 4 ■ Projects and Project Management

This chapter first discusses the need for project management and the princi-
ples associated with it. The rest of this chapter discusses the detailed activities
that are associated with the first two core processes of systems development,
both of which are primarily project management processes. The purpose of this
chapter is to teach you how to plan, organize, and direct a systems development
project.

Principles of Project Management
Many of you may have built a Web page with HTML or written a computer
program for yourself or a friend. In those cases, where it was just you working,
you weren’t too concerned about how to organize your work or how to manage
the project. However, as soon as two or more developers are working together,
the work must be partitioned and organized, with specific assignments for each
developer. This is true whether the project uses a predictive approach or an
adaptive approach. As discussed in the last chapter, the chosen methodology
lays out a complex set of activities and tasks that must be carefully managed.
Failing to organize usually causes wasted time and effort as well as confusion
and may even cause the project to fail.

Even though every project team designates one person as the project man-
ager, with primary responsibility for the way the team functions, all members
contribute to the team’s management. The project manager for the RMO CSMS
project is Barbara Halifax, but she has a senior systems analyst helping her
every step of the way. As the project proceeds, all team members are involved
in aspects of managing the project.

As discussed in earlier chapters, a project is a planned undertaking with
a beginning and an end, which produces a predetermined result and is
usually constrained by a schedule and resources. The development of informa-
tion systems fits this definition. In addition, it is usually a quite complex
project, with many people and tasks that have to be organized and coordi-
nated. Whatever its objective, each project is unique. Different products
are produced, different activities are required with varying schedules, and
different resources are used. This uniqueness makes information systems
projects difficult to control.

The Need for Project Management
Studies suggest that most IT projects are less than successful as measured by
three criteria: finishing on time, finishing within budget, and effectively meeting
the need as expressed by the original problem definition. Since 1994, the well-
known Standish Group has produced an annual CHAOS report, which provides
statistics on the outcome of IT development projects for the preceding year. The
Standish Group categorizes projects in three ways: (1) successful projects, which
are completed on time and within budget while meeting the users’ requirements
for functionality; (2) challenged projects, which have some combination of
being late, over budget, or reduced in scope; and (3) failed projects, which are
cancelled or result in the system never being used. The numbers vary somewhat
year by year, with more recent years showing a slight improvement. In 2009,
the results indicated that 32 percent were successful, 44 percent were challenged,
and 24 percent were failed projects (see Figure 9-1). Billions of dollars are spent
on projects that don’t meet their objectives.

The Standish Group’s report doesn’t just indicate the rate of IT project
failure or success; it also identifies the reasons for each. Here are some of the
reasons for failure:

■ Undefined project management practices
■ Poor IT management and poor IT procedures

CHAPTER 9 ■ Project Planning and Project Management 255

■ Inadequate executive support for the project
■ Inexperienced project managers
■ Unclear business needs and project objectives
■ Inadequate user involvement

It is notable that the primary reasons projects fail are a lack of executive
involvement and a lack of management skills. The other major reason is lack of
involvement by the user community. In other words, projects don’t tend to fail
for lack of programming skills or enthusiastic developers.

For an IT project to be successful, strong IT management and business
direction need to be present. The other major element in all project success is
sound project management procedures as well as experienced and competent
project managers. In fact, good project managers always ensure that they have
received clear directives from business executives and committed user involve-
ment with the requirements for the new system.

The Role of the Project Manager
Project management is organizing and directing other people to achieve a
planned result within a predetermined schedule and budget. At the beginning of
a project, a plan is developed that specifies the activities that must take place,
the deliverables that must be produced, and the resources that are needed.
Thus, project management can also be defined as the processes used to plan the
project and then to monitor and control it.

One of the most exciting careers for IT-oriented people is being a project
manager. As projects become more complex because of shorter time frames,
distributed project teams (including off-shore and cross-cultural teams), rapidly
changing technology, and more sophisticated requirements, highly qualified
project managers are sought after and paid well. Many universities are adding
project management courses to their curricula to respond to the needs of
industry. There is a strong need and a high demand for people who are capable
project managers. As your career progresses, you should develop your manage-
ment skills. You may even want to become active in the Project Management
Institute (PMI), which is the most well-known professional organization for
project managers.

Overall, project managers must be effective internally (managing people and
resources) and externally (conducting public relations). Internally, the project

24%

32%

44%
Challenged projects

Failed projects

Successful projects

FIGURE 9-1
Project completion results as reported
by the Standish Group

project management organizing and
directing other people to achieve a planned
result within a predetermined schedule and
budget

256 PART 4 ■ Projects and Project Management

manager serves as locus of control for the project team and all its activities. He
or she establishes the team’s structure so work can be accomplished. This list
identifies a few of these internal responsibilities:

■ Developing the project schedule
■ Recruiting and training team members
■ Assigning work to teams and team members
■ Assessing project risks
■ Monitoring and controlling project deliverables and milestones

Externally, the project manager is the main contact for the project. He or
she must represent the team to the outside world and communicate the team
members’ needs. Major external responsibilities include:

■ Reporting the project’s status and progress
■ Working directly with the client (the project’s sponsor) and other

stakeholders
■ Identifying resource needs and obtaining resources

A project manager works with several groups of people. First of all, there
is the client (i.e., the customer), who pays for the development of the new
system. Project approval and the release of funds come from the client. For
in-house developments, the client may be an executive committee or a vice
president. The client approves and oversees the project, along with its funding.
For large, mission-critical projects, an oversight committee (sometimes
called the steering committee) may be formed. This consists of clients and
other key executives who have a vision of the organization’s strategic direc-
tion and a strong interest in the project’s success. On the other hand, the
users are the people who will actually use the new system. The user typically
provides information about the detailed functions and operations needed in
the new system.

Communication with the client and oversight committee is an important
part of the project manager’s external responsibilities. Similarly, working
with the team leaders, team members, and any subcontractors is an important
part of a project manager’s internal responsibilities. The project manager
must ensure that all internal and external communication is flowing properly.
Figure 9-2 depicts the various groups of people involved in a development
project.

Project Management and Ceremony
Another dimension that has a heavy impact on project management is the
level of formality, sometimes called ceremony, required for a given project.
Ceremony is a measure of the amount of documentation generated, the
traceability of specifications, and the formality of the project’s decision-making
processes. Some projects, particularly small ones, are conducted with very low
ceremony. Meetings occur in the hallway or around the water cooler. Written
documentation, formal specifications, and detailed models are kept to a mini-
mum. Developers and users usually work closely together on a daily basis to
define requirements and develop the system. Other projects, usually larger,
more complex ones, are executed with high ceremony. Meetings are often held
on a predefined schedule, with specific participants, agendas, minutes, and
follow-through. Specifications are formally documented with an abundance of
diagrams and documentation and are frequently verified through formal review
meetings between developers and users.

A project’s ceremony isn’t the same as whether its approach is predictive or
adaptive. However, even though the approach and ceremony are different, large
predictive projects often tend to have high ceremony, with lots of meetings and
documentation. Unfortunately, the extensive documentation tended to increase

client the person or group that funds the
project

oversight committee clients and key
managers who review the progress and direct
the project

users the person or group of people who
will use the new system

ceremony the level of formality of a
project; the rigor of holding meetings and
producing documentation

CHAPTER 9 ■ Project Planning and Project Management 257

the length of the project and sometimes contributed to cost overruns.
Techniques such as rapid application development (RAD) were utilized to help
manage large predictive projects with less formality. This approach required less
documentation and fewer status and review meetings. Of course, many smaller
projects were often managed with less ceremony.

Adaptive projects can also be more or less formal in the way they are
managed. The Unified Process, which will be explained in Chapter 14, is quite
formal, with high ceremony. Each iteration is precisely defined, with such
specific outcomes as specifications, diagrams, prototypes, and deliverables.
However, adaptive, iterative approaches also lend themselves to being
managed with much less formality. The inherent characteristics of an iterative
approach, with its “just in time” project plans, easily adjust to less documen-
tation, fewer diagrams for specifications, and less formal status reporting. The
Agile approach, discussed in several chapters, is typically a low-ceremony
approach.

Project Management Body of Knowledge (PMBOK)
The Project Management Institute (PMI) is a professional organization that
promotes project management, primarily within the United States but also
throughout the world. In addition, professional organizations in other countries
promote project management. The PMI has a well-respected and rigorous

Project manager

Client
External

stakeholders

UserUser

Oversight committee

Internal
stakeholders

Subcontractor Team leaderTeam leader

MemberMember Member MemberMember

FIGURE 9-2
Participants in a system development
project

258 PART 4 ■ Projects and Project Management

certification program, and many corporations encourage their project managers
to become certified.

As part of its mission, the PMI has defined a body of knowledge for project
management. This body of knowledge, referred to as the project management
body of knowledge (PMBOK), is a widely accepted foundation of information
that every project manager should know. The PMBOK is organized into these
nine knowledge areas:

■ Project Scope Management—Defining and controlling the functions that are
to be included in the system as well as the scope of the work to be done by
the project team

■ Project Time Management—Creating a detailed schedule of all project tasks
and then monitoring the progress of the project against defined milestones

■ Project Cost Management—Calculating the initial cost/benefit analysis and
its later updates and monitoring expenditures as the project progresses

■ Project Quality Management—Establishing a comprehensive plan for
ensuring quality, which includes quality control activities for every phase
of a project

■ Project Human Resource Management—Recruiting and hiring project team
members; training, motivating, and team building; and implementing related
activities to ensure a happy, productive team

■ Project Communications Management—Identifying all stakeholders and
the key communications to each; also establishing all communications
mechanisms and schedules

■ Project Risk Management—Identifying and reviewing throughout the
project all potential risks for failure and developing plans to reduce these
risks

■ Project Procurement Management—Developing requests for proposals,
evaluating bids, writing contracts, and then monitoring vendor performance

■ Project Integration Management—Integrating all the other knowledge areas
into one seamless whole

As you progress in your career, you would be wise to keep a record of the
project management skills you observe in others as well as those you learn from
your own experiences. One place to start is with the set of skills a systems
analyst needs, as described in earlier chapters. A good project manager knows
how to develop a plan, execute it, anticipate problems, and make adjustments.
Project management skills can be learned.

Agile Project Management (APM)
In the last chapter, you learned about the Agile approach to developing systems
and the four values of Agile development, which tended to prefer flexibility over
plans and defined procedures. Obviously, these values have a large impact on
the way a project is managed. However, one of the concerns with them is that
they imply a working environment that has no controls or plans—one that can
turn into pure chaos. In Chapter 8, we introduced a term, chaordic,
that describes a project that expects and allows chaos while remaining
controlled or ordered.

Agile project management is still a young discipline, and the IT industry is
still learning how best to balance the flexibility and chaos of an Agile team
with the order and control needed for a project. More than anything else, Agile
project management is a way of balancing these two conflicting requirements:
how to be agile and flexible while maintaining control of the project schedule,
budget, and deliverables.

To help you understand Agile project management better, we will now go
through five of the nine knowledge areas of the PMBOK and discuss the issues
involved in implementing them by using Agile principles.

project management body of
knowledge (PMBOK) a project
management guide and standard of
fundamental project management principles

CHAPTER 9 ■ Project Planning and Project Management 259

Agile Scope Management
Scope management refers to the scope of the new system and the scope of
the project. In traditional predictive projects, the project manager and the
team attempted to define the scope in both areas at the beginning of the project,
during the planning phase. Unfortunately, for most new systems, there were so
many unknowns that the scope was almost never defined accurately. The Agile
philosophy accepts the fact that the scope isn’t well understood and that
there will be many changes, updates, and refinements to the requirements as the
project progresses. However, uncontrolled scope can result in a project that
never finishes, even if it is an Agile project. The project manager must have a
process and mechanisms in place to control the scope of the project. How can
this be done?

Let us assume that one of the major outcomes of the planning iteration was
the decision to develop a prioritized list of business requirements that the new
system needs to support. Figure 9-3 represents this list, with the higher-priority
items toward the top and the lower ones toward the bottom. These require-
ments can be prioritized by using several criteria, including importance to the
business, risk, complexity, size, and other dependencies. In most projects, some
combination of these criteria is used to prioritize the requirements. Figure 9-3
also indicates that the project team has made a preliminary assignment of these
requirements to iterations. As new requirements are defined, they are prioritized,
inserted into the stack, and assigned to an iteration.

Controlling the scope is a decision made by the client, with input provided
by the project team and the users. With an iterative project, a deliverable is
usually provided at the end of each iteration. Because the system is growing
throughout the project, with the highest priority requirements implemented
first, the client is able to shut down the project when he or she feels that the

High-priority functions

Low-priority functions

Iteration 1

New required fuctions
can be inserted.

Existing functions can be
removed or reprioritized.Iteration 2

Iteration 3

Iteration 4

Iteration 5

FIGURE 9-3
Scope management with changing
requirements

260 PART 4 ■ Projects and Project Management

system is complete enough to satisfy the business need. Most projects usually
require one or two more iterations to do final integration and testing to ensure
that the system will scale for high volume and that it meets all the “hardening”
requirements for security purposes.

Agile Time Management
Traditional time management is primarily concerned with scheduling tasks:
creating the schedule, assigning work according to the schedule, and monitoring
progress against the schedule. In predictive projects, the schedule is created
during the initial planning phase and entered into a project scheduling system,
such as Microsoft Project.

In an Agile project, because the requirements are always changing, it can be
very difficult to create and maintain a meaningful project schedule. The initial
planning effort will usually include the beginning set of requirements and divide
the project into iterations, with a preliminary assignment of requirements
to iterations. However, it is expected that the number of iterations and the
assignments will change as new requirements are discovered and put on the
prioritized stack.

Within an iteration, which often lasts from two to four weeks, a more
detailed schedule can be developed. The Agile philosophy includes the idea that
only for small work projects, in which the tasks are performed at nearly the
same time (i.e., within one iteration), can a meaningful schedule be developed.
In addition, the project team, not the project manager or team leader, will
schedule its own work. Thus, for an Agile project, each iteration is usually
planned as the first task within the iteration. The tasks are identified, estimates
of the effort are developed, and work is assigned by the project team members.
Because there are so many iterations in a project, the project team gets lots of
practice and quickly becomes proficient at estimating and scheduling the work.

Agile Cost Management
It is normal for the client stakeholder to ask “How long will it take and how
much will it cost for this new system to be developed?” These questions are
hard to answer. For predictive projects, the project manager gives estimates, but
as we saw earlier, these are usually incorrect. Agile project managers admit
more readily that time and cost estimates are difficult to make, especially with a
project in which the requirements are expected to change throughout. Hence,
estimating the project’s cost isn’t as important as controlling the cost during the
life of the project. The project manager’s responsibility to control costs is just as
important for an Agile project as it is for a traditional predictive project.

Agile Risk Management
In most adaptive, iterative projects, including Agile projects, close attention is
given to project risks, particularly technical risks. Iterative projects are often
risk-driven, meaning that early iterations focus specifically on addressing the
most critical project risks. Although a similar emphasis on risk can be included
in a predictive project, it is more difficult to integrate specific risk-reducing
activities into the project schedule. The major difference between the two types
of projects is that in predictive projects, separate prototypes are built, whereas
in adaptive projects, the high-risk portions of the new system are built first.

Agile Quality Management
Usually, quality management has to do with the quality of the deliverable from
the project. However, in an Agile project, we also consider the quality of the
process. How well is the project working, and how well do the internal proce-
dures promote project success?

In a predictive project, the final set of tasks consists of the system test, the
integration test, and the user acceptance test. However, scheduling these

CHAPTER 9 ■ Project Planning and Project Management 261

extensive tests at the end of the project renders it very difficult and expensive to
make the necessary changes. An alternative is to deploy the system with minimal
testing, which helps the budget but can cause many problems for the company.

In an Agile project, each iteration has a deliverable. Often, each iteration
also integrates a new piece into the growing total system. Within each iteration,
the new pieces are tested by themselves and as integrated with the rest of the
system. The users also get involved in testing the system’s ability to meet their
business needs. Hence, testing and quality control are spread across the entire
project and usually provide a better-tested and more robust system.

Another kind of quality control that should be done as part of an Agile
project is a process evaluation at the end of each iteration. In other words, the
project team does a self-evaluation to figure out how well it did and what could
be done to improve the next iteration.

Activities of Core Process 1:
Identify the Problem and Obtain Approval
The adaptive SDLC used in this text includes six core processes. Chapter 2
outlined the activities of Core Process 3 (“Discover and understand details”),
and Chapter 6 outlined the activities of Core Process 4 (“Design system compo-
nents”). In this chapter, we discuss the activities of Core Processes 1 and 2.

Core Process 1 is probably the most critical process for project success. As
was noted in the Standish report, establishing such things as strong executive
support, clear business case and direction, and effective planning is critical to
project success. These important factors are identified and resolved during the
activities of Core Process 1. Figure 9-4 highlights the four activities associated
with Core Process 1.

Identify the Problem
Information system development projects are initiated for various reasons,
including: (1) to respond to an opportunity, (2) to resolve a problem, and (3) to
respond to an external directive.

Most companies are continually looking for ways to increase their market
shares or open up new markets. One way they create opportunities is with
strategic plans—short term and long term. In many ways, planning is the
optimal way to identify new projects. As the strategic plans are developed,
projects are identified, prioritized, and scheduled.

Projects are also initiated to resolve immediate business problems. Such
projects can be initiated as part of a strategic plan, but they are more commonly

FIGURE 9-4 Activities of Core Process 1

Identify Problem Activities

Identify the problem.

Quantify project approval factors.

Perform risk and feasibility analysis.

Review with the client and obtain approval.

Core

Processes
1 2 3 4 5 6

Identify problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy
solution.

Iterations

262 PART 4 ■ Projects and Project Management

requested by middle managers who want to take care of some difficulty in the
company’s operations. Sometimes, these needs are so critical that they are
brought to the attention of the strategic planning committee and integrated into
the overall business strategy. At other times, an immediate need can’t wait,
such as a new sales commission schedule or a new report needed to assess
productivity. In these cases, managers of business functions will request the
initiation of individual development projects.

Finally, projects are initiated to respond to outside directives. One common
version of this is legislative changes that require new information gathering
and reporting—for example, changes in tax laws and labor laws. Legislative
changes can also expand or contract the range of services and products that an
organization can offer in a market. The regulatory changes in the telecommuni-
cations industry have opened doors for cable TV and telephone companies,
which are vying for opportunities to provide cellular services, Internet access,
and personalized entertainment.

Identifying and carefully defining the problem is a critical activity for a
successful project. The objective is to ensure that the new system actually meets
the business need. The purpose is to precisely define the business problem and
determine the scope of the new system. This activity defines the target you want
to hit. If the target is ill defined, all subsequent activities will lack focus.
For example, a request might be made for a system that would “keep track of
salesperson commissions.” Without knowing more about the context surround-
ing this request, a system could be built that only records the commissions,
ignoring the complexities of tax reporting, internal-versus-outside salespersons,
deferred commissions, complex relationships, shared commissions, and so
forth. Thus, even though all the specifications may not be defined in this initial
activity, enough defining needs to be done to understand most of the implica-
tions of the required solution.

An effective way to define the problem is to develop a System Vision
Document, which was introduced in Chapter 1. There are three components to
this document: the problem description, the anticipated business benefits, and
the system capabilities.

The first task in developing a System Vision Document is to review the
business needs that initiated the project. If the project was initiated as part
of the strategic plan, then the planning documents need to be reviewed. If the
project originated from departmental needs, then key users need to be consulted
to help the project team understand the business need. From this task, a brief
problem description is developed. As these needs are identified, the team also
develops a detailed list of the expected business benefits. The list of business
benefits contains the results that the organization anticipates it will accrue
from a new system. Business benefits are normally described in terms of the
specific results that can change the financial statements, either by decreasing
costs or increasing revenues.

As the business benefits are being identified, the project team will identify
the new system’s specific capabilities to support the realization of these benefits.
The objective of this task is to define the scope of the problem in terms of the
requirements for the information system. This scoping statement, as defined by
a list of system capabilities, helps identify the size and complexity of the new
system and the project that will be required.

Members of the development team, working with the users and the client,
combine these three components—the problem description, the business benefits,
and the system capabilities—into a System Vision Document. Figure 9-5
presents RMO’s System Vision Document. Note the differences between the
business benefits and the system capabilities. The business benefits focus on the
financial benefit to the company. The system capabilities focus on the system
itself. The benefits are achieved through the capabilities provided by the system.

System Vision Document a document
to help define the scope of a new system

business benefits the benefits that
accrue to the organization; usually measured
in dollars

system capabilities the required
capabilities of a new system; part of a System
Vision Document

CHAPTER 9 ■ Project Planning and Project Management 263

FIGURE 9-5 System Vision Document for RMO’s CSMS

Consolidated Sales and Marketing System

System Vision Document

Problem Description

Sales and marketing on the Web has changed drastically since the CSS system was built. Customers

are more sophisticated, and they are used to catalog and sales systems that are easy to use and provide

many services, such as one-click ordering, deferred-purchase tracking, simplified searches, and

comparison shopping. In addition, research has shown that sales increase dramatically when social

media marketing tools are combined with basic sales functionality. Hence, the new CSMS is needed not

only to respond to today‘s competition but to launch RMO into today‘s world of social media and mobile

computing. The longer RMO delays in starting this project, the more opportunities it misses.

System Capabilities

This document identifies the required system capabilities at a high level. Later documents will specify the

detailed requirements. These capabilities are required:

• Provide a shopping cart capability.

 • Support customer sales with high automation (one-click, etc.).

 • Recommend related product purchases and comparison shopping.

 • Allow customer ratings and recommendations.

 • Include “friend” network capability.

• Include comprehensive order fulfillment.

 • Support multiple and split-order shipping and tracking.

 • Support back-ordering and tracking.

 • Allow customer comments and feedback.

• Provide customer account and billing capability.

 • Provide individualized customer accounting.

 • Support electronic billing and many electronic payment methods.

 • Accumulate customer “points” and allow transfer and sharing.

• Include marketing functions for promotions and specials.

 • Provide flexible promotions and sales.

 • Accumulate and track “points” from suppliers directly to customers.

 • Interface with social marketing media for advertising and social marketing activities.

 • Support mobile devices for social marketing and sales.

Business Benefits

The primary business benefit of these capabilities will be to increase sales by connecting with customers

and improving the customer experience. The specific benefits include:

• Increasing the size of customer purchases

• Increasing the frequency of customer purchases

• Increasing customer satisfaction

• Increasing product recommendations from customers to friends

• Attracting new customers through recommendations and social marketing

• Building customer loyalty with recommendations and service

• Increasing speed of product availability

• Eliminating shipping delays and outages

264 PART 4 ■ Projects and Project Management

RMO’s existing CSS system was built under a tight deadline, and the
company recognized that it would have a fairly short life. There were still many
things to learn about Web marketing, but the existing CSS system will help the
company define the requirements for its CSMS system.

Quantify Project Approval Factors
The first activity produced a high-level overview document that identified the
need for a new system. However, that document alone may not be adequate to
receive approval and funding. During this second activity, the project team,
working with the users, will attempt to define more precisely the scope and
impact of the project.

The objective is to provide sufficient justification so funds will be released
and the project can start. Sometimes, the need is so great or so obvious that
project approval is almost automatic. In other situations, it may be necessary
to prepare a thorough cost-benefit analysis. These criteria must frequently be
considered to obtain project approval:

■ The estimated time for project completion
■ The estimated cost for the project and system
■ The anticipated benefits from the deployment of the new system

These are rough estimates. In the traditional predictive approach to systems
development, estimates were often made with a considerable amount of detail.
However, the estimates were usually far off the mark. The problem was, of
course, that with most new systems, the team was venturing into unknown
needs, requirements, and technologies. With the more adaptive approaches, the
stakeholders recognize that the requirements are unknown and that it is more
important to monitor and control scope, cost, and schedule than to try to make
estimates.

The Estimated Time for Project Completion
During Core Process 2 (“Plan and monitor the project”), a more detailed project
schedule is created. During project initiation, there usually isn’t enough known
about the project to create a schedule. But there is nevertheless a need to
estimate the project’s completion date, even though this is one of the hardest
things to do.

Sometimes, there are business constraints that dictate the completion of the
project. For example, new legislative requirements may affect the deployment
date. A window of opportunity may also provide a powerful motivation to
complete a project at a specific time. These considerations should be made
manifest and considered in the project approval and project planning processes.

The major inputs toward estimating the project completion date are the
scoping document and the amount of effort required to develop the listed
requirements. As indicated earlier, it is difficult to make an estimate with any
degree of accuracy. At this early point in the project, gross estimates of team
size and time frame are usually the best that can be achieved. For a predictive
approach, the list of requirements can serve as the starting point for estimating
the effort required to define and develop a particular function. For an adaptive
approach, the same information can be used to estimate the number of itera-
tions required and the size and number of teams working on the various
subsystems.

Figure 9-6 shows an example of a time estimate document for RMO.
For RMO, the development of the time estimate was a one-day exercise.

Because the project didn’t yet have approval or funding, neither a project
manager nor any systems analysts had been assigned to the project. However,
a project manager had been assigned to obtain approval, and two systems
analysts were assigned to help him. These three experienced technical people

CHAPTER 9 ■ Project Planning and Project Management 265

met for four hours with the key users from the various RMO departments. The
object of these meetings was to build a comprehensive list of all the functional
requirements from each department. After the meetings, the group met again
to organize this list of requirements into groupings that could be assigned to
various iterations for the development of the software.

An assumption that was made by the director of new development was that
there would be two subteams of four people each allocated to this project. As
indicated in Figure 9-6, the time estimate for this project is 48 weeks from the
date it begins.

The Estimated Cost for the Project and System
The estimated costs of developing the new CSMS are shown in Figure 9-7. By far,
the largest cost item in the project’s budget is the salaries of the project team. Other
cost elements include the cost of the new computers, training for the users, offices,
facilities, and utilities for the project team, travel expenses for the project team
to do site visits, and software licenses. As you can see, this estimate is a little over
$1.5 million.

After the system has been put into production, there will be annual operat-
ing costs, as shown in Figure 9-8. The largest cost is for a hosting service to
provide some of the equipment, the connection to the Internet, and server
administration services. These estimated costs were based on RMO using a host-
ing service to provide the equipment, the connection to the Internet, and server

Summary of Development Costs for CSMS

Expense category Amount

Salaries/wages (includes benefits costs)

(1 PM, 8 analysts, 1 support)

$936,000.00

Equipment/installation $308,000.00

Training $78,000.00

Facilities $57,000.00

Utilities $97,000.00

Travel/miscellaneous $87,000.00

Licenses $18,000.00

Total $1,581,000.00

FIGURE 9-7
Summary of development costs
for CSMS

Time Estimate for the New CSMS Project

Subsystem Functional
requirements

Iterations
required

15

Order Fulfillment subsystem* 12

Customer Account subsystem** 10

Marketing subsystem** 6

7

5

5

4

3

3

2

Estimated
time

20 weeks

20 weeks

15 weeks

13 weeks

12 weeks

40 weeks

8 weeks

48 weeks

Reporting subsystem**

Total development time (2 teams)

Final hardening and acceptance testing

Total project time

*Assigned to Tiger team

**Assigned to Cougar team

Sales subsystem*

FIGURE 9-6
Project completion date estimate for
the CSMS project

266 PART 4 ■ Projects and Project Management

administration. The project team estimated about $13,000 a month for those
expenses, which is enough for 15 very large managed servers. This appeared to
be more than adequate, depending on the traffic volume. Other costs were for
one full-time programmer and two help desk personnel.

The Anticipated Benefits from the Deployment of the New System
The System Vision Document identifies the anticipated business benefits of
the new system. In this task, we analyze those business benefits and provide an
estimate of their value to the organization. This value becomes part of the total
decision criteria. Obviously, the dollar amount associated with these savings or
revenues must be estimated by the client. It isn’t the project manager’s job to
predict the value of business benefits. However, the project manager can
help the client identify categories of potential benefits. Typical areas of increased
revenue or cost reduction benefits include:

■ Opening up new markets with new services, products, or locations
■ Increasing market share in existing markets
■ Enhancing cross-sales capabilities with existing customers
■ Reducing staff by automating manual functions or increasing efficiency
■ Decreasing operating expenses, such as shipping charges for “emergency

shipments”
■ Reducing error rates through automated editing or validation
■ Reducing bad accounts or bad credit losses
■ Reducing inventory or merchandise losses through tighter controls
■ Collecting receivables (accounts receivable) more rapidly

The project team at RMO worked with the vice president of sales and
marketing to identify benefit areas and estimate a value for each one. This size
of an investment and ongoing expense was going to require board approval
within RMO. The board will want to know what the benefits of the new system
will be and what the return on the investment will be. One of the difficulties for
RMO is to determine how to assign a value to a benefit. A typical question
might be “Do we assign the value of all our sales given that this system is
needed to stay competitive in the marketplace? Or do we assign only the value
of the increased sales we expect to get from marketing and higher volume?” If
sales will drop because RMO becomes less competitive in the marketplace, the
total sales value could be used. However, if the existing system is good enough
to maintain a good client base, then only the increased sales should be used.
These kinds of decisions are made by the client, not the project team. In this
case, the vice president of sales and marketing at RMO decided to use a more
conservative estimate. Figure 9-9 summarizes the estimates he generated.

Many organizations like to compare the estimated costs with the anticipated
benefits to calculate whether the benefits outweigh the costs. This process is
called a cost/benefit analysis. Companies use a combination of methods to
measure the overall benefit of the new system. One popular approach is to
determine the net present value (NPV) of the new system. The two concepts
behind net present value are (1) that all benefits and costs are calculated in
terms of today’s dollars (present value) and (2) that benefits and costs are

Summary of Estimated Annual Operating Costs for CSMS

Recurring expense Amount

Programming $75,000.00

Connectivity/hosting $156,000.00

Help desk $90,000.00

Total $321,000.00

FIGURE 9-8
Summary of estimated annual
operating costs for CSMS

cost/benefit analysis process of
comparing costs and benefits to see whether
investing in a new system will be beneficial

net present value (NPV) the present
value of dollar benefits and dollar costs of a
particular investment

CHAPTER 9 ■ Project Planning and Project Management 267

combined to give a net value. The future stream of benefits and costs are netted
together and then discounted by a factor for each year in the future. The
discount factor is the rate used to bring future values back to current values.

Figure 9-10 shows a copy of the NPV calculation done for RMO’s new
CSMS. There are various techniques for calculating the NPV of a given invest-
ment. In this example, Year 0 represents the development period prior to the
deployment of the system. The annual benefits for each year are extended across
the top row. The development costs are shown on the second row. Annual
expenses are shown on the third. Those three rows are combined in the fourth
row to give the net benefits and costs. The fifth row shows the discount value,
given a 6 percent discount rate. The sixth row is the product of the fourth and
fifth rows and represents the net value in terms of today’s dollars (i.e., the
NPV). The seventh row shows a cumulative total of annual NPVs.

In Figure 9-10, the numbers in the seventh row eventually change from neg-
ative to positive. The point in time when that happens is called the break-even
point. The length of time before the break-even point is reached is called the
payback period. The payback period occurs in the year that the cumulative
value goes positive. To calculate it, first take the last year that the cumulative
value is negative—in this case, Year 2. Add to that year the number of days in
the following year (in this case, Year 3) that it takes for the cumulative value
to go positive. The method for doing that is to take absolute values of the end-
ing value in Year 2 divided by the sum of the absolute values for the end of
Year 2 and Year 3—in this case, 226,865 divided by (226,865 + 430,743).
Here, that calculation indicates that the cumulative value goes positive after
35 percent of the year has passed. Multiply .35 times the 365 days in the year
to get 128 days into Year 3. Many companies require a payback period of two
to three years on new software.

The previous cost/benefit calculation depends on an organization’s ability
to quantify the costs and benefits. If it can indeed estimate a dollar value for a
benefit or a cost, the organization treats that value as a tangible benefit or

FIGURE 9-10 Five-year cost/benefit analysis for CSMS

Recapture/prevention of lost sales

Sales to new customers

Increased efficiency in order processing

Reduction of data center and equipment costs

because of hosting

Total

$200,000.00

$350,000.00**

$50,000.00

$146,000.00

$1,046,000.00

**plus 8% annual growth

Estimated Annual Benefits for CSMS

Benefit or cost saving Amount

Increase sales to existing customers $300,000.00

FIGURE 9-9
Estimated annual benefits for CSMS

break-even point the point in time at
which dollar benefits offset dollar costs

payback period the time period after
which the dollar benefits have offset the
dollar costs

tangible benefit a benefit that can be
measured or estimated in terms of dollars

268 PART 4 ■ Projects and Project Management

cost. However, in many instances, an organization can’t measure some of the
costs and benefits to determine a value. Never discount the importance of ascer-
taining the “behind the scenes” reasons for a project. There may be political
reasons for or against the project that override all other feasibility analyses. If
there is no reliable method for estimating or measuring the value, it is consid-
ered an intangible benefit. In some instances, the importance of the intangible
benefits far exceeds the tangible costs—at least in the opinion of the client, who
pursues developing the system even though the dollar numbers don’t indicate a
good investment.

Examples of intangible benefits include:

■ Increased levels of service (in ways that can’t be measured in dollars)
■ Increased customer satisfaction (not measurable in dollars)
■ Survival
■ Need to develop in-house expertise (such as a pilot program with new

technology)

Examples of intangible costs include:

■ Reduced employee morale
■ Lost productivity (the organization may not be able to estimate it)
■ Lost customers or sales (during some unknown period of time)

Determining Project Risk and Feasibility
Project risk and feasibility analysis verifies whether a project can be started and
completed successfully. Because each project is a unique endeavor, every project
has unique challenges that affect its potential success.

The objective of this activity is to identify and assess the potential risks to proj-
ect success and to take steps to eliminate or at least ameliorate these risks. They
should be identified during the project approval process so all stakeholders are
aware of the potential for failure. The team can also establish plans and
procedures to ensure that those risks don’t interfere with the success of the project.
Generally, the team assigns itself these tasks when confirming a project’s feasibility:

■ Determine the organizational risks and feasibility.
■ Evaluate the technological risks and feasibility.
■ Assess the resource risks and feasibility.
■ Identify the schedule risks and feasibility.

Determine Organizational Risks and Feasibility
Each company has its own culture, and any new system must be accommo-
dated to that culture. There is always the risk that a new system departs
so dramatically from existing norms that it can’t be successfully deployed.
The analysts involved with feasibility analysis should evaluate organizational
and cultural issues to identify potential risks for the new system. Such issues
might include:

■ Substantial computer phobia
■ A perceived loss of control on the part of staff or management
■ Potential shifting of political and organizational power due to the new

system
■ Fear of change of job responsibilities
■ Fear of loss of employment due to increased automation
■ Reversal of long-standing work procedures

It isn’t possible to enumerate all the potential organizational and cultural
risks that exist. The project management team needs to be very sensitive to the
reluctance within the organization to identify and resolve these risks.

intangible benefit a benefit that accrues
to an organization but that can’t be measured
quantitatively or estimated accurately

CHAPTER 9 ■ Project Planning and Project Management 269

After identifying the risks, the project management team can take positive
steps to counter them. For example, the team can hold additional training ses-
sions to teach new procedures and provide increased computer skills. Higher
levels of user involvement in developing the new system will tend to increase
user enthusiasm and commitment.

Evaluate Technological Risks and Feasibility
Generally, a new system brings new technology into the company, even state-
of-the-art technology. Other projects use existing technology but combine it
into new, untested configurations. If an outside vendor is providing a capability
in a certain area, the client organization usually assumes the vendor is expert
in that area. However, even an outside vendor may find the requested level of
technology too complicated.

The project management team needs to carefully assess the proposed tech-
nological requirements and available expertise. When these risks are identified,
the solutions are usually straightforward. The solutions to technological risks
include providing additional training, hiring consultants, or hiring more experi-
enced employees. In some cases, the scope and approach of the project may
need to be changed to ameliorate technological risk. The important point is that
a realistic assessment will identify technological risks early, making it possible to
implement corrective measures.

Assess Resource Risks and Feasibility
The project management team must also assess the availability of resources for
the project. The primary resource consists of team members. Development
projects require the involvement of systems analysts, system technicians, and
users. Required people may not be available to the team at the necessary times.
An additional risk is that people assigned to the team may not have the neces-
sary skills for the project. After the team is functioning, members may have to
leave the team. This threat can come either from staff who are transferred
within the organization if other special projects arise or from qualified team
members who are hired by other organizations. Although the project manager
usually doesn’t like to think about these possibilities, skilled people are in short
supply and sometimes do leave projects.

The other resources required for a successful project include adequate com-
puter resources, physical facilities, and support staff. Generally, these resources
can be made available, but the schedule can be affected by delays in the
availability of these resources.

Identify Schedule Risks and Feasibility
The development of a project schedule always involves high risk. Every schedule
requires many assumptions and estimates without adequate information. For
example, the needs (and, hence, the scope) of the new system aren’t well known.
Also, the time needed to research and finalize requirements has to be estimated.
The availability and capability of team members aren’t completely known.

Another frequent risk in developing the schedule occurs when upper man-
agement decides that the new system must be deployed within a certain time.
Sometimes, there is an important business reason for setting a fixed deadline,
such as RMO’s need to complete the CSS in time for online ordering over the
holidays. Similarly, universities require the completion of new systems before
key dates in the university schedule. For example, if a new admissions system
isn’t completed before the admissions season, then it might as well wait another
full year. In cases like these, schedule feasibility can be the most important
feasibility factor to consider.

If the deadline appears arbitrary, the tendency is to create the schedule to
show that it can be done. Unfortunately, this practice usually spells disaster.
The project team should create the schedule without any preconceived notion of

270 PART 4 ■ Projects and Project Management

required completion dates. After the schedule is completed, comparisons can be
done to see whether timetables coincide. If not, the team can take corrective
measures, such as reducing the scope of the project, to increase the probability
of the project’s on-time completion.

One objective of defining milestones and iterations during the project sched-
ule is to permit the project manager to assess the ongoing risk of schedule slip-
page. If the team begins to miss milestones, the manager can possibly
implement corrective measures early. Contingency plans can be developed and
carried out to reduce the risk of further slippage.

Review with Client and Obtain Approval
As mentioned earlier, the amount of expenditure for the RMO project required
board approval. However, before a presentation could be given to the board,
RMO’s executive committee needed to understand and agree to the project. A
project this size has major impacts on all areas of the company. The departments,
such as sales and marketing, will be directly impacted. They will have to allocate
staff and resources to help in defining the requirements, developing test cases,
and testing the new system as it is developed. In other words, the people in this
department will have extra duties for the next 12 months or so. Even departments
not directly involved will need to support this heavy development activity,
perhaps tightening their budgets. In any event, it is always good policy to get
the approval and support of the entire company. This process starts by making
presentations to the senior executives of RMO. Often, a project manager will be
asked to make the presentation or at least be present to answer questions.

After the executive committee approves the project, it goes to the board.
After board approval, the IT department begins to assign full-time resources to
the project. It is also a good idea at this point to have a company-wide memo
or meeting to mark the beginning of this major activity. If the entire company
knows that all the executives are supporting it and requesting cooperation, the
project will proceed much more smoothly.

Activities of Core Process 2:
Plan and Monitor the Project
This core process lasts throughout the entire project. A major planning effort
occurs immediately after the project is approved. Ongoing planning and project
monitoring continue during all project iterations. Not only must each iteration
be planned as it starts, but progress must continually be monitored and correc-
tive actions may be required. Figure 9-11 illustrates by the height of the effort

FIGURE 9-11 Activities of Core Process 2

Plan and Monitor Activities

Establish the project environment.

Schedule the work.

Staff and allocate resources.

Evaluate work processes.

Monitor progress and make corrections.

Core

Processes
1 2 3 4 5 6

Identify problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy

solution.

Iterations

CHAPTER 9 ■ Project Planning and Project Management 271

curve in each iteration that planning and monitoring activities must be an inte-
gral part of every project iteration. The specific activities associated with
this core process are also listed in Figure 9-11. We will discuss each of these
activities individually.

Establish the Project Environment
So far in this text, we have discussed different types of projects, such as predictive
and adaptive projects, as well as tools, techniques, and methodologies to use with
these different types of projects. We have also discussed such concepts as cere-
mony, project reporting, stakeholders, user participation, and the project team
work environment. All these elements must be put in place as the project gets
under way. Some of these decisions will already have been made based on the
organization’s standard policies and procedures. Others will be decided during
the approval process. In any case, the project manager must ensure that the
project’s parameters and the work environment are finalized so the work of the
project can proceed without roadblocks or delays. There are important project
structure considerations that must be addressed as the project gets under way.
For example, what kind of communication processes will be needed to keep the
team and external stakeholders informed about what is going on? In addition,
the members of the project team all need computers and IDEs and other tools to
do their work. Of course, specific procedures about how the project team meets
with the users, how they write code, and how they submit code for acceptance
also need to be finalized. We will discuss three important considerations:

■ Recording and communicating—internal/external
■ Work environment—support/facilities/tools
■ Processes and procedures

Recording and Communicating—Internal/External
The project manager and project team members will be involved in all types of
meetings where decisions will be made and information developed. Determining
what is important and how to record this information needs to be set out in
specific project procedures. The other critical issue with information is what,
how, how frequently, and to whom this information needs to be disseminated.
One of the first tasks for a project manager on a new project is to establish the
procedures and guidelines for how to handle the project’s information.

A critical success factor for IT projects is to have the support of the organi-
zation’s executives and other key stakeholders. A good project manager under-
stands this need and structures his or her project so he or she communicates
frequently, with the appropriate detail, to each of his or her stakeholders.
Figure 9-2 identified the various stakeholders and participants in a project.
Some of these stakeholders will be integrally involved with the project. Other
stakeholders will be only marginally involved, receiving periodic status reports.
The client stakeholders (the ones paying the project costs) will need to be kept
aware of the project’s status and of any difficulties or delays. A stakeholder
analysis helps identify all those persons who have an interest in the project and
defines what information they will want and need concerning the project.
Generally, we refer to this as external reporting of project information.

Maintaining project information can be done via electronic means. Schedule
information can be published to a Web site so everyone can view it. Another
type of project-tracking tool, sometimes called a project dashboard, allows
all types of project information to be posted and viewed by Web browsers.
Figure 9-12 is an example of a project dashboard system that allows easy
access to project information. Spreadsheets, e-mails, newsletters, and list servers
all provide ways to maintain, collect, and distribute information. Once the elec-
tronic systems are set up, they will often take care of themselves.

272 PART 4 ■ Projects and Project Management

The members of the project team also need to have mechanisms in place to
communicate among themselves and document project decisions. This is an
entirely different type of information—information about the system under
development. For example, during analysis activities, the project team docu-
ments the results of user meetings by using various means, such as writing use
case descriptions. During design, information also needs to be recorded and
distributed among members of the team as appropriate. During testing, when
errors are found, they must be documented and assigned to programmers to be
fixed. Finally, the entire recording and communication requirement is often
made more critical by members of the project team (as well as the users) being
located at various sites around the globe. Figure 9-13 illustrates some of the
information that may need to be captured and maintained. The data repository
in the figure usually consists of many different types of data structures and stor-
age techniques—from wikis to databases to issue-tracking systems.

There is one caveat related to recording and communicating. With tradi-
tional predictive projects, the tendency was to create reams and reams of docu-
mentation. As you learned in the previous chapter, adaptive projects that use
the Agile philosophy emphasize code over documentation. A novice project
manager may interpret that to mean that no documentation is required.
However, even with an Agile approach, the basic user definitions need to be

FIGURE 9-12 Sample dashboard showing project information and status

Conference Registration System

Project Definition Statement Current Status

Create a new online Web-based system to
allow conference attendees to register for
conferences and sign up for specific events

and activities.

As of Jan1st all coding was complete.
System test has begun. Preparing for

acceptance test in 60 days.

Triple Constraint Matrix

Report
Status

Report
Bug

OK

Caution

Critical
Least Flexible Moderate Most Flexible

Scope Schedule Cost/Resources

Stable
Delays caused by rework of
database design. Critical task

5 days late.
Slightly over, not critical

Timeline

View/Update Details-Click on link below

Investigation Requirements Design & Code Acceptance Test

Jan10 Ap10 Jl10 Oc10 Ja11 Ap11 Jl11 Oc11

View/Update
Issues Log

View/Update
Team Roster

View/Update
Budget

View/Update
Schedule

View/Update
Documentation

CHAPTER 9 ■ Project Planning and Project Management 273

documented for later verification. It isn’t uncommon during programming for a
programmer to have to refer back to notes and models to remember the exact
details and decisions of a particular requirement. An experienced project manager
knows the right amount of documentation so the project isn’t overloaded with
overhead but critical decisions are recorded.

It should be obvious that a comprehensive recording and communication
scheme needs to be put in place. Fortunately, in today’s connected world, there
are many tools available so external and internal communication can be done
easily. With so many electronic tools, all project information should be available
online and accessible to all stakeholders. In fact, with the use of wikis, it is now
common to allow many team members and even users to assist in the recording
and updating of critical project information.

The CSMS team wanted to maintain its project information in digital format
and have it available to all stakeholders, including team members, users, the cli-
ent, and the members of the steering committee. RMO is a very open shop guided
by the philosophy that information should be widely distributed. Figure 9-14
shows all the tools that the CSMS project team uses to communicate and capture
information. The core team members had previously worked on several Agile pro-
jects, so they had learned that there is a correct balance of documentation—not
too much but enough to be able to trace key decisions and requirements. Barbara
Halifax, the project manager, wanted to ensure the tools were in place so it was
easy to record information when it was prudent to do so.

User documents, such as sample invoices, were scanned and placed in
a document repository. User functional definitions were recorded in a

Distributed team with universal connectivity
and repository availability

Test cases, test
procedures, test results

Problems and issues
with resolutions

Program code

Project plans,
schedules, and reports

Analysis and discovery
documentation

Design decisions and
specifications

Screen and report
specifications

Digital data repositories

FIGURE 9-13
System information stored in data
repositories

274 PART 4 ■ Projects and Project Management

forum system. Using a forum allowed team members and users to update it
when key issues were discussed and needed to be remembered. Sample screen
and report layouts were either sketched out or drawn with Visio or Keynote.
Hand sketches were often scanned and saved. Most design decisions and specifi-
cations went right into the program code and weren’t documented. However,
some decisions were global, and those were captured in a wiki.

Each day, the project team had a “stand up” meeting—a short coordination
meeting. Most of the team members were in the Park City Center, but some
users were assigned to the team from other locations. Sometimes, team members
were visiting user sites and therefore not available, and there were some team
members who worked in the Salt Lake City office. Therefore, the daily meeting
was conducted as a video conference call, with each person using his or her web-
cam and personal computer. The meeting normally lasted about 15 minutes.

Finally, there was some discussion of sending out a biweekly newsletter
about the progress on the project. Barbara felt that it was important for the
entire company to stay informed about the project in order to encourage their
enthusiasm and support. However, instead of a printed newsletter, she opted to
do it in the form of a blog. All users were invited to sign up with an RSS feed
to keep informed about the project’s progress.

Work Environment
Although the work environment may relate more to the work processes of
the project team, the project manager must ensure that it is adequate to allow
the project team to work productively. There are five major components of the
work environment:

■ Personal computer(s) and/or workstation(s)
■ Personal development software and tools
■ Development server with repositories, sandboxes, and communication tools

Electronic tools

Electronic Digital Repositories

Who can update/viewInformation captured

Issues and outstanding problems

Program code Apache subversion (SVN)

MS projectProject schedule

Project status and information

Daily team coordination meeting

Distributed team communication

Project update newsletter

Issue-tracking software

Screens and reports layouts Web design tools

Visio

PowerPoint/Keynote

Analysts, users/all

Analysts, users/all

Design specifications and diagrams Wiki software

Visio

Analysts/all

Analysts/all

User definitions and functions

User documents

Forum software

Document server

Scanners

Analysts, users/all

Analysts, users/all

Project team

Project team

Project manager/all

Analysts/analysts

Forum software

Video laptop

conferencing

IM chat with video

Blog software

FIGURE 9-14
Electronic digital repositories of
information for CSMS

CHAPTER 9 ■ Project Planning and Project Management 275

■ Office space, conference rooms, and equipment, including printers, scanners,
and projectors

■ Support staff

Most importantly, of course, is the computer equipment and other hard-
ware that the team will need. Obviously, each developer will need his or her
own computing configuration, which may consist of multiple computers or
monitors. Other important hardware includes the development servers, printers,
and internal development network. If the team is distributed, video cameras and
projectors may be necessary to conduct distributed team meetings. Along with
the hardware, resources must be made available to administer things such as
the development server.

Related to the hardware is the computer software and other tools. Software
tools can get quite elaborate—from stand-alone Integrated Development
Environment (IDE) tools to modeling software to code repository software. The
development server, with its environment and software, must also be configured
and deployed. The server may be set up as a virtual server or as a stand-alone
computer. Applications include such things as code repository, issue-tracking
application, testing system, and the project dashboard.

Along with the hardware and software, a work configuration must be
provided for each developer, with log-on permissions, sandbox environments,
repository access, and so forth. The final two components are the office space
and other facilities that may be needed. This will include access to conference
rooms, presentation equipment, and maybe even transportation vehicles.
Finally, the productivity of the team members is always enhanced when
adequate support staff is available to take care of myriad details that always
accompany an active project.

Processes and Procedures
The final major set of decisions has to do with the project’s internal processes
and procedures. Earlier, we discussed a project’s level of formality. Larger
projects require more elaborate reporting processes and meeting schedules.
When there are many people involved, coordination of activities becomes
critical. Procedures include:

■ Reporting and documentation—What is done? How is it done? Who
does it?

■ Programming—Single or pair programming? How is work assigned? By
whom?

■ Testing—Programmer tests or user tests? How to mark items ready for
testing?

■ Deliverables—What are they? How and when are they handed over to
users? How are they accepted?

■ Code and version control—How is the code controlled to prevent conflicts?
How to coordinate bug fixing with new development? How and when are
deliverables released?

Schedule the Work
Scheduling the work is necessary for any size or type of project. However, the
techniques used can vary widely depending on the type of project. For predic-
tive, highly controlled projects, a detailed and complete schedule that covers the
entire project is usually built. Again, these kinds of schedules only work because
the software to be built is well understood. However, even in those projects
with detailed and comprehensive schedules, accommodation is required as
things change during the life of the project. At the other end of the spectrum,
small Agile projects sometimes don’t even have a project schedule, with the
team members being responsible for scheduling their own work. Coordination

276 PART 4 ■ Projects and Project Management

is accomplished by talking and keeping each other informed of what each
person is working on. This is what is meant by chaordic.

Scheduling the work for many of today’s projects lies somewhere between
these two extremes. Large projects may have several independent teams of
developers working on various subsystems. Even though the work between the
teams is fairly independent, coordination is still required. Adaptive projects also
anticipate additional requests and changes to the original scheduled tasks.

For adaptive types of projects, creating the project schedule is done through-
out the life of the project. During the initial planning phase, the initial list of use
cases or user stores are developed for each subsystem. The use cases are divided
up and tentatively assigned to the iterations. Let us call this the project iteration
schedule. As each iteration is begun, a detailed schedule of tasks and work to be
done is developed. You saw an example of creating an iteration schedule in
Chapter 1. Let us call this schedule a detailed work schedule, meaning that it
schedules the work within an iteration. Sometime during each iteration—often as
one iteration is finishing and before the next iteration begins—the project man-
ager, with assistance from the team leaders and key users, will review and rework
the project iteration schedule. During this process, the changes and any new
requirements are prioritized and placed on the schedule.

Creating the project iteration schedule must take into account the total size
and configuration of the solution system and the number of teams available to
work on the project. Separate lists of requirements are made by subsystem, and
a project iteration schedule can then be made for each subsystem. Some tasks,
such as designing the database, may go across all subsystems and need to be
scheduled separately or be included in every subsystem list. Figure 9-15 shows
a sample project iteration schedule for the CSMS Sales subsystem. As you can
see, the length of each iteration is fairly constant at around four weeks. All
the identified tasks, which represent the requirements, have been assigned to
iterations. In this case, we have identified five iterations.

Developing a detailed work schedule for a single iteration is a three-step
process:

■ Develop a work breakdown structure.
■ Estimate effort and identify dependencies.
■ Create a schedule by using a Gantt chart.

Iteration Time estimate

Project Iteration Schedule for the CSMS Sales Subsystem

Use cases assigned to iteration

1

2

4 weeks

4 weeks

3 5 weeks

5. View comments and ratings.

6. Search comments and ratings for friends.

7. View accessory combinations (images).

8. Save item + accessories as “combo.”

 9. Add item (or combo) to shopping cart.
10. Remove item (or combo) from shopping cart.
11. Add item (or combo) to “on reserve” cart.
12. Remove item (or combo) from “on reserve” cart.

13. Check out active cart.

14. Create and process store sale.

15. Create and process phone sale.

1. Search for item.

2. View detailed descriptions.

3. View rotating (3-D) images.

4. Compare item characteristics.

4 weeks

3 weeks 16. Clean up, final test, harden site, tune database, etc.

20 weeks

4

5

Total

FIGURE 9-15
Project iteration schedule for the
CSMS Sales subsystem

project iteration schedule the list of
iterations and use cases or user stories
assigned to each iteration

detailed work schedule the schedule
that lists, organizes, and describes the
dependencies of the detailed work tasks

CHAPTER 9 ■ Project Planning and Project Management 277

A work breakdown structure (WBS) is a list of all the required individual
activities and tasks for the project. There are two general approaches for
creating a WBS: by deliverable or by a timeline. The first approach identifies all
the deliverables that must be completed for a given iteration. Then, the WBS
identifies every task that is necessary to create each deliverable. The second
approach works through the normal sequence of activities that are required for
the final deliverable. Experienced developers who have worked on Agile projects
understand the steps and tasks that are required to create a particular deliver-
able. Of course, each iteration is slightly different depending on the particular
functions and deliverables that are included.

Figure 9-16 is a sample handwritten WBS for the first iteration of the Sales
subsystem. The tasks have been partitioned according to the core processes

FIGURE 9-16 Work breakdown structure for first iteration

work breakdown structure (WBS)
the list or hierarchy of activities and tasks of a
project; used to estimate the work to be done
and to create a detailed work schedule

278 PART 4 ■ Projects and Project Management

Planning, Analysis, Design, and Building. In the figure, each task also has an
estimate of the time required. Sometimes, two estimates are provided: the effort
required and the expected duration. The effort required is given in person-days
of work, and the duration is a measure of lapsed calendar time. Of course,
these are related depending on the number of people working on the specific
task. In Figure 9-16, only duration is shown; however, the time estimates
assume a project team of four people.

When developing a WBS, new analysts frequently ask “How detailed
should the individual tasks be?” A few guidelines can help answer that question:

■ There should be a way to recognize when the task is complete.
■ The definition of the task should be clear enough so one can estimate the

amount of effort required.
■ As a general rule for software projects, the effort should take one to five

working days.

The second step in developing a detailed work schedule for a single iteration
is to determine the dependencies between the tasks and the amount of effort
required for each. The most common way to relate tasks is to consider the
order in which they are completed; that is, as one task finishes, the next one
starts. This is called a finish-start relationship. Other ways to relate tasks
include start-start relationships, in which tasks start at the same time, and
finish-finish relationships, in which tasks must finish at the same time. The
effort required should be the actual amount of work required to complete the
task. As with the identification of the tasks in the WBS, the dependencies and
effort estimates should be done by the developers who are going to actually do
the work.

The third step in developing a detailed work schedule is to actually create
the iteration schedule. In Figure 1-7 of Chapter 1, we presented a graph of the
tasks involved in the first iteration of the Tradeshow system, their sequence,
and the estimated calendar time to complete them. The graph was, in actuality,
a simplified PERT/CPM chart. We provide more information about PERT
charts in Online Chapter C. The other form for presenting a schedule is a bar
chart that shows the activities as bars on a horizontal time line; this is called a
Gantt chart. A widely used tool for building Gantt charts is Microsoft Project.
New versions of MS Project are network enabled and provide a powerful tool
to not only create schedules but to also distribute schedule information across
the organization by using the HTML protocol so it can be viewed in a browser.
The benefit of using a tool such as MS Project is that the project manager can
update progress easily and make that information widely available.

Figure 9-17 shows an iteration schedule from the RMO CSMS project
formatted as a bar chart. In the figure, the tasks from the work breakdown
structure are listed in the Task Name column and the durations are listed in the
Duration column. The Predecessor column identifies dependencies between
tasks. As you can see, every task except the first has at least one predecessor
task, and every task except the last is a predecessor to one or more other tasks.
There are various ways to document dependencies. The most common way is
to show the finish of one task occurring before the start of another (FS). Other
common ways are finish-finish (FF), where both must finish at the same time,
and start-start (SS), where both start at the same time. Any dependency can
have a lag time, such as that shown on line 11 of Figure 9-17. The final column
documents what resources have been assigned to each task. In this example, the
Tiger Team is divided into two subteams of two people each: TT1 and TT2.

The bars in Figure 9-17 illustrate the duration of each task superimposed
on a calendar. The red bars indicate a critical path on the schedule. The
critical path is defined as those tasks that must stay on schedule. If any of
the critical path tasks cause a schedule slip, then the entire project is delayed.
The blue bars are those tasks that aren’t on the critical path. Obviously,

Gantt chart a bar chart that portrays the
schedule by the length of horizontal bars
superimposed on a calendar

critical path a sequence of tasks that
can’t be delayed without causing the entire
project to be delayed

CHAPTER 9 ■ Project Planning and Project Management 279

a project manager will monitor critical path tasks quite closely. Online Chapter C
gives more detailed explanations and instructions on how to use MS Project to
create Gantt chart schedules.

Staff and Allocating Resources
In an Agile project, the various teams are self-organizing. They decide how they
are going to work together and assign the tasks to be done among themselves.
However, the job of identifying what expertise is needed for the project and
getting those people assigned to the project falls on the shoulders of the project
manager. This includes finding the right people with the correct skills and
then organizing and managing them throughout the project. The staffing activity
consists of five tasks:

■ Developing a resource plan for the project
■ Identifying and requesting specific technical staff
■ Identifying and requesting specific user staff
■ Organizing the project team into work groups
■ Conducting preliminary training and team-building exercises

Based on the tasks identified in the project schedule, the project manager
can develop a detailed resource plan. In fact, the schedule and the resource
requirements are usually developed concurrently. In developing the plan, the
project manager recognizes that (1) resources usually aren’t available as soon as
requested and (2) a period of time is needed for a person to become acquainted
with the project. After developing the plan, the project manager can then
identify specific people and request that they become part of the team.

On small projects, members of the project team may all work together.
However, a project team that is larger than four or five members is usually
divided into smaller work groups. Each group will have a group leader who
coordinates the tasks assigned to the group. The project manager is responsible
for dividing the team into groups and assigning group leaders.

Finally, training and team-building exercises are conducted. Training
may be done for the project team as a whole when such new technology as a
new database or a new programming language is used. In other cases, team

FIGURE 9-17 An iteration schedule for the first iteration of the Shopping Cart subsystem

280 PART 4 ■ Projects and Project Management

members who are unfamiliar with the tools and techniques being used may
require individual training. The team should conduct appropriate training for
technical people and users. Team-building exercises are especially important
when members haven’t worked together before. The integration of users with
technical people is an important consideration in developing effective teams
and workgroups.

Evaluate Work Processes (How Are We Doing?)
Although evaluating how the project team performed is sometimes done on
predictive projects, it isn’t a common practice. However, on iterative projects,
many companies require an “end of iteration” review of how well the team
performed and worked together. One of the advantages of an iterative project is
that the same team often stays together for a number of iterations. After each
iteration, team members can evaluate how well they worked together and how
they can improve their effectiveness and performance as a team. In an Agile
project, this is referred to as a retrospective. Here are the kinds of questions
the team might want to ask:

■ Are our communication procedures adequate? How can they be improved?
■ Are our working relationships with the user effective?
■ Did we hit our deadlines? Why or why not?
■ Did we miss any major issues? How can we avoid this in the future?
■ What things went especially well? How can we ensure it continues?
■ What were the bottlenecks or problem areas? How can we eliminate them?

Monitor Project Progress and Make Corrections
In theory, executing and controlling the project plan sounds easy, but in
fact, it is quite complicated. To execute any project, you need some type
of project plan. How a team builds and executes project plans will vary
depending on whether the project structure is based on a predictive approach
or an adaptive approach. In the predictive approach, the project plans are
quite large and complex. The adaptive approach is less daunting because
the detailed project plan is done for each iteration. Because the piece of
work is smaller and often better understood, these plans tend to be smaller
and less complex.

Figure 9-18 is a high-level process chart that illustrates the basic process for
monitoring and controlling the project. The first box—Assign work to person or
team—refers to a task that is complex all by itself due to the fact that teams are
made up of people with varying skill levels and experiences.

The task for the second box—Collect status—is less complex. When collect-
ing status information, you should adhere to certain guidelines. First, providing

retrospective a meeting held by the team
at the end of an iteration to determine what
was successful and what can be improved

FIGURE 9-18 Process to monitor and control project execution

Take corrective
action

Is variance
significant?

Assign work to
person or team Collect status

Is task
complete?

Is task on
target?

Analyze
variance

yes

no no

no

yes

yes

CHAPTER 9 ■ Project Planning and Project Management 281

status information should be a standard process for all team members. Second,
status information should be collected and posted electronically for all to see.
Status information can be reported at milestones as complete or not complete.

The task for the third box—Analyze variance—requires the project manager
to try to determine why the task isn’t on target and how significant the delay is
with regard to the impact on the total project.

The task for the fourth box—Take corrective action—can be complex.
Experienced project managers have a whole set of tools they can use to try to
correct the variance. Sometimes, the correction is as simple as reassigning team
members, or maybe it just requires some extra hours of overtime. At other
times, tasks may have to be rearranged. In more serious instances, the entire
schedule may have to be reworked or more team members may need to be
recruited for the team. The objective of corrective action is to get the project
back to a known and predictable schedule.

Every development project—whether it follows a predictive or adaptive
approach—has lots of questions that need answers and many decisions that
need to be made. In many cases, these issues are quickly resolved and the
project moves rapidly forward. However, in other instances, the answer to a
question or the resolution of an open issue will require additional research. For
example, a set of rules for sales commissions might include when and how
commissions are calculated, what happens to commissions on returned
merchandise, when commissions are paid, how the commission schedule varies
to encourage sales of high-margin items and sale items, and so on. If manage-
ment is still making decisions about these rules, you will need to track these
issues until they are resolved.

The monitoring and control of open issues and risks for a project is usually
no more complex than building various tracking logs. These logs can be built in
a simple spreadsheet and posted on the project’s Web site or central repository.
It is a good idea to make these logs available to all team members. Figure 9-19
presents an example of a tracking log. The column headings will vary depending
on the type of log you use. The tracking log in Figure 9-19 shows issues that
need to be resolved by a certain date and the persons responsible for resolving
those issues.

FIGURE 9-19 Sample issue-tracking log

1

2

3

4
5

A B C D E F G H I

Issue

log#

Issue

date

Issue description

1/18/2012 Commission structure
for sales promotion is
undefined

Urgent Database structure
may need to be
modified

William Henry 2/1/2012

Priority Issue impact Person

responsible

Target fix

date

Resolution description Actual fix

date

282 PART 4 ■ Projects and Project Management

Chapter Summary
This chapter focused on the principles and activities
related to planning and managing a systems development
project. It covered three major themes: (1) the principles
of project management, (2) the activities to get a project
initiated and approved, and (3) the activities to plan the
project and monitor its progress.

Project management is the organizing and directing
of other people to achieve a planned result. Historically,
software projects haven’t had a very good track record.
Strong project management is seen as one factor that
improves success rates of software development projects.
Other factors, such as the adaptive approach to the
SDLC, can also contribute to project success.

In this chapter’s first section, many important
skills, techniques, and concepts that relate to project
management were discussed. The project management
body of knowledge (PMBOK) provides an extensive
conceptual foundation for learning about project
management. Agile project management requires
the same foundation concepts and skills as the

PMBOK, although many of the specific techniques
may be different.

This chapter’s second major section focused on the
specific activities of Core Process 1, the objective of
which is to identify the business need and get the project
initiated. These activities include:

■ Identifying the problem
■ Extending the project approval factors
■ Performing risk and feasibility analysis
■ Reviewing with the client and obtaining

approval

This chapter’s third major section focused on those
activities that are necessary to get the project planned,
scheduled, and started. These activities include:

■ Establishing the project environment
■ Scheduling the work
■ Staffing and allocating resources
■ Evaluating work processes
■ Monitoring progress and making corrections

Key Terms

break-even point 268

business benefits 263

ceremony 257

client 257

cost/benefit analysis 267

critical path 279

detailed work schedule 277

Gantt chart 279

intangible benefit 269

net present value (NPV) 267

oversight committee 257

payback period 268

project iteration schedule 277

project management 256

project management body of
knowledge (PMBOK) 259

retrospective 281

system capabilities 263

System Vision Document 263

tangible benefit 268

users 257

work breakdown structure (WBS) 278

Review Questions
1. List the six major reasons that projects fail.

2. List six critical factors that contribute to project
success.

3. Define project management.

4. List five internal responsibilities of a project
manager.

5. What is the difference between the client and the
user?

6. What is meant by an organic approach?

7. What is the importance of “ceremony”?

8. List the nine areas of the PMBOK.

9. What is meant by Agile project management?

10. How is scope management accomplished with Agile
project management?

11. What are the four activities of Core Process 1?

12. What are three reasons that projects are initiated?

13. What is the difference between system capabilities
and business benefits?

CHAPTER 9 ■ Project Planning and Project Management 283

14. What factors are usually considered when
approving a project?

15. List 10 types of benefits that may be considered
when approving a project.

16. Explain how net present value (NPV) is calculated.

17. What is the difference between tangible benefits and
intangible benefits?

18. What are some factors to consider when assessing
organizational feasibility?

19. What are the five activities of Core Process 2?

20. List seven types of information that should be
captured during a project.

21. What is the difference between the project iteration
schedule and the detailed work schedule?

22. What is a work breakdown structure used for?

23. What is the benefit of an iteration review and
retrospective?

Problems and Exercises
1. Read the following description and then make a list

of expected business benefits that the company
might derive from a new system:

Especially for You Jewelers is a small jewelry
company in a college town. Over the last couple
of years, it has experienced a tremendous increase
in its business. However, its financial performance
hasn’t kept pace with its growth. The current
system, which is partly manual and partly
automated, doesn’t track accounts receivables
sufficiently, and the company is finding it difficult
to determine why the receivables are so high. It runs
frequent specials to attract customers, but it has no
idea whether these are profitable or if the benefit—
if there is one—comes from associated sales.
Especially for You wants to increase repeat sales to
its existing customers, thus it needs to develop a
customer database. It also wants to install a new
direct sales and accounting system to help solve
these problems.

2. Read this narrative and then make a list of system
capabilities for the company:

The new direct sales and accounting system for
Especially for You Jewelers will be an important
element in the growth and success of the jewelry
company. The direct sales portion needs to track
every sale and be able to link to the inventory
system for cost data to provide a daily profit and
loss report. The customer database needs to be able
to produce purchase histories to assist management
in preparing special mailings and special sales to
existing customers. Detailed credit balances and
Aged accounts for each customer would help solve
the problem with the high balance of accounts
receivables. Special notice letters and credit history
reports would help management reduce accounts
receivable.

3. Develop a System Vision Document for Especially
for You Jewelers based on the work you did for
Problem 1 and Problem 2.

4. Develop a work breakdown structure (WBS) based
on the following narrative. It should cover all
aspects of the move—from the beginning of the
project (now) to the end, when all employees are
moved into their new offices. Format your solution
in tabular form with the following column head-
ings: Task ID No, Task Description, Estimated
Effort, Predecessor Task ID. For your solution,
follow these guidelines:
■ Include dependencies.
■ Include effort (work) estimates.
■ Have 30 to 40 detailed tasks.
■ Cover a period of at least two months to a

maximum of six months.

You are an employee of a small company that
has outgrown its facility. It is a Web development
and hosting company, so you have technical net-
work administrators, developers, and a couple
people handling marketing and sales. There are
10 employees.

The president of your company has purchased a
nearby single-story building, and the company is
going to move into it. The building will need some
internal modifications to make it suitable. The pres-
ident has asked you to take charge of the move.
Your assignment is to (1) get the building ready,
(2) arrange for the move, and (3) carry out the move.

The building is nearly finished, so the job
shouldn’t be too difficult (no construction is
necessary—just some refurbishing). The building
has several offices as well as a larger area that needs
to be set up with cubicles.

You and the president are walking through the
building, and she tells you what she wants:

“Let’s use the offices as they are,” she says.
“We will need a reception desk for visiting custo-
mers. The office in the back corner should be okay
for our computer servers. Let’s put the salespeople
in these offices along the east wall. We are short a

284 PART 4 ■ Projects and Project Management

few offices, so let’s put up a few cubicles in the large
room for our junior developers.

“Of course, we will need to get everybody
connected to our system, and I think Ethernet
would be faster than wireless for us. And we all
need to have phones.

“Let’s plan the move for a long weekend, like
a Thursday, Friday, and Saturday. Of course, we
need to be careful not to shut down the clients we
are already hosting.

“Will you put together a schedule for the move
for our employees and set up instructions for all the
employees so they know how they are supposed to
get ready for the move? Thanks.”

5. Enter yourWBS fromProblem4 intoMSProject. First,
enter the tasks, dependencies, and durations. Write a
paragraph on your experience using MS Project.

6. Develop a six-year NPV spreadsheet similar to
the one shown in Figure 9-10. Use the table of
benefits, costs, and discount factors shown in
Figure 9-20. The development costs for the system
were $225,000.

7. Using MS Project, Build a Gantt chart based on the
table shown in Figure 9-21. Enter the tasks,
dependencies, and durations. Print out the PERT
chart (Network chart) and the Gantt chart.

Figure 9-21 presents a list of tasks for a student
who wants to have an international experience by
attending a university abroad. Assume that all pre-
decessor tasks must finish before the succeeding
task can begin (the simplest version). Also, insert a
few overview tasks, such as Application tasks,
Preparation tasks, Travel tasks, and Arrival tasks.
Be sure to state your assumption.

Year Annual benefits Annual operating costs 6% discount factor

4 $75,000 $5,500 0.8227

5 $80,000 $7,000 0.7835

6 $80,000 $8,000 0.7462

1

2

3

$55,000 $5,000

$5,000

$5,500

0.9524

0.9070

0.8638

$60,000

$70,000

FIGURE 9-20
Benefits, costs, and discount factors
for calculating NPV

FIGURE 9-21 WBS task list for attending a university abroad

1

2

3

4

5

6

7

Obtain forms from the international exchange office.

Fill out and send in the foreign university application.

Receive approval from the foreign university.

Apply for the scholarship.

Revive notice of approval for the scholarship.

Arrange financing.

Arrange for housing in a dormitory.

Task Id Description

1

3

21

3

30

5

25

None

1

2

2

4

3, 5

8 Obtain a passport and the required visa. 35 6

9 Send preregistration forms to the university. 2 8

10 Make travel arrangements. 1 7, 9

11 Determine clothing requirements and go shopping. 10 10

12 Pack and make final arrangements to leave. 3 11

13 Travel. 1 12

14 1 13

15 2 14

16 Begin classes. 1 15

6

Duration (days) Predecessor task

Move into the dormitory.

Finalize registration for classes and other university

paperwork.

CHAPTER 9 ■ Project Planning and Project Management 285

8. The state university wants to implement a better
system to keep track of all the computer equipment it
owns and needs to maintain. The university pur-
chases a tremendous number of computers and soft-
ware that are distributed throughout the campus and
are used by faculty, staff, departments, and colleges.
Currently, the university has very sparse records of
its equipment and almost no records about mainte-
nance or the software that has been purchased. A list
of use cases has been defined; it will serve as the
starting point to develop this system.

Take the following list of use cases to create a
project iteration schedule. You should try to
arrange the use cases so that similar ones are
developed together. Also, the most important use
cases should be developed first. State your assump-
tions, and explain your reasons for your solution.

Note: For brevity, we use the word computer to
refer to any type of computing equipment, such as a
desktop computer, laptop computer, server com-
puter, printer, monitor, projector, wireless access
point, and so forth.

1. Buy a computer.
2. Sell a computer.
3. Put a computer in service.
4. Take a computer out of service (surplus).
5. Assign a computer to a person.
6. Record the location of a computer.
7. Repair a computer (in house).
8. Return a computer for repair.
9. Identify computers ready for replacement.
10. Search for a specific computer by various

options.
11. Buy a software license.
12. Renew a software license.
13. Install software on a computer.
14. Remove software from a computer.
15. Record a warranty for a computer.
16. Purchase a warranty for a computer.
17. Search for multiple computers by various

options.
18. Search for software on computers by various

options.
19. Assign a computer to a department or college.

Case Study

Custom Load Trucking

It was time for Stewart Stockton’s annual performance
review. As Monica Gibbons, an assistant vice president
of information systems, prepared for the interview, she
reviewed Stewart’s assignments over the last year and
his performance. Stewart was one of the “up and coming”
systems analysts in the company, and she wanted to be
sure to give him solid advice on how to advance his career.
For example, she knew that he had a strong desire to
become a project manager and accept increasing levels
of responsibility. His desire was certainly in agreement
with the needs of the company.

Custom Load Trucking (CLT) is a nationwide trucking
firm that specializes in the movement of high-tech equip-
ment. With the rapid growth of the communications and
computer industries, CLT was feeling more and more pres-
sure from its clients to move its loads more rapidly and
precisely. Several new information systems were planned
that would enable CLT to schedule and track shipments
and truck locations almost to the minute. However, truck-
ing wasn’t necessarily a high-interest industry for informa-
tion systems experts. With the shortage in the job market,
CLT had decided not to try to hire project managers for
these new projects but to build strong project managers
from within the organization.

As Monica reviewed Stewart’s record, she found
that he had done an excellent job as a team leader on his

last project, where he was a combination team leader/
systems analyst on a four-person team. He had been
involved in systems analysis, design, and programming,
and he had also managed the work of the other three
team members. He had assisted in the development of
the project schedule and had been able to keep his team
right on schedule. It also appeared that the quality of his
team’s work was as good as, if not better than, other
teams on the project. Monica wondered what advice she
should give him to help him advance his career. She was
also wondering if now was the time to give him his own
project.

1. Do you think the decision by CLT to build project
managers from its existing employee base is a good
one? What advice would you give CLT to make sure
it has strong project management skills in the
company?

2. What kind of criteria would you develop for Monica to
use to measure whether Stewart (or any other poten-
tial project manager) is ready for project management
responsibility?

3. How would you structure the job for new project
managers to ensure or at least increase the possibility
of a high level of success?

4. If you were Monica, what kind of advice would you
give Stewart about managing his career and attaining
his immediate goal of becoming a project manager?

286 PART 4 ■ Projects and Project Management

RUNNING CASES

Community Board of Realtors

The Board of Realtors Multiple Listing Service
(MLS) system is a fairly focused system. In
Chapter 3, you identified a use case diagram for the
customer users. In Chapter 8, you extended the func-
tions to include aspects of the system that would be
required for the real estate agents to enter their infor-
mation. You also made some preliminary estimates of
iterations and time to complete. Let us expand and
refine those answers to include concepts from this
chapter.

1. Given the total vision of this system, develop a
System Vision Document. Focus primarily on
finding the benefits to the community board, the
real estate agents, and home buyers.

2. Including the use cases and functions identified in
Chapters 3 and 8, make a list of all the use cases

that must be developed. Divide them into subsys-
tems as appropriate. You should have at least two
subsystems: one for viewing data and one for
updating data. Add any additional use cases
(and subsystems) that might be important to the
Community Board of Realtors itself. [Hint: Think
about user goals and CRUD.]

3. Decide on a work sequence and develop a project
iteration schedule.

4. Estimate the development cost and the time required.
5. Develop a work breakdown structure (WBS) for

the project’s first iteration.
6. Enter your WBS into MS Project to create a

detailed work schedule. (Instructions on how to
use MS Project are given in Online Chapter C,
which you can find on the Cengage Web site.)

The Spring Breaks ‘R’ Us Travel Service

Let us assume that you are a project manager for
Spring Breaks and have been asked to prepare the nec-
essary documents to get this project approved and
planned. You have been told that four programmers
will be available to work on this project and that it
will have the highest priority within the company. In
other words, the company would like to have this
application up and running as soon as possible. The
travel season is fast approaching, and Spring Breaks
would like to be able to use the system for this very
next season.

As part of the approval and planning activities,
you decide that the most important items to develop
will be a System Vision Document and a project itera-
tion plan. Given those elements, you can make an esti-
mate of the completion date and the development cost
for the system.

1. Based on the answers you gave to the Chapter 2
running case questions, develop a System Vision
Document.

2. Based on the functional descriptions you provided
for the Chapter 2 running case and the use cases
you defined in Chapter 3, finish identifying a

complete list of use cases for each of the four
subsystems. One important decision you will have
to make is which subsystems to develop first. In
other words, can the subsystems be deployed
independently and, if so, which should be
deployed first? Defend your answer.

3. A related decision is whether to organize your
programmers into one larger team or multiple
smaller teams and how many programmers you
can use on this project. Make that decision and
then defend your answer.

4. Once those decisions are made, develop a project
iteration plan. If you have multiple independent
teams, your project iteration plan will have paral-
lel paths.

5. Based on your previous answers, develop an esti-
mate for the total project cost and the time
required to complete the project.

6. Assuming an annual revenue increase of $250,000
per year (benefit) and an annual operating cost of
$75,000, develop a five-year NPV worksheet by
using your estimates for developing the system.
Use a 6 percent discount factor.

On the Spot Courier Services

In this chapter, we have discussed the first two core
processes of a systems development project and the
activities within these core processes. Obviously, for a

normal project, these first two core processes are done
at the beginning, when the project manager is still
learning about the needs of the business and trying to

(continued on page 288)

CHAPTER 9 ■ Project Planning and Project Management 287

develop a vision of the solution. However, in this case,
you have already gathered a lot of information about
On the Spot from the previous chapters. Let us go
ahead and use this information to develop some proj-
ect management planning documents.

In Chapter 2, you developed a list of use cases. In
Chapter 8, you identified four required subsystems in
the total solution. Chapter 6 provided a good review
of the essential system capabilities. Using the discus-
sions of On the Spot from these chapters and the
items you have produced from your previous work,
produce these items:

1. Create a System Vision Document.
2. Review all the use cases that you identified in

Chapter 2 and then enhance the list to achieve a
complete solution. Assign each use case to one
of these four subsystems from Chapter 8:

■ Customer account subsystem (like customer
account)

■ Pickup request subsystem (like sales)
■ Package delivery subsystem (like order

fulfillment)
■ Routing and scheduling subsystem

3. Create a project iteration schedule for each sub-
system. The project consultant is planning to
assign one team of two people to this project,
and the subsystems will be built consecutively.
Based on the answers you provided in Chapter 8,
combine your four individual schedules into a
total project iteration schedule.

4. Create a work breakdown structure (WBS) for the
first iteration of the project as you have outlined it.
Estimate the effort required for each task in the
WBS.

5. Enter the WBS into MS Project to create a detailed
work schedule. (Instructions on how to use MS
Project are given in Online Chapter C on the
Cengage Web site.)

Sandia Medical Devices

Use cases were identified for the RTGM system in
Chapter 5 (see Figure 9-22). Additional descriptions of
the system requirements are found in Chapters 3, 4,
and 8. You might want to review those to refresh your
memory of the needs for this system.

Complete these tasks:

1. Based on the use case diagram and other
project information, develop a list of software
components (subsystems) that must be acquired

FIGURE 9-22 RTGM system use cases

View/respond
to alert

View history

Annotate history

Send message
to physician

View/hear
message from

physician

View/respond
to alert

Send message
to patient

View/hear
message from

patient

Set alert
conditions

Patient Physician

(continued from page 287)

(continued on page 289)

288 PART 4 ■ Projects and Project Management

or developed. Describe the function(s) of each
component in detail. Be sure to consider compo-
nents that aren’t directly tied to use cases, such as
the software interface between the glucose mon-
itoring wristband and the cell phone.

2. Prioritize the list of software components based on
risk.

3. Prepare a project iteration schedule based on
iterations that last between two and four weeks.

The schedule should include all the tasks
needed to develop a complete version of the
system, which will then be subjected to live
testing and evaluation by real users for three
months.

4. Prepare a detailed work schedule for the first iter-
ation. If you have access to project management
software, prepare the schedule and a Gantt chart
by using the software.

Further Resources

Scott W. Ambler, Agile Modeling: Effective

Practices for eXtreme Programming and the

Unified Process. John Wiley and Sons, 2002.

Charles G. Cobb, Making Sense of Agile Project

Management: Balancing Control and Agility.
John Wiley and Sons, 2011.

Jim Highsmith, Agile Project Management:

Creating Innovative Products. John Wiley and
Sons, 2009.

Gopal K. Kapur, Project Management for

Information, Technology, Business, and

Certification. Prentice-Hall, 2005.

Craig Larman and Bas Vodde, Scaling Lean and

Agine Development: Thinking and

Organizational Tools for Large-Scale Scrum.
Addison-Wesley, 2009.

Jack R. Meredith and Samuel J. Mantel Jr., Project
Management: A Managerial Approach (6th ed.).
John Wiley and Sons, 2004.

Project Management Institute, A Guide to the

Project Management Body of Knowledge

(4th ed.). Project Management Institute, 2008.

Kathy Schwalbe, Information Technology Project

Management, (6th ed.). Course Technology,
2009.

Robert K. Wysocki, Effective Project Management:

Traditional, Agile, Extreme. John Wiley and
Sons, 2009.

(continued from page 288)

CHAPTER 9 ■ Project Planning and Project Management 289

This page intentionally left blank

PART 5

Advanced Design and Deployment
Concepts

Chapter 10
Object-Oriented Design:
Principles

Chapter 11
Object-Oriented Design:
Use Case Realizations

Chapter 12
Databases, Controls,
and Security

Chapter 13
Making the System
Operational

Chapter 14
Current Trends in Systems
Development

291

This page intentionally left blank

10
Object-Oriented Design:
Principles

Chapter Outline

■ Object-Oriented Design: Bridging from Analysis to Implementation

■ Object-Oriented Architectural Design

■ Fundamental Principles of Object-Oriented Detailed Design

■ Design Classes and the Design Class Diagram

■ Detailed Design with CRC Cards

■ Fundamental Detailed Design Principles

Learning Object ives

After reading this chapter, you should be able to:

■ Explain the purpose and objectives of object-oriented design

■ Develop UML component diagrams

■ Develop design class diagrams

■ Use CRC cards to define class responsibilities and collaborations

■ Explain some of the fundamental principles of object-oriented design

293

OPENING CASE

New Capital Bank: Part 1

Bill Santora, the project leader responsible for developing
an integrated customer account system at New Capital
Bank, just met with the review committee and finished a
technical review of the new system’s first-cut design. This
first-cut design focused on four core use cases that were
chosen as fundamental and would be implemented in the
first development iteration.

New Capital Bank had been using object-oriented
techniques for quite a while, but it had been slower to
adopt some of the newer Agile approaches. Bill had been
involved in some early pilot projects that had utilized
Unified Modeling Language (UML) to develop systems
using object-oriented techniques. However, this develop-
ment project was his first large-scale project that would
be entirely Agile.

As Bill was collecting his presentation materials, his
supervisor, Mary Garcia, spoke to him.

“Your technical review went very well, Bill,” she said.
“The committee found only a few minor items that need
to be fixed. And even though I am not completely current
on the new approach, it was easy for me to understand
how these core functions will work. I still find it hard to
believe that you will have these four pieces implemented
in the next few weeks, though.”

“Wait a minute,” Bill said, laughing. “It won’t be ready
for the users then. Getting these four core functions coded
and running doesn’t mean that we are almost done. This
project is still going to take a year to complete.”

“Yes, I know,” Mary said. “But it is nice that we will
have something to show after only one month. Not only do
I feel more confident in this project, but the users love to
see things developing.”

“I know,” Bill said. “Remember how much grief I got
when I originally laid out this plan based on an iteration
approach? It was difficult to detail the project schedule

for the later iterations, so I had a hard time convincing
everybody that the project schedule wasn’t too risky. The
upside is that because each iteration is only four weeks
long, we have something to show right at the beginning.
You don’t know how relieved I am that the design passed
the review! The team has done a lot of work to make sure
the design is solid, and we all felt confident.”

“Well, building it incrementally makes a lot of sense
and certainly seems to be working,” Mary said. “I espe-
cially liked the diagrams you showed. It was terrific how
you showed that the three-layer architectural design sup-
ported each use case. Even though I don’t consider myself
an advanced object-oriented technician, I could understand
how the object-oriented design fit into the architecture. I
think you wowed everybody when you demonstrated
how you could use the same basic design to support our
internal bank tellers and a Web portal for our customers.
Congratulations.”

Bill picked up on Mary’s enthusiasm.
“How about the design class diagrams?” he asked.

“Don’t they give a nice overview of the classes and the
methods? We use them extensively as a focus for
discussion on the team. They really help the program-
mers write good, solid code.”

“By the way, have you scheduled a review with the
users?” Mary asked.

“No, not yet,” Bill replied. “The architectural design is
mostly technical stuff, and we aren’t quite ready to meet
with the users. The users will help us by verifying our
understanding of the information availability, but much of
what we do is too technical for them to follow.”

“I am excited to see the first pieces run,” Mary said.
“It just makes so much sense to be able to test these core
functions during the rest of the project. Let me congratu-
late you again.” Then, they headed off to lunch together.

Overview
In Chapters 3, 4, and 5, you learned how to do object-oriented analysis by
developing functional requirements models. You learned that analysis consists
of two parts: discovery and understanding. Understanding is taking the informa-
tion gleaned from user interviews and constructing a set of interrelated and
comprehensive models. Model building is an essential part of understanding the
user needs and how they influence the proposed system. However, remember
that the objective of analysis models isn’t to describe the new system but to
understand—in precise terms—the requirements.

This chapter and the next focus on how to develop object-oriented design
models based on the requirements models, which are then used by the program-
mers to code the system. This chapter focuses on two levels of design introduced
in Chapter 6: architectural design—often referred to as high-level design—and
detailed design—where the design of each use case is specified. This chapter

294 PART 5 ■ Advanced Design and Deployment Concepts

starts by teaching the models and processes required to develop an overall archi-
tectural structure for the new system. The primary UML diagram that is dis-
cussed is a component diagram, which is based on the ideas you learned in
Chapter 6 about the deployment environment.

In the latter part of this chapter, you will begin learning the process of
detailed design. We first explain design class diagrams, which are an extension
of the problem domain class diagram, with design information added. Next, we
explain class responsibility collaboration (CRC) cards to begin teaching the
details of use case–centered, object-oriented design.

This chapter ends with an important discussion of design principles for
good object-oriented design. Throughout this chapter and the next, we discuss
not only the basics of object-oriented design but also the teaching principles
underlying it so that the systems you build are well structured and maintainable.
The design principles will provide you with a solid foundation for designing sys-
tems correctly.

Object-Oriented Design: Bridging from
Analysis to Implementation
So, what is object-oriented design? It is a process by which a set of detailed
object-oriented design models are built and then used by the programmers to
write and test the new system. Systems design is the bridge between user require-
ments and programming the new system. One strength of the object-oriented
approach is that the design models are often just extensions of the requirements
models. Obviously, it is much easier to extend an existing model than to create
entirely new design models. However, it is a good practice to create design mod-
els and not just jump into coding. Just as a builder doesn’t build something larger
than a doghouse or a shed without a set of blueprints, a system developer would
never try to develop a large system without a set of design models.

One tenet of Agile, adaptive approaches to development is to create models
only if they have meaning and are necessary. Sometimes, new developers misin-
terpret this guideline to mean that they don’t need to develop design models at
all. The design models may not be formalized into a comprehensive set of docu-
ments and diagrams, but they are certainly necessary. Developing a system with-
out doing design is comparable to writing a research paper without an outline.
You could just sit down and start writing; however, if you want a paper that is
cohesive, complete, and comprehensive, you should write an outline first. You
could write a complex paper without an outline, but in all probability, it would
be disjointed, hard to follow, and missing important points—and it would earn
a low grade! The outline can be jotted down on paper, but the process of think-
ing it through and writing it down allows the writer to ensure that it is cohesive.
Systems design provides the same type of framework.

One important point about adaptive approaches is that requirements, design,
and programming are done in parallel within iterations. Thus, a complete set of
design documents isn’t developed at one time. The requirements for a particular use
case or several use cases may be developed and then the design documents are
developed for that use case. Immediately following the design of the solution, the
programming can be done. Some people call this “just in time” systems design.

Overview of Object-Oriented Programs
Let us quickly review how an object-oriented program works. Then, we will dis-
cuss the design models and how they must be structured to support object-
oriented programming (OOP).

An object-oriented program consists of a set of program objects that coop-
erate to accomplish a result. Each program object has program logic and any
necessary attributes encapsulated into a single unit. These objects work together

CHAPTER 10 ■ Object-Oriented Design: Principles 295

by sending each other messages and working in concert to support the functions
of the main program.

Figure 10-1 depicts how an object-oriented program works. The program
includes a window object that displays a form in which to enter student ID and
other information. After the student ID is entered, the window object sends a
message (number 2) to the Student class to tell it to create a new student object
(instance) in the program and to go to the database, get the student information,
and put it in the object (message 3). Next, the student object sends the informa-
tion back to the window object to display it on the screen. The student then
enters the updates to her personal information (message 4), and another
sequence of messages is sent to update the student object in the program and
the student information in the database.

An object-oriented system consists of sets of computing objects. Each object
has data and program logic encapsulated within itself. Analysts define the struc-
ture of the program logic and data fields by defining a class. The class definition
describes the structure or a template of what an executing object looks like. The
object itself doesn’t come into existence until the program begins to execute.
This is called an instantiation of the class—that is, making an instance (an
object) based on the template provided by the class definition.

Figure 10-1 illustrates three objects in this simple program execution. Each
object also represents a structure of three-layer architecture. The three objects
don’t need to exist on the same machine. In fact, in a multilayer architecture,
the three classes of objects will generally exist on three separate machines. You
learned about multilayer architectures in Chapter 6.

Object-Oriented Design Models and Processes
The objective of object-oriented design is to identify and specify all the objects
that must work together to carry out each use case. As shown in Figure 10-1,
these objects include user-interface objects, problem domain objects, and data

FIGURE 10-1
Object-oriented event-driven program
flow

instantiation creation of an object based
on the template provided by the class definition

296 PART 5 ■ Advanced Design and Deployment Concepts

access objects. In addition to simply identifying the objects, you need to specify
the detail methods and attributes within the objects so a programmer can under-
stand how the objects collaborate to execute a use case.

Figure 10-2 illustrates which requirements models are directly used to
develop which design models. The requirements models in the left column were
developed during analysis, and the design models in the right column are the
ones we will develop during design. As you might infer from the number of
arrows pointing to them, interaction diagrams are the core diagrams used for
detailed design. They are either sequence diagrams (as illustrated in the figure)
or communication diagrams.

At this point, you should be familiar with the requirements, but let us take
a minute to review them. The domain model class diagram identifies all the
classes, or “things,” that are important in the problem domain. The use case
diagrams identified the elementary business processes that the system needs to
support—in other words, all the ways users want to use the system to carry out
processing goals. The activity diagrams and use case descriptions document the
internal workflow of each use case. An activity diagram shows the steps

Customer

name

changeName()

Order

orderID

shipOrder()

Design models

Design class diagrams

:Controller :Customer

Interaction diagrams (sequence

diagrams)

Requirements models

Customer Order

Domain model class diagram

Package diagrams

Design state machine diagrams

Ready Shipped

Clerk

Create
new order

Use case diagrams

Clerk

View layer Data layer

Client

computer

Network

computer

Deployment diagrams

Application

server

Internet

server

Component diagrams

:System

System sequence diagrams

Clerk

System

Enter
data

Activity diagrams and use
case description

Display
order

Clerk

Requirements state machine

diagrams

Ready Shipped

FIGURE 10-2
Design models with their respective
input requirements models

CHAPTER 10 ■ Object-Oriented Design: Principles 297

necessary to carry out a particular use case. The system sequence diagrams are
closely related to activity diagrams, except that they show the messages or data
that are sent back and forth between the user and the system during the steps
of the use case. Finally, state machine diagrams keep track of all status condi-
tion requirements for one particular class. They also show the business rules
that control the changing of one state (status condition) to another.

The right side of Figure 10-2 shows the design models. Architectural
design is one of the first steps in systems design, inasmuch as it provides the
big picture and overall structure of the new system. At the top of the right col-
umn are component diagrams and deployment diagrams. You learned a bit
about the deployment environment in Chapter 6—but without using official
UML notation. This chapter explains how to draw UML component diagrams.
You also learned a little about multilayer software design in Chapter 6. This
chapter explains how to use these diagrams to document the architectural
design of the software system.

Moving down the right column of Figure 10-2, we next see design class
diagrams, or DCDs, which are an expansion of the domain model class dia-
gram. They are used to document the design elements of software classes, as
you will learn later in this chapter. Recall that the classes in the domain model
class diagram aren’t software classes, but the classes in the DCD are indeed soft-
ware classes. Domain classes are the basis for designing software classes. Next
are interaction diagrams, which can be either UML sequence diagrams or UML
communication diagrams. You learned how to build system sequence diagrams
(SSDs) in Chapter 5. The design version of sequence diagrams is much more
detailed and is used to carry out much of the detailed design activity. You will
learn how to create interaction diagrams in Chapter 11. State machine diagrams
are also used by programmers to develop the detailed class methods. You
already learned about those in Chapter 5. The design version is similar to the
version used during analysis.

Finally, there are UML package diagrams, which are simply a way to group
design elements together. Package diagrams can be used to group any type of design
elements, but we will use them primarily to group design classes in Chapter 11.

We begin systems design by thinking about the overall structure of the new
solution system—that is, the architecture.

Object-Oriented Architectural Design
Usually, the first step in systems design is architectural design. In most cases,
developers begin to think about how the system will be deployed and what
the overall structure will look like during the early steps of requirements gath-
ering and documentation. At the beginning of a project, it is normal to say
“This is a Web-based system” or “This will only be used internally on our net-
work and desktops.” Those comments are the beginning of the architecture
design of the solution system.

Software systems are generally divided into two types: single-user systems and
enterprise-level systems. Single-user systems are found on a single desktop or exe-
cute from a server without sharing resources. Typical examples are a spreadsheet
program, an engineering drawing program, a simple accounting program, or
even an e-mail client program. The architectural design of a single-user system is
usually simple. Often, there is only one layer, which runs on a single computer.
However, even for a single-user system, it is wise to develop the system as a mul-
tilayer program so the boundaries between the various levels are well defined.

The term enterprise-level system can mean many different things. We
define it as a system that has shared components among multiple people or
groups in an organization. Enterprise-level systems almost always use client-
server architectures with multiple layers. You learned about client-server and
three-layer architectures in Chapter 6. A typical example of this architecture is

enterprise-level system a system that
has shared resources among multiple people or
groups in an organization

298 PART 5 ■ Advanced Design and Deployment Concepts

an internal-networked client-server environment in which the client computers
contain the view and domain layer programs and the data access layer is on a
central server. Characteristic of enterprise-level systems, the database and data
access are on a central server because it is a shared resource throughout the
organization. Because the central database is shared across the enterprise, it is
placed on a central server that all users of the application program can share.
Because local client computers are often powerful workstations, the view layer
and domain logic can be executed locally.

Our definition of an enterprise-level system is a broad one. Two major cate-
gories of systems fit this definition in relation to systems design: (1) client-server
network-based systems and (2) Internet-based systems.

These two methods of implementing enterprise-level systems have many
similar properties. Both require a network, both have central servers, and both
have the view layer on the client machines. However, some fundamental differ-
ences also exist in the design and implementation of these two approaches. The
primary difference is in how the view layer interacts with the domain and data
access layers. As developers, we must be able to distinguish between these two
types of systems because we must consider important design issues.

Figure 10-3 identifies three fundamental differences that affect the architec-
tural design of the system: state, client configuration, and server configuration.
The concept of state relates to the permanence of the connection between the
client view layer and the server domain layer. If the connection is permanent, as
in a client/server system, values in variables can be passed back and forth and
are remembered by each component in the system. The view layer has direct
access to the data fields in the domain layer.

In a stateless system, such as the Internet, the client view layer doesn’t have
a permanent connection to the server domain layer. The Internet was designed
so that when a client requests a screen via a URL address typed in the browser,
the server sends the appropriate document and then the two disconnect. In other
words, the client doesn’t know the state of the server, and the server doesn’t
remember the state of the client. This transient connection makes it difficult to
implement such things as a sale in a shopping cart. To add more permanence
to the stateless environment, Web designers have developed other techniques,
such as cookies, session variables, and XML data transmission. As a systems
designer, you must consider these additional components when designing an
Internet enterprise-level system.

Concerning client configuration, the client side of a network-based system
contains the view layer classes and often the domain layer classes. Formatting,
displaying, and event processing within the screens are all directly controlled by
the view layer and domain layer program logic. There is great flexibility in the
design and programming of these electronic screens. The view layer classes and
domain layer classes can communicate directly with each other.

Design Issue Client/Server Network System Internet System

State “Stateful” or state-based system−−e.g.,
client/server connection is long term.

Stateless system−−e.g.,
client/server connection is
not long term and has no
inherent memory.

Client configuration Screens and forms that are
programmed are displayed directly.
Domain layer is often on the client or
split between client and server
machines.

Screens and forms are
displayed only through a
browser. They must conform
to browser technology.

Server configuration Application or data server directly
connects to client tier.

Client tier connects
indirectly to the application
server through a Web server.

FIGURE 10-3
Differences between client/server
and Internet systems

CHAPTER 10 ■ Object-Oriented Design: Principles 299

In an Internet-based system, all information is displayed by a browser. The
formatting, displaying, and event processing all must conform to the capabilities
of the browser being used. Special techniques and tools, such as scripting lan-
guages, applets, and style sheets, have been developed to simulate the network-
based capability.

The server configuration in a network-based system consists of data access
layer classes and sometimes domain layer classes. These classes collaborate
through direct communication and access to each other’s public methods. In an
Internet-based system, all communications from the client tier must go through
the HTTP server. Communication isn’t direct, and methods and program logic
are invoked indirectly through passed parameters. This indirect technique of
accessing domain layer logic is more complex and requires additional care in
designing the system.

Component Diagrams and Architectural Design
The component diagram identifies the logical, reusable, and transportable sys-
tem components that define the system architecture. The essential element of a
component diagram is the component element with its interfaces.

A component is an executable module or program, and it consists of all the
classes that are compiled into a single entity. It has well-defined interfaces, or
public methods, that can be accessed by other programs or external devices. The
set of all these public methods that are available to the outside world is called the
application program interface (API). Figure 10-4 illustrates the UML notation
for a component and its interfaces. It isn’t necessary to list all the interfaces on a
single component. Only those that are pertinent to the context of the diagram are
listed. There are two ways to represent a component: as a general class or as a
specific instance. The same rules apply in this situation that applied to class and
object notation: A general class uses the name of the component class, and an
instance name is underlined. The name of the component is written inside.

FIGURE 10-4 UML component diagram notation

Alternative socket-

port connection
notation

Port–API output

interface

Component

Socket–Uses

input

Socket using

Port API

«component»
InventoryDatabaseSystem

«component»
InventoryUpdateSubsystem

«component»
InventoryQuerySubsystem

component diagram a type of
implementation diagram that shows the
overall system architecture and the logical
components within it

application program interface
(API) the set of public methods that
are available to the outside world

300 PART 5 ■ Advanced Design and Deployment Concepts

The top rectangle in Figure 10-4 illustrates the notation for a component,
along with its interfaces. The icon in the upper-right corner is a small rectangle
with two plugs extending from the left side, signifying that it is a moveable, exe-
cutable component and is possibly reusable and pluggable.

The figure also shows two types of interfaces: an output port and an input
socket. The output port is similar to a programming interface; it defines the
method names (e.g., a portion of the API) that can be used by other components
to access the component’s functions. The input socket represents the services
that the component needs from other components. Notice the ball and socket
notation. They go together so the input of one component precisely fits the out-
put of another component.

The bottom portion of the figure shows how the port interfaces and sockets
can be used in a component diagram. The InventoryDatabaseSystem component
at the top presents an interface to the world, as denoted by the port API inter-
face along its bottom edge. The InventoryUpdateSubsystem component uses
that interface to access the methods of the InventoryDatabaseSystem. In this
figure, we show via a dashed arrow that the InventoryQuerySubsystem compo-
nent accesses the same interface.

In our design examples, we would like to show how to do multilayer design
for a Web-based system, and we would like to illustrate the locations of various
Web pages. In other words, we want to have some notation to show where Web
pages reside and are deployed. Because UML notation doesn’t have standard
notation for a window, we extend the notation to include it. UML does have
rules for stereotyping a symbol and for extending the language. Figure 10-5
shows a Web page notation.

The figure simply displays a class notation with a stereotype notation, such
as ,,GUI.. and ,,frameset.., along with a small window icon in the top-
right corner. This notation will serve for either a desktop system window or a
Web system frameset. A frameset is a high-level object that can hold items to be
displayed by a browser. We will use a frameset notation and stereotype to indi-
cate a Web page. You can think of a frameset as the window in a browser that
can display frames or a set of frames.

Next, let us use the component and window notation to do an architectural
design of some straightforward Internet systems.

Two-Layer Architectural Design of Internet Systems
Many colleges have courses in Web development. Most of those courses fall into
one of two categories: Web site design or Web programming languages. Both
classes are important and beneficial for your education as a system developer.

Web programming courses teach you various programming languages and
the ways to insert program logic into Web pages. You learn JavaScript,
VBScript, PHP, and ASP (Active Server Pages). You may learn how to use
advanced database tools, such as Cold Fusion, to access databases from your
pages. You may also learn how the browser and server work together to serve

«frameset»«GUI»

FIGURE 10-5
Extension notation for GUI window
and Web page

CHAPTER 10 ■ Object-Oriented Design: Principles 301

up pages that have sufficient programming logic to support the business applica-
tion. Advanced versions of this course even teach you the Java or .NET environ-
ments so you can configure an entire application.

We don’t intend for this short section to replace that course. Instead, we intro-
duce the architecture of these Web-based systems and provide a few principles
of good design that you can apply as you develop skills in other courses. In
Chapter 6, we explained three-layer design as one effective approach to developing
robust, easily maintainable systems. But how can designers implement a three-layer
design in a Web-based architecture? This question is particularly important if
an organization wants to use the same problem domain logic for both types of
enterprise systems: a client/server system and an Internet-based system.

Figure 10-6 illustrates a simple, generic Internet architecture. Remember,
we are doing logical design at this point and aren’t yet concerned with the phys-
ical computer configuration. We will discuss the computer configuration when
we learn more about deployment diagrams in the next section. Of course,
because there is an Internet cloud between two components, we can naturally
assume they are in different physical locations.

Figure 10-6 includes four recognizable components. The browser is an exe-
cutable component whose purpose is to format, display, and execute active
code, such as JavaScript or ActiveX Controls. The Internet Server is an execut-
able component whose purpose is to retrieve pages and invoke other compo-
nents. The diagram in Figure 10-6 shows two additional examples of
components: executable programs in the Common Gateway Interface (CGI) and
the Application Server.

In the interest of brevity, the ports and sockets have been omitted from this
diagram. The interfaces between these components are industry standard, and

FIGURE 10-6 Component diagram showing two-layer Internet architecture

Browser
(with cookies)

«frameset»
Page

JavaScript
VBScript
Applet

ActiveXControl

Internet
Server

request/
input data

«input data»
Form

«displays»

Common
Gateway

Interface (CGI)

Application
Server

(session mgr)

«frameset»
ResponsePage

PHP
ASP
JSP

Servlets
ColdFusion

User Interface Layer Domain Layer
(Business Logic)

reply

Internet

302 PART 5 ■ Advanced Design and Deployment Concepts

the unique port/socket combination doesn’t need to be emphasized here.
However, every two-headed arrow does represent two port/socket pairs.

As indicated in Chapter 6, many simple business systems can be designed as
two-layer systems. These systems primarily capture information from the user
and update a database. No complex domain layer logic is required. In those
instances, the domain layer and data access layer are usually combined. The
business logic in the domain layer frequently relates only to data formatting
and to deciding which database table to update. Many business applications fall
into this category. For example, a simple address book system could be easily
designed as a two-layer system.

The CGI was the original way to process input data. The CGI directory con-
tains compiled programs that are available to receive input data from the server.
The programs in the CGI directory can be written in any compiled language,
such as Cþþ. This technique is effective and usually has quick response and pro-
cessing times. The only downside is that these programs can be quite complex
and difficult to write. They process the input data, access any required database,
and format a response page in HTML, as indicated by the ResponsePage in the
diagram.

The other potential direction for input data is directly to a URL for a Web
page with embedded program code. The extension shown on the ResponsePage
indicates the type of program code embedded in the page: ASP for Active Server
Pages, PHP for PHP Hypertext Preprocessor, JSP for Java Server Pages, CFM for
Cold Fusion Pages, and so forth. Depending on the type of extension, an applica-
tion server—which is the language processor—is invoked to process the embed-
ded code. The embedded code, via the Application Server, can process the code,
including reading and writing to a database. The Application Server, working
with cookies on the browser, can manage sessions with the user. Session variables
are set up to maintain information about the user across multiple page requests
and forms. The Application Server also formats the ResponsePage based on the
HTML statements and the code and forwards it back to the Internet Server.

Even though we have referred to this design as two-layer architecture, the
user interface classes often contain the business logic and data access. Due to
the structure of Web servers, the program (defined as object-oriented classes) that
processes the input forms also outputs the HTML code that is sent back to the
client browser. For example, in Java-based systems, Java servlets receive the data
from input on a Web form, process the data, and format the output HTML
page. To process the data, the servlets usually include any required business logic
and data access logic. The .NET environment is similar. For every Web form,
there is a code-behind class written in Visual Basic, C#, J#, or some similar
language. Another popular language combination is PHP, which executes on the
server, and JavaScript, which executes in a browser. The code-behind object
receives the data from the Web form, processes the data, and formats the output
HTML page. Thus, it often isn’t clear whether the architecture is one layer or
two layers. However, we refer to this architecture as two-layer to emphasize that
it is dynamic and that the HTML response pages are built dynamically.

This architecture works well for two-layer applications that aren’t too
complex—for example, when the response pages already have most of the HTML
written. The embedded code performs such functions as validating the data and
storing it in the database. Note that the business logic is minimal, so mixing it with
the data access logic still provides a maintainable solution.

Several integrated development environments (IDEs) for developing Web-
based systems are based on a two- or three-layer architecture called Model-
View-Controller (MVC). You will learn more about design patterns and MVC
in Chapter 11. The basic idea is that even a Web-based system can be developed
in multiple layers of the view—that is, the user interface, the model (which is the
business logic and database access), and the controller (which provides a link
between the view and the model).

CHAPTER 10 ■ Object-Oriented Design: Principles 303

As noted in Chapter 2, RMO’s new CSMS needs to support a Web user
interface and an internal desktop interface. It is critically important for the
same back end—business logic and database access—to link with either user
interface. Consequently, the design team must specify the architectural design in
enough detail to ensure the programmers implement a system that can support
both user interfaces.

Once the architectural design is determined, it is time to drill down to a
lower level of abstraction. In other words, you stop treating the logical compo-
nents as black boxes and start to look inside. Each component is an executable
program and is made up of classes. So, the next step in the application design is
to begin defining the interaction of design classes for each use case. Designing at
this level is usually called detailed design.

Fundamental Principles of Object-Oriented
Detailed Design
Now that we have learned about architectural design, we can turn to detailed
design. If you refer back to Figure 10-2 and proceed down the right column,
the next two diagrams to discuss are the design class diagram and the interac-
tion diagrams (sequence diagrams and communication diagrams). These two
diagrams are the most important for detailed design.

The objective of object-oriented detailed design is to identify and specify all
the objects that must work together to carry out each use case. As shown in
Figure 10-1, there are user-interface objects, problem domain objects, and data-
base access objects. As you may suppose, a major responsibility of detailed design
is to identify and describe each set of objects within each layer and to identify and
describe the interactions or messages that are sent between these objects.

The most important model in object-oriented design is a sequence diagram—

or its first cousin, a communication diagram. In Chapter 5, you learned to
develop system sequence diagrams (SSDs) to model input and output require-
ments for a use case. The full sequence diagram is used for design and is a type
of interaction diagram. A communication diagram is also a type of interaction
diagram. During design, developers extend the SSD by modifying the single
:System object to include all the interacting user interface, problem domain,
and database access objects. In other words, they look inside the :System object
to see what is happening inside the system. We will spend a good deal of time
in Chapter 11 learning how to develop these detailed sequence diagrams.
Figure 10-7 shows a simple sequence diagram based on Figure 10-1, which

Actor

changeName (studentID, name)

nameUpdate

:StudentUpdController :Student

changeName (name)

FIGURE 10-7
Sequence diagram for updating
student name

304 PART 5 ■ Advanced Design and Deployment Concepts

updates student information. A sequence diagram uses the same notation as
an SSD, which you learned to develop in Chapter 5.

The other major design model, which you will learn to develop later in this
chapter, is the design class diagram. Its main purpose is to document and
describe the programming classes that will be built for the new system. It
describes the set of object-oriented classes needed for programming, navigation
between the classes, attribute names and properties, and method names and
properties. A design class diagram is a summary of the final design that was
developed by using the detailed sequence diagrams, and it is used directly when
developing the programming code. Figure 10-8 shows the original domain
model that was developed during analysis and the design class diagram version
of that class. The design class version has a new compartment at the bottom
that specifies the method signatures for the class. The attributes have also been
enhanced. We explain the details of this notation in the next section. Detailed
design is the process that takes the domain model to the design class model.

As an object-oriented systems designer, you must provide enough detail so a
programmer can write the initial class definitions, including the method code. For
example, a design class specification helps define an object’s attributes and methods.
Figure 10-9(a) illustrates some sample code, written in Java, for the Student class.
Figure 10-9(b) shows the same sample code written in Visual Basic .NET.
Referring back to Figure 10-8, you should be able to see how the design class pro-
vides the input to write the code for Figure 10-9. Notice that the class name, the
attributes, and the method names are derived from the design class notation.

Object-Oriented Design Process
Object-oriented design is model-driven and use case–driven. As you saw in
Figure 10-2, the design process takes the requirements models as input and pro-
duces the design models as output. Obviously, we need a process for organizing
this activity, and it is focused around use cases. In other words, we develop the
design models use case by use case. For example, a design sequence diagram is
developed for each use case. After a group of them has been designed, the

FIGURE 10-8 Student class examples for the domain class and the design class diagrams

Domain diagram Student

studentID
name
address
dateAdmitted
lastSemesterCredits
lastSemesterGPA
totalCreditHours
totalGPA
major

Student

-studentID: integer {key}
-name: string
-address: string
-dateAdmitted: date
-lastSemesterCredits: number
-lastSemesterGPA: number
-totalCreditHours: number
-totalGPA: number
-major: string

Student

+createStudent (name, address, major): Student
+createStudent (studentID): Student
+changeName (name)
+changeAddress (address)
+changeMajor (major)
+getName () : string
+getAddress () : string
+getMajor () : string
+getCreditHours () : number
+updateCreditHours ()
+findAboveHours (int hours): studentArray

Design class diagram Student

Elaborated
attributes

Method signatures

CHAPTER 10 ■ Object-Oriented Design: Principles 305

FIGURE 10-9a Example class definition in Java for Student class

public class Student
{

//attributes
private int studentID;
private String firstName;
private String lastName;
private String street;
private String city;
private String state;
private String zipCode;
private Date dateAdmitted;
private float numberCredits;
private String lastActiveSemester;
private float lastActiveSemesterGPA;
private float gradePointAverage;
private String major;

//constructors
public Student (String inFirstName, String inLastName, String inStreet,

String inCity, String inState, String inZip, Date inDate)
{

firstName = inFirstName;
lastName = inLastName;
...

}
public Student (int inStudentID)
{

//read database to get values
}

//get and set methods
public String getFullName ()
{

return firstName + " " + lastName;
}
public void setFirstName (String inFirstName)
{

firstName = inFirstName;
}
public float getGPA ()
{

return gradePointAverage;
}
//and so on

//processing methods
public void updateGPA ()
{

//access course records and update lastActiveSemester and
//to-date credits and GPA

}
}

306 PART 5 ■ Advanced Design and Deployment Concepts

FIGURE 10-9b Example class definition in VB .NET for Student class

 Public Class Student

'attributes
Private studentID As Integer
Private firstName As String
Private lastName As String
Private street As String
Private city As String
Private state As String
Private zipCode As String
Private dateAdmitted As Date
Private numberCredits As Single
Private lastActiveSemester As String
Private lastActiveSemesterGPA As Single
Private gradePointAverage As Single
Private major As String

'constructor methods
Public Sub New(ByVal inFirstName As String, ByVal inLastName As String,

ByVal inStreet As String, ByVal inCity As String, ByVal inState As String,
ByVal inZip As String, ByVal inDate As Date)

firstName = inFirstName
lastName = inLastName
...

End Sub

Public Sub New(ByVal inStudentID)
'read database to get values

End Sub

'get and set accessor methods
Public Function GetFullName() As String

Dim info As String
info = firstName & " " & lastName
Return info

End Function

Public Property firstName()
Get

Return firstName
End Get
Set(ByVal Value)

 firstName = Value
End Set

End Property

Public ReadOnly Property GPA()
Get

Return gradePointAverage
End Get

 End Property

'Processing Methods
Public Function UpdateGPA()

'read the database and update last semester
'and to date credits and GPA

 End Function

 End Class

CHAPTER 10 ■ Object-Oriented Design: Principles 307

design class diagram is completed for that entire group of use cases. We can
divide the process of object-oriented design into five major steps, as summarized
in Figure 10-10, which also shows the chapter that each step is discussed in.

First, a preliminary version, or first-cut model, of the design class diagram is
created. Some basic information, such as attribute names, must be listed in the
first-cut model to develop the sequence diagrams. This step provides a founda-
tion for the second and third steps.

The second step often used by developers is to develop a set of CRC cards
for each use case. These help provide an overall understanding of the internal
steps required for the system to support the use case. CRC cards provide a sim-
ple method for identifying all the objects involved in a particular use case and
their responsibilities. The results of a CRC activity will be sets of cards that can
be used to help develop a sequence diagram; if a use case is simple enough, the
cards can be used to program the use case. CRC cards are explained in detail
later in this chapter.

Design Classes and the Design Class Diagram
As shown in Figure 10-2, the design class diagrams and the detailed sequence
diagrams work together. A first iteration of the design class diagram is created
based on the domain model and on software design principles. The preliminary
design class diagram is then used to help develop sequence diagrams. As design
decisions are made during development of the sequence diagrams, the results
are used to refine the design class diagram.

The domain model class diagram shows a set of problem domain classes
and their associations. During analysis, because it is a discovery process, ana-
lysts generally don’t worry much about the details of the attributes. However,
in OOP, the attributes of a class must be declared as public or private, and
each attribute must also be defined by its type, such as character or numeric.
During detailed design, it is important to elaborate on these details as well as to
define the methods and parameters that are passed to the methods and the
return values from methods. Sometimes, developers also define the internal
logic of each method at this point. We complete the design class diagram by
integrating information from interaction diagrams and other models.

As developers build the design class diagrams, they add many more classes
than were originally defined in the domain model. Referring to Figure 10-1, the
Input window objects and Database access objects are examples of additional
classes that must be defined. The classes in a system can be partitioned into dis-
tinct categories, such as user-interface classes. At times, designers may also
develop distinct class diagrams by subsystem. We now turn to design class dia-
gram notation and discuss the design principles used in developing the first iter-
ation of the design class diagram.

Design Step Chapter

1. Develop the first-cut design class diagram showing navigation visibility. 10

2. Determine class responsibilities and class collaborations for each use

 case using class-responsibility-collaboration (CRC) cards.

10

3. Develop detailed sequence diagrams for each use case.

 (a) Develop the first-cut sequence diagrams.

 (b) Develop the multilayer sequence diagrams.

11

4. Update the design class diagram by adding method signatures and

 navigation information using CRC cards and/or sequence diagrams.

11

5. Partition the solution into packages as appropriate. 11

FIGURE 10-10
Object-oriented detailed design steps

308 PART 5 ■ Advanced Design and Deployment Concepts

Design Class Symbols
UML doesn’t specifically distinguish between design class notation and domain
model notation. However, practical differences occur simply because the objective
of design modeling is distinct from that of domain modeling. Domain modeling
shows things in the users’ work environment and the naturally occurring associa-
tions among them. At that point, the classes aren’t specifically software classes.
After we start a design class diagram, though, we are specifically defining soft-
ware classes. Because many different types of design classes are identified during
the design process, UML has a special notation—called a stereotype—that allows
designers to designate a special type of class. A stereotype is simply a way to
categorize a model element as a certain type. A stereotype extends the basic defi-
nition of a model element by indicating that it has some special characteristic we
want to highlight. The notation for a stereotype is the name of the type placed
within printer’s guillemets, like this: ,,control...

Four types of design classes are considered standard: an entity class, a control
class, a boundary class or view class, and a data access class. Figure 10-11 shows
the notation used to identify these four stereotypes.

An entity class is the design identifier for a problem domain class. It is
also usually a persistent class. A persistent class is one with objects that exist
after the program quits. Obviously, the way to make data persistent is to write
it to a file or database.

A boundary class, or view class, is specifically designed to live on the
system’s automation boundary. In a desktop system, these classes would be the
windows classes and all the other classes associated with the user interface.

A control class mediates between the boundary classes and the entity clas-
ses. In other words, its responsibility is to catch the messages from the boundary
class objects and send them to the correct entity class objects. It acts as a kind of
switchboard, or controller, between the view layer and the domain layer.

A data access class is used to retrieve data from and send data to a data-
base. Rather than insert database access logic, including SQL statements, into
the entity class methods, a separate layer of classes to access the database is
often included in the design.

«entity»

Customer

«control»

UseCaseHandler

«boundary»
OrderWindow

Customer

UseCaseHandler

OrderWindow

OrderDBReader

«dataAccess»

OrderDBReader

FIGURE 10-11
Standard stereotypes found in UML
design models

stereotype a way of categorizing a model
element by its characteristics, indicated by
guillemets (,, ..)

entity class a design identifier for
a problem domain class

persistent class an entity class whose
objects exist after a system is shut down

boundary class, or view class a class
that exists on a system’s automation boundary,
such as an input window

control class a class that mediates
between boundary classes and entity classes,
acting as a switchboard between the view layer
and domain layer

data access class a class that is used
to retrieve data from and send data to a
database

CHAPTER 10 ■ Object-Oriented Design: Principles 309

Design Class Notation
Figure 10-12 shows the details within a design class symbol, as you first saw in
the design class shown in Figure 10-8. The name compartment includes the class
name and the stereotype information and parent class. The lower two compart-
ments contain more details about the attributes and the methods.

The format that analysts use to define each attribute includes:

■ Visibility—Visibility denotes whether other objects can directly access the
attribute. (A plus sign indicates that an attribute is visible, or public; a
minus sign indicates that it isn’t visible, or private.)

■ Attribute name
■ Type-expression (such as character, string, integer, number, currency, or date)
■ Initial-value, if applicable
■ Property (within curly braces), such as {key}, if applicable

The third compartment contains the method signature information. A method
signature shows all the information needed to invoke (or call) the method. It
shows the format of the message that must be sent, which consists of these:

■ Method visibility
■ Method name
■ Method parameter list (incoming arguments)
■ Return type-expression (the type of the return parameter from the method)

The domain model attribute list contains all attributes discovered during
analysis activities. The design class diagram includes more information on attri-
bute types, initial values, and properties. It can also include a stereotype for
clarification. As shown in Figure 10-8 in the Student design class diagram, the
third compartment contains the method signatures for the class. Remember that
UML is meant to be a general object-oriented notation technique and not spe-
cific to any one language. Thus, the notation won’t be the same as program-
ming method notation.

The method called findAboveHours (int hours): studentArray, which is
denoted with an underline in Figure 10-8, is a special kind of method. Remember
that in the object-oriented approach, a class is a template to create individual
objects or instances. Most of the methods apply to one instance of the class.
However, analysts frequently need to look through all the instances at once. Such
a method is called a class-level method and is denoted by an underline.

Figure 10-13 is an example of design classes with attributes and methods; it
shows how inheritance works for design classes. In Chapter 4, you learned
about generalization/specialization. In the problem domain model, generaliza-
tion/specialization becomes inheritance in the design model and in a program-
ming language. Each of the three subclasses inherits all the attributes and

FIGURE 10-12
Notation used to define a design class

visibility a notation that indicates (by plus
or minus sign) whether an attribute can be
directly accessed by another object

method signature a notation that
shows all the information needed to invoke,
or call, the method

class-level method a method that is
associated with a class instead of with objects
of the class

310 PART 5 ■ Advanced Design and Deployment Concepts

methods of the parent Sale class. Hence, each subclass has a saleID, a saleDate,
and so forth. In this example, each subclass also has additional attributes that
are unique to its own specific class. Each of the subclasses also has a unique
attribute that is underlined, such as noOfPhoneSales. Underlined attributes are
class-level attributes and have the same characteristics as class-level methods.
A class-level attribute is a static variable, and it contains the same value in all
instantiated objects of the same type.

Not only methods and attributes are inherited by the subclasses; associa-
tions are also inherited. In Figure 10-13, the Sale object must be associated with
exactly one customer. Each subclass inherits the same association and must be
associated with exactly one customer. Finally, notice that the title of the Sale
class is italicized. An italicized class name indicates that it is an abstract class—
a class that can never be instantiated. In other words, there are never any Sale
class objects. All orders in the system must be instantiated as one of the three
subclasses. Every order in the system will be either a PhoneSale, an InternetSale,
or a StoreSale. Each of the three subclasses is considered a concrete class
because it can be instantiated; in other words, objects can be created. The purpose
of an abstract class is illustrated by the figure. It provides a central holding place
for all the attributes and methods that each of the three subclasses will need. This
example demonstrates one way that OOP implements reuse. The methods and
attributes in the abstract class only need to be written once in order to be reused
by each of the subclasses.

Developing the First-Cut Design Class Diagram
To illustrate how to start the design process, we develop a first-cut design class
diagram based on the domain model. Figure 10-14 is a partial RMO domain
model class diagram, as developed in Chapter 4.

FIGURE 10-13 Sale class (abstract) with three concrete subclasses showing inheritance

Customer

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

Sale

-saleID: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

+additem ()
+cancelSale ()
+makePayment ()

0..*

+updateName ()
+updateAddress ()
+processSale ()

PhoneSale

-clerkID: string
-callingPhone: string
-processTime: int

-clerkID: string
-callingPhone: string
-processTime: int
-noOfPhoneSales: int

InternetSale

-URLaddress: string
-timeOfDay: string
-timeToOrder: int
-noOfWebSales: int

StoreSale

-storeID: string
-noOfStoreSales: int

+cancelSale ()+confirmEmail ()

1..1

class-level attribute an attribute that
contains the same value for all objects in the
system

abstract class a class that can never be
instantiated (no objects can be created of this
type)

concrete class a class that can be
instantiated (objects can be created of this type)

CHAPTER 10 ■ Object-Oriented Design: Principles 311

The first-cut design class diagram is developed by extending the domain
model class diagram. It requires two steps: (1) elaborating on the attributes with
type and initial value information and (2) adding navigation visibility arrows. As
indicated earlier, object-oriented design is use case–driven. So, let us choose a use
case to start with and focus only on classes involved in that use case.

Elaboration of Attributes
The elaboration of the attributes is fairly straightforward. The type information
is determined by the designer based on his or her expertise. In most instances,
all attributes are kept invisible or private and are indicated with minus signs
before them. We also need to add a new compartment to each class for the
addition of method signatures.

Navigation Visibility
As stated earlier, an object-oriented system is a set of interacting objects. The
sequence diagrams document what interactions occur between which objects.
However, for one object to interact with another by sending a message, the first
object must be visible to the second object. In this context, navigation visibility
refers to the ability of one object to view and interact with another object. We
use two types of navigation visibility during design: attribute navigation visibil-
ity and parameter navigation visibility. Attribute navigation visibility occurs
when a class has an attribute that references another object. Visibility is
obtained through the attribute reference. Parameter navigation visibility occurs
when a class is passed a parameter that references another object. A parameter
is usually passed through a method call. Sometimes, developers refer to naviga-
tion visibility as just navigation or visibility. However, we prefer the term navi-
gation visibility to distinguish the concept from public and private visibility on
attributes and methods.

season
year
description
startDate
endDate

Promotion

productID {key}
vendor
gender
description

ProductItem

price
specialPrice

PromoOffering

date
transactionType
amount
paymentMethod

SaleTrans

quantity
price
backorderStatus

SaleItem
saleID {key}
saleDate
priorityCode
shipping&Handling
tax
grandTotal

Sale

accountNo {key}
name
billingAddress
shippingAddress
dayPhone
nightPhone

Customer

inventoryID {key}
size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

1..*

0..*

0..*

1

1
0..*

1..*

1

1
1..*

0..*

1

FIGURE 10-14
Partial RMO Sales subsystem domain
model class diagram

navigation visibility a design principle
in which one object has a reference to another
object and thus can interact with it

312 PART 5 ■ Advanced Design and Deployment Concepts

Figure 10-15 shows one-way attribute navigation visibility between the
Customer class and the Sale class. Notice the variable called mySale in the
Customer class. This variable holds a value to refer to a Sale instance. The navi-
gation arrow indicates that a Sale object must be visible to the Customer object.
We have included the mySale attribute in the example to emphasize this
concept.

Now let us think about adding navigation visibility to the RMO design
class diagram. Remember that we are designing just the first-cut class diagram,
so we might need to modify the navigation arrows as the design progresses. We
ask the following basic question when building navigation visibility: Which clas-
ses need to have references to or be able to access which other classes? Here are
a few general guidelines:

■ One-to-many associations that indicate a superior/subordinate relationship
are usually navigated from the superior to the subordinate—for example,
from Sale to SaleItem. Sometimes, these relationships form hierarchies of
navigation chains—for example, from Promotion to ProductItem to
InventoryItem.

■ Mandatory associations, in which objects in one class can’t exist without
objects of another class, are usually navigated from the more independent
class to the dependent class—for example, from Customer to Sale.

■ When an object needs information from another object, a navigation arrow
might be required, pointing either to the object itself or to its parent in a
hierarchy.

■ Navigation arrows may be bidirectional.

Figure 10-16 is a first-cut design class diagram for the use case Create
phone sale based on the two steps described earlier in this section. The first step
is to elaborate on the attributes with type information and visibility. The second
step is to identify which classes may be involved and which classes require navi-
gation visibility to other classes. We identify the classes that appear to be neces-
sary to carry out the use case. We determine what other classes are necessary
based on what information is needed. For example, price information is in the
PromoOffering class and description information is in the ProductItem class.
One thing to remember about visibility is that the classes are programming clas-
ses, not database classes. So, we aren’t thinking about foreign keys in a rela-
tional database. We are thinking about object references in a programming
language.

Figure 10-16 has one additional design class in the diagram for this use
case—SaleHandler—which is stereotyped as a controller class. As mentioned
previously, a controller class, or use case controller, is a utility class that helps
in the processing of a use case. Notice that it has visibility at the top of the
visibility hierarchy.

Customer

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string
-mySale: Sale

-saleID: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

Sale

FIGURE 10-15
Attribute navigation visibility between
Customer and Sale

CHAPTER 10 ■ Object-Oriented Design: Principles 313

Three points are important to note. First, as detailed design proceeds use
case by use case, we need to ensure that the sequence diagrams support and
implement the navigation that was initially defined. Second, the navigation
arrows need to be updated as design progresses to be consistent with the design
details. Finally, method signatures will be added to each class based on the
design decisions made when creating the sequence diagrams for the use cases.

As a preliminary step before developing sequence diagrams, many develo-
pers like to use CRC cards in brainstorming sessions to help identify the sets of
classes involved in each use case. The next section explains how CRC cards can
help with detailed object-oriented design.

Detailed Design with CRC Cards
CRC cards are a brainstorming technique that is quite popular among object-
oriented developers. Here, “CRC” is an acronym for Class Responsibility
Collaboration. Developers use this technique during design to help identify
responsibilities of the class and the sets of classes that collaborate for a particu-
lar use case.

A CRC card is simply a 3 � 5 or 4 � 6 index card with lines that partition it
into three areas: class name, responsibility, and collaboration classes. Figure 10-17
illustrates the two sides of a CRC card from the RMO CSMS. The card is
partially filled out. Along the top of the card is the name of the class. The left
partition lists the responsibilities for objects in this class. Responsibilities

«controller»
SaleHandler

Customer

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

-saleID: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

Sale

-saleItemID: int {key}
-quantity: int
-price: float
-backorderStatus: string

SaleItem

PromoOffering

-price: float
-specialPrice: float

-productID: string {key}
-vendor: string
-gender: string
-description: string

ProductItem

-inventoryID: string {key}
-size: string
-color: string
-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

InventoryItem

FIGURE 10-16
First-cut RMO design class diagram for
the Create phone sale use case

CRC cards a brainstorming technique
for designing interactions in use cases by
assigning responsibilities and collaborations
for classes

314 PART 5 ■ Advanced Design and Deployment Concepts

include information that the class maintains and actions that the class carries
out in support of some use case. The right partition lists other classes with
which this class collaborates in support of a particular use case. The informa-
tion within parentheses is return information from the collaborating class to
the main class. On the back of the card, you have the option of listing impor-
tant attributes that are required for a particular use case.

The process of developing a CRC model is usually done in a brainstorm-
ing session. A design session using CRC cards already has substantial infor-
mation from which to begin. Before starting the design session, each team
member should have a copy of the domain model class diagram. Of course,
the use case diagram or list of use cases also needs to be available. Other
detailed information, such as activity diagrams, system sequence diagrams,
and use case descriptions, should be provided, along with a stack of blank
CRC-formatted index cards. For each use case you need to design, these steps
are done iteratively:

■ Selecting a use case—Because the process is to design, or realize, a single use
case, start with a set of unused CRC cards. Because we are doing multilayer
design, make up one card as the use case controller card.

■ Identifying the problem domain class that has responsibility for this use
case—This object will receive the first message from the use case controller.
Using the domain model that was developed during analysis, select one
class to take responsibility. Focus only on the problem domain classes. On
the left side of the card, write the object’s responsibility. For example, a
Customer object may take responsibility to make a new sale, so one respon-
sibility may be Create phone sale.

■ Identifying other classes that must collaborate with the primary object
class to complete the use case—Other classes will have required informa-
tion. For our example of creating a sale, we will need a Sale class card
and a SaleItem class card; pricing information will probably come from
the PromoOffering class; and the InventoryItem class will have to be
checked for stock on hand. List these classes on the primary problem
domain card. As you identify the other classes, write their responsibilities
on their cards. Also, on the backs of all cards, write the pertinent infor-
mation or attribute of each object class.

At the end of this process, you will have a small set of CRC cards that
collaborate to support the use case. This process can be enhanced with several
other activities. First, the CRC cards can be arranged on the table in the order
they are executed or called. In other words, the calling order can be determined

FIGURE 10-17 Example CRC card (front and back)

Class name

Customer
update name
update address
request purchase
 history
process sale
make payments

Sale (ID)
Payment (ID)

customerNo
customerName
customerAddress
shippingAddress
dayPhone
nightPhone

Responsibilities

Collaborating classes
with return data

Attributes on back

CHAPTER 10 ■ Object-Oriented Design: Principles 315

at this time. For example, the Customer object creates a Sale object, the Sale
object creates SaleItem objects, and SaleItem objects access ProductItem and
InventoryItem objects to get required information. Figure 10-18 illustrates a
solution set of CRC cards for the use case Create phone sale.

Another helpful step is to include the user-interface classes. If a user is part
of the team and if some preliminary work has been done on the user interface
requirements, it could be effective to add CRC cards for all user-interface win-
dow classes that are required for the use case. By including user-interface clas-
ses, all the input and output forms can be included in the design. Obviously,
this is a much more complete design.

Any other required utility classes can also be added to the solution. For exam-
ple, for a three-layer design, data access objects will be part of the solution. Each
persistent class will have a data access class to read and write to the database.

At the end of the design for one use case, two other important tasks remain.
Because the CRC cards only have data for a single use case, the information can
be transferred to the design class diagram. The design class diagram then becomes
a central repository for all information about every class in the new system.

A second task is to put an elastic band around the set of CRC cards for
the next step. If the use case is a simple one, the CRC cards can be taken by a
programmer and the use case can be implemented.

To finish the example, let us go back to the DCD and update it based on
the design information created during the brainstorming session. Figure 10-19
shows an updated DCD, with several methods added and updates in the visibil-
ity. We first note that a new class has been added. Evidently, we overlooked the
OrderTransaction class in the first-cut DCD. We also note that the
OrderHandler class needs visibility to the Sale class to process a payment.
Compare the responsibilities identified on the CRC cards and the method
names described in each class. Note the close correlation.

Often, when developers begin using CRC cards, they list many different
responsibilities for a given class. For example, developers might say the
SaleItem class should get the price. In reality, the PromoOffering class provides
the price and the SaleItem only uses it. In other words, it usually helps to think
of responsibilities as being similar to methods—requests to do something rather
than random actions that need to occur.

FIGURE 10-18 CRC cards model for Create phone sale use case

NewSaleWIndow
accept input
display results

SaleHandler

InquireOnItemWindow
accept item data
display items

SaleHandler
handle new
 sale

Customer
Sale
SaleItem

Customer
update name
update address
process sale
request history

Sale
Transaction

Sale
update information
request shipping
update status
cancel sale
add items to sale
take payment

Sale Item
Transaction

SaleItem
updateinformation
cancel item
request backorder

PromoOffering
Product
InventoryItem

process payment Customer
Sale

provide price

ProductItem
provide description

InventoryItem
provide quantity
update quantity
order new supply

PromoOffering

SaleTransaction

SaleHandler

316 PART 5 ■ Advanced Design and Deployment Concepts

Fundamental Detailed Design Principles
Now that you understand how an object-oriented program works and you
know the notation for a design class, let us review several basic principles that
will guide design decisions. We used these principles throughout this chapter as
we discussed the steps of object-oriented design because they are important to
all parts of the process.

Coupling
In the previous example, in which Customer had navigation visibility to Sale, we
could also say that Customer and Sale are coupled, or linked. Coupling is a
qualitative measure of how closely the classes in a design class diagram are
linked. A simple way to think about coupling is as the number of navigation
arrows on the design class diagram. Low coupling is usually better for a system
than high coupling. In other words, fewer navigation visibility arrows indicate
that a system is easier to understand and maintain.

We say that coupling is a qualitative measure because no specific number
measures coupling in a system. A designer must develop a feel for coupling—
that is, recognize when there is too much or too little. Coupling is evaluated as

Customer

-accountNo: string {key}
-name: string
-billingAddress: string
-shippingAddress: string
-dayPhone: string
-nightPhone: string

-saleID: int {key}
-saleDate: date
-priorityCode: string
-shipping&Handling: float
-tax: float
-grandTotal: float

Sale

-orderItemID: int {key}
-quantity: int
-price: float
-description: string
-backorderStatus: string

SaleItem

PromoOffering

-catalogID: string {key}
-productID: string {key}
-price: float
-specialPrice: float

-productID: string {key}
-vendor: string
-gender: string
-description: string

ProductItem

-inventoryID: string {key}
-size: string
-color: string
-options: string
-quantityOnHand: int
-averageCost: float
-reorderQuantity: int

InventoryItem

+updateName ()
+updateAddress ()
+processSale ()
+requestHistory ()

+addItem ()
+updateInformation ()
+requestShipping ()
+updateStatus ()
+cancelSale ()
+makePayment ()

+updateInformation ()
+cancelItem ()
+requestBackorder ()

+getPrice () +getDescription () +updateQOH ()

«controller»
SaleHandler

+processNewSale ()
+addItemsToSale ()
+makePayment ()

SaleTransaction

-transactionID: int {key}
-saleDate: date
-transactionType: string
-amount: float
-payMethod: string

+processPayment ()

FIGURE 10-19
Updated DCD for the Create phone
sale use case

coupling a qualitative measure of how
closely the classes in a design class diagram
are linked

CHAPTER 10 ■ Object-Oriented Design: Principles 317

a design progresses—use case by use case. Generally, if each use case design has
a reasonable level of coupling, the entire system will too.

Refer back to Figure 10-1 to observe the flow of messages between the
objects. Obviously, objects that send messages to each other must have navi-
gation visibility and thus are coupled. For the Input window object to send a
message to the Student object, it must have navigation visibility to it. Thus,
the Input window object is coupled to the Student object. But notice that the
Input window object isn’t connected to the Database access object, so those
objects aren’t coupled. If we designed the system so the Input window object
accessed the Database access object, the overall coupling for this use case
would increase; that is, there would be more connections. Is that good or
bad? In this simple example, it might not be a problem. But for a system
with 10 or more classes, too many connections with navigation visibility can
cause high levels of coupling, making the system more complex and therefore
harder to maintain.

So, why is high coupling bad? The main reason is that a change in one class
ripples through the entire system. Therefore, experienced analysts make every
effort to simplify coupling and reduce ripple effects in the design of a new
system.

Cohesion
Cohesion refers to the consistency of the functions within a single class.
Cohesion is a qualitative measure of the focus or unity of purpose within a sin-
gle class. For example, in Figure 10-1, you would expect the Student class to
have methods—that is, functions—to enter student information, such as identifi-
cation number or name. That would represent a unity of purpose and a highly
cohesive class. But what if that same object also had methods to make class-
room assignments or assign professors to courses? The cohesiveness of the class
would be reduced.

Classes with low cohesion have several negative effects. First, they are hard
to maintain. Because they perform many different functions, they tend to be
overly sensitive to changes within the system, suffering from ripple effects.
Second, it is hard to reuse such classes. Because they have many different—and
often unrelated—functions, it usually doesn’t make sense to reuse them in other
contexts. For example, a button class that processes button clicks can easily be
reused. However, a button class that processes button clicks and user log-ins
has limited reusability. A final drawback is that classes with low cohesion are
usually difficult to understand. Frequently, their functions are intertwined and
their logic is complex.

Although there is no firm metric to measure cohesiveness, we can think
about classes as having very low, low, medium, or high cohesion. Remember,
high cohesion is the most desirable. An example of very low cohesion is a class
that has responsibility for services in different functional areas, such as a class
that accesses the Internet and a database. These two types of activities are differ-
ent and accomplish different purposes. To put them together in one class causes
very low cohesion.

An example of low cohesion is a class that has different responsibilities but in
related functional areas—for example, one that does all database access for every
table in the database. It would be better to have different classes to access customer
information, order information, and inventory information. Although the functions
are the same—that is, they access the database—the types of data passed and
retrieved are very different. Thus, a class that is connected to the entire database
isn’t as reusable as one that is only connected to the customer table.

An example of medium cohesion is a class that has closely related responsi-
bilities, such as a single class that maintains customer information and customer
account information. Two highly cohesive classes could be defined: one for cus-
tomer information, such as names and addresses, and another class or set of

cohesion a qualitative measure of the
focus or unity of purpose within a single class

318 PART 5 ■ Advanced Design and Deployment Concepts

classes for customer accounts, such as balances, payments, credit information,
and all financial activity. If the customer information and the account informa-
tion are limited, they could be combined into a single class with medium cohe-
siveness. Either medium or highly cohesive classes can be acceptable in systems
design.

Protection from Variations
One of the underlying principles of good design is protection from variations—
the idea that the parts of a system that are unlikely to change should be segregated
(or protected) from those that will change. As you design systems, you should try to
isolate the parts that will change from those that are more stable.

Protection from variations is a principle that drives the multilayer design
pattern. Designers could mix all the user-interface logic and business logic
together in the same classes. In fact, in early user-oriented, event-driven systems,
such as those built with early versions of Visual Basic and PowerBuilder, the
business logic was included in the view layer classes—often in the windows
input forms. Many Web applications also combine HTML and business
logic. The problem with this design was that when an interface needed to be
updated, all the business logic had to be rewritten. A better approach is to
decouple the user-interface logic from the business logic. Then, the user inter-
face can be rewritten without affecting the business logic. In other words, the
business logic—being more stable—is protected from variations in the user
interface.

Also, what if updates to the business logic require the addition of new clas-
ses and new methods? If the user-interface classes are tightly coupled to the
business classes, there could be a ripple effect of changes throughout the user-
interface classes. However, because the user interface can simply send all its
input messages to the use case controller class, changes to the methods or classes
in the business logic and domain layer are isolated to the controller class. You
will find that protection from variations affects almost every design decision,
so you should watch for and recognize the application of this principle in all
design activities.

Indirection
Indirection is the principle of decoupling two classes or other system compo-
nents by placing an intermediate class between them to serve as a link. In other
words, instructions don’t go directly from A to B; they are sent through C first.
Or in message terminology, don’t send a message from A to B; let A send the
message to C and then let C forward it to B.

Although there are many ways to implement protection from variations,
indirection is frequently used for that purpose. Inserting an intermediate object
allows any variations in one system to be isolated in that intermediate object.
Indirection is also useful for many corporate security systems. For example,
many companies have firewalls and proxy servers that receive and send mes-
sages between an internal network and the Internet. A proxy server appears as
a real server—ready to receive such messages as e-mail and HTML page
requests. However, it is a fake server, which catches all the messages and redis-
tributes them to the recipients. This indirection step allows security controls to
be put in place and protect the system.

Object Responsibility
One of the most fundamental principles of object-oriented development is the
idea of object responsibility; that is, objects are responsible for carrying out
the system processing. These responsibilities are categorized in two major areas:
knowing and doing. In other words, what is an object expected to know, and
what is an object expected to do or to initiate?

protection from variations a design
principle in which parts of a system that are
unlikely to change are segregated from those
that will

indirection a design principle in which
an intermediate class is placed between two
classes to decouple them but still link them

object responsibility a design principle
in which objects are responsible for carrying out
system processing

CHAPTER 10 ■ Object-Oriented Design: Principles 319

“Knowing” includes an object’s responsibilities for knowing about its
own data and knowing about other classes with which it must collaborate
to carry out use cases. Obviously, a class should know about its own
data, what attributes exist, and how to maintain the information in those
attributes. It should also know where to go to get information when
required. For example, during the initiation of an object, data that aren’t
passed as parameters may be required. An object should know about or
have navigation visibility to other objects that can provide the required
information. In Figure 10-8, the first constructor method for the Student
class doesn’t receive a studentID value as a parameter. Instead, the Student
class takes responsibility for creating a new studentID value based on some
rules it knows.

“Doing” includes all the activities an object does to assist in executing a
use case. Some of those activities include receiving and processing messages.
Another activity is to instantiate, or create, new objects that may be required
for completion of a use case. Classes must collaborate to carry out a use
case, and some classes are responsible for coordinating the collaboration. For
example, for the use case Create phone sale, the Sale class has responsibility
to create SaleItem objects. Another class, such as InventoryItem, is only
responsible for providing information about itself.

Chapter Summary
The primary creative activity of system developers is to
write computer software that solves the business prob-
lem. So far, this textbook has focused on two major activ-
ities: understanding the user’s requirements (the business
problem) and figuring out and visualizing a solution sys-
tem. This chapter focuses on how to configure and
develop the solution system—that is, design the system.
Systems design is the bridge that puts business require-
ments in terms that the programmers can use to write
the software that becomes the solution system.

Architectural design is the first step in configuring the
new system. Its purpose is to determine the structure and
configuration of the new system’s various components.
Component diagrams show the various executable com-
ponents of the new system and how they relate to one
another. Many new systems are enterprise-level systems,
in that they are used at locations throughout the organi-
zation. They also share resources, such as a common
database of information.

Once the architectural design is known, detailed
design can begin. The objective of detailed design is to
determine the objects and methods within individual
classes to support the use cases. The process of detailed
design is use case–driven, in that it is done for each use
case separately.

The process of detailed design can be divided into
two major areas: developing a design class diagram

(DCD) and developing the set of interacting classes
and their methods for each use case via a sequence dia-
gram. The DCD is usually developed in two steps. A
first-cut DCD is created based on the domain model
class diagram, but then it is refined and expanded as
the sequence diagrams are developed. A preliminary
idea of how the objects collaborate can be created
using class responsibility collaboration (CRC) cards.
For simple use cases, a set of CRC cards may be suffi-
cient to write code. For more complex use cases, the
CRC cards serve as the beginning point for developing
sequence diagrams.

One reason that we suggest a more formal system
of design rather than just starting to write code is that
the final system is much more robust and main-
tainable. Doing design as a rigorous activity builds
better systems. Some fundamental principles should
be considered as a system is developed; two critical
ideas are coupling and cohesion. A good system has
low coupling between the classes, and each of the
classes has high cohesion. Another important principle
is “protection from variations,” meaning that some
parts of the system should be protected from and
not tightly coupled to other parts of the system that
are less stable and subject to change. Being a good
developer entails learning and following the principles
of good design.

320 PART 5 ■ Advanced Design and Deployment Concepts

Key Terms

abstract class 311

application program
interface (API) 300

boundary class, or view class 309

class-level attributes 311

class-level method 310

cohesion 318

component diagram 300

concrete class 311

control class 309

coupling 317

CRC cards 314

data access class 309

enterprise-level system 298

entity class 309

indirection 319

instantiation 296

method signature 310

navigation visibility 312

object responsibility 319

persistent class 309

protection from variations 319

stereotype 309

visibility 310

Review Questions
1. Describe in your own words how an object-oriented

program works.

2. What is instantiation?

3. List the models that are used for object-oriented
systems design.

4. What UML diagram is used to model architectural
design?

5. Explain how domain classes are different from
design classes.

6. What is an enterprise-level system? Why is it an
important consideration in design?

7. What are some of the differences between a
client-server network system and an Internet
system?

8. What is an API? Why is it important?

9. What notation is used to identify the interface
of a component?

10. What is the difference between the notation
for problem domain classes and design
classes?

11. In your own words, list the steps for doing
object-oriented detailed design.

12. What do we mean by use-case driven design, and
what is use case realization?

13. What are a) persistent classes, b) entity classes, c)
boundary classes, d) control classes, and e) data
access classes?

14. What are class-level methods and class-level
attributes?

15. What are attribute and method visibility, and what
are the types of visibility shown on a design class
diagram?

16. What is a method signature?

17. Compare and contrast abstract and concrete classes.
Give an example of each.

18. Describe navigation visibility. Why is it important
in detailed design?

19. List some typical conditions that dictate in which
direction navigation visibility occurs.

20. What information is maintained on CRC cards?

21. What is the objective of a CRC card design
session?

22. Compare and contrast the ideas of coupling and
cohesion.

23. What is protection from variations, and why is it
important in detailed design?

24. What is meant by object responsibility, and why is
it important in detailed design?

CHAPTER 10 ■ Object-Oriented Design: Principles 321

Problems and Exercises
1. Given the following system description, develop a

component diagram for a desktop-operated internal
network system (i.e., Internet access not required).

The new Benefits for Employees, Spouses, and
Dependents (BESD) system will be used primarily
by the human resources department and will con-
tain confidential information. Consequently, it will
be built as a totally in-house system, without any
Internet elements. The database for the system is the
human resource employee database (HRED), which
is shared by several other systems within the
company.

There are two types of screens from a systems
design viewpoint: simple inquiry screens and com-
plex inquiry/update screens. The simple inquiry
screens just access the database, with no business
logic required. The complex screens usually do
fairly complicated calculations based on sophisti-
cated business rules. These programs often have to
access other data tables from other databases in the
company.

The database will always remain on a central
database server. The application program itself will
be installed on each desktop that is allowed access.
However, authentication is a centralized process,
and it will control which screens and program
functions can be accessed by which users.

2. Develop a component diagram for the following
description of a Facebook application.

The Facebook platform is available for entre-
preneurs to develop applications for use among all
Facebook users. A new application is being written
that allows Facebook users to send gifts and greet-
ing cards to their friends. (These are real gifts and
greeting cards, not just electronic images.) The
application running within Facebook is on its own
server and has its own database of information,
which includes a list of gifts and cards that have
been sent or received. The actual retail store of gifts
and cards to send must be located on a different
server because it is part of a regular Internet sales
storefront. This storefront maintains the database
of inventory items to sell and collects credit card
payment information.

3. In this chapter, we developed a first-cut DCD, a set
of CRC cards, and a final DCD for the Create
phone sale use case for RMO. Create the same three
drawings for the Look up item availability use case.

4. Find a company that does object-oriented design by
using CRC cards. The information systems unit at
your university often uses object-oriented techni-
ques. Sit in on a CRC design brainstorming session.
Interview some of the developers about their feel-
ings regarding the effectiveness of doing CRC
design. Find out what documentation remains after
the sessions and how it is used.

5. Find a company that has an enterprise system.
(If you are working for a company, see what systems
they use.) Analyze the system and then develop a
component diagram and a deployment diagram.

6. Find a system that was developed by using Java.
If possible, find one that has an Internet user
interface and a network-based user interface. Is it
multilayered—three layers or two layers? Can you
identify the view layer classes, the domain layer
classes, and the data access layer classes?

7. Find a system that was developed by using Visual
Studio .NET (Visual Basic or C#). If possible, find
one that has an Internet user interface and a
network-based user interface. Is it multilayered?
Where is the business logic? Can you identify the
view layer classes, the domain layer classes, and the
data access layer classes?

8. Pick an OOP language with which you are familiar.
Find a programming IDE tool that supports that
language. Test its reverse-engineering capabilities to
generate UML class diagrams from existing code.
Evaluate how well it does and how easy the models
are to use. Does it have any capability to input
UML diagrams and generate skeletal class defini-
tions? Write a report on how it works and what
UML models it can generate.

9. Draw a UML design class that shows the following
information.

The class name is Boat, and it is a concrete
entity class. All three attributes are private strings
with initial null values. The attribute boat identifier
has the property of “key.” The other attributes are
the manufacturer of the boat and the model of the
boat. There is also an integer class-level attribute
containing the total count of all boat objects that
have been instantiated. Boat methods include
creating a new instance, updating the manufacturer,
updating the model, and getting the boat identifier,
manufacturer, and model year. There is a class-level
method for getting the count of all boats.

322 PART 5 ■ Advanced Design and Deployment Concepts

Case Study

The State Patrol Ticket-Processing System
(Revisited)

In Chapter 3, you identified use cases and considered the
domain classes for the State Patrol Ticket Processing
System. Review the descriptions in Chapter 3 for the use
case Record a traffic ticket. Recall that the domain classes
included Driver, Officer, Ticket, and Court.

1. Draw a domain class diagram for the ticket-processing
system based on the four classes just listed and
include attributes, association, and multiplicity.

2. List the classes that would be involved in the use
cases and decide which class should be responsible

for collaborating with the other classes for the use
case Record a traffic ticket. Consider some possibili-
ties: 1) a driver object should be responsible for
recording his/her ticket; 2) the officer object should be
responsible for recording the ticket that he or she
writes; and 3) a ticket object should be responsible for
recording itself.

3. Create a set of CRC cards showing these
classes, responsibilities, and collaborations for the
use case.

4. Draw a first-cut design class diagram (DCD) based on
your CRC cards.

RUNNING CASES

Community Board of Realtors

In Chapter 3 and Chapter 5, you identified and then
modeled use cases for the Multiple Listing Service
(MLS) application. You also identified and modeled
domain classes. Use your solutions from these chapters
to do the following:

1. Draw a basic component diagram showing the
architectural design for the system, assuming that
it is a two-layer Internet architecture.

2. Use the CRC cards technique to identify the
classes that are involved in the Create new listing
use case. Recall that creating a new listing involves
an agent, a real estate office, and a listing. Decide
which class should have the primary responsibility
for collaborating with the other classes and then
complete the CRC cards for the use case.

3. Draw a first-cut design class diagram (DCD) based
on the CRD cards for this use case.

The Spring Breaks ‘R’ Us Travel Service

In Chapter 3, you identified use cases for the Spring
Breaks ‘R’ Us Travel Service. In Chapter 5, you elabo-
rated those use cases. In Chapter 4, you identified the
classes associated with these use cases. Using your
solutions from these chapters, do the following:

1. Draw a basic component diagram showing the
architectural design for the system, assuming it is a
two-layer Internet architecture.

2. Use the CRC cards technique to identify the classes
that are involved in the Book a reservation use case.
Recall that creating a booking involves at least a
student group, a resort, a week, and a room type.
Decide which class should have the primary respon-
sibility for collaborating with the other classes and
then complete the CRC cards for the use case.

3. Draw a first-cut design class diagram (DCD) based
on the CRD cards for this use case.

On the Spot Courier Services

In Chapter 6, you considered the issues relevant to the
specification of the hardware equipment and network-
ing requirements. The case description in Chapter 6

also reviewed the three primary types of users for the
system and many of their respective system-supported
activities.

(continued on page 324)

CHAPTER 10 ■ Object-Oriented Design: Principles 323

Consistent with the network that you recommended
in Chapter 6, develop a component diagram. Show
which parts of the systemmay use general Internet access
and which parts may use VPN capabilities.

In Chapter 5, you developed activity diagrams and
system sequence diagrams for two use cases: Request a
package pickup and Pickup a package. In Chapter 4,
you developed a domain model class diagram for the
system.

For each of the two use cases, develop a first-cut
design class diagram and a set of CRC cards. The design
class diagram should elaborate the attributes and show
navigation visibility.Youmayalsoneed to addmore clas-
ses from your solution in Chapter 4. It isn’t uncommon
for developers to enhance early models as they begin to
understand system requirements better. The CRC cards
should include classes for the Controller class and any
classes for screens you identified in Chapter 7.

Sandia Medical Devices

Review the original system description in Chapter 2,
additional project information in Chapters 3, 4, 6, 8,
and 9, and the use case diagram shown in Figure 10-20
to refamiliarize yourself with the proposed system.

Complete these tasks:

1. Develop a deployment diagram that shows the
equipment specified in Chapter 6 and the list of
software components you developed while
answering question 1 in Chapter 9.

2. For the moment, assume that the database will
store two glucose levels for each patient—normal
minimum and normal maximum—and that an
alert will be generated if three or more consecutive
glucose readings are above or below those levels.
Expand the domain class diagram in Chapter 4 to
include this information and then develop a first-
cut design class diagram to support the patient use
case View/respond to alert.

(continued from page 323)

FIGURE 10-20 Use cases for the patient and physician actors

View/respond
to alert.

View history.

Annotate history.

Send message
to physician.

View/hear
message from

physician.

View/respond
to alert.

Send message
to patient.

View/hear
message from

patient.

Set alert
conditions.

Patient Physician

324 PART 5 ■ Advanced Design and Deployment Concepts

Further Resources

Grady Booch, James Rumbaugh, and Ivar Jacobson,
The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

Grady Booch, et al., Object-Oriented Analysis and

Design with Applications (3rd edition). Addison-
Wesley, 2007.

E. Reed Doke, J. W. Satzinger, and S. R. Williams,
Object-Oriented Application Development Using

Java. Course Technology, 2002.

E. Reed Doke, J. W. Satzinger, and S. R. Williams,
Object-Oriented Application Development

Using Microsoft Visual Basic .NET. Course
Technology, 2003.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons,
and David Fado, UML 2 Toolkit. John Wiley and
Sons, 2004.

Martin Fowler,UML Distilled: A Brief Guide to the

Standard Object Modeling Language (3rd edition).
Addison-Wesley, 2004.

Ivar Jacobson, Grady Booch, and James Rumbaugh,
The Unified Software Development Process.
Addison-Wesley, 1999.

Philippe Kruchten, The Rational Unified Process,

An Introduction. Addison-Wesley, 2000.

Craig Larman, Applying UML and Patterns: An Intro-

duction to Object-Oriented Analysis and Design and

the Unified Process (3rd edition). Prentice Hall, 2004.

Jeffrey Putz,MaximizingASP.NETRealWorld, Object-

Oriented Development. Addison-Wesley, 2005.

James Rumbaugh, Ivar Jacobson, and
Grady Booch, The Unified Modeling Language

Reference Manual. Addison-Wesley, 1999.

CHAPTER 10 ■ Object-Oriented Design: Principles 325

This page intentionally left blank

11
Object-Oriented Design:
Use Case Realizations

Chapter Outline

■ Detailed Design of Multilayer Systems

■ Use Case Realization with Sequence Diagrams

■ Designing with Communication Diagrams

■ Updating and Packaging the Design Classes

■ Design Patterns

Learning Object ives

After reading this chapter, you should be able to:

■ Explain the different types of objects and layers in a design

■ Develop sequence diagrams for use case realization

■ Develop communication diagrams for detailed design

■ Develop updated design class diagrams

■ Develop multilayer subsystem packages

■ Explain design patterns and recognize various specific patterns

327

OPENING CASE

New Capital Bank: Part 2

The integrated customer account system project for New
Capital Bank was now two months old. The first develop-
ment iteration had gone pretty well, although there were a
few snags because the team was still learning the ins and
outs of iterative development projects. Bill Santora, the
project leader, was discussing some of the system’s tech-
nical details with Charlie Hensen, one of his team leaders,
in preparation for the iteration retrospective.

“How is the team feeling about doing detailed
design?” Bill asked Charlie, who was one of the early
critics of doing more formal design. “I know some of the
programmers wanted to just start coding from the use
case descriptions that were developed with the users.
They weren’t very happy about taking the time to design.
Is that still a problem?”

“It really has worked out quite well,” Charlie said. “As
you know, I was skeptical at first and thought it would
waste a lot of time. Instead, it has allowed us to work
together better because we know what the other team
members are doing. I also think the system is much
more solid. We’re all using the same approach, and
we’ve discovered that there are quite a few classes we
share. Of course, we don’t waste a lot of time making
fancy drawings. We do document our designs with some
quick drawings, but that is about as far as we take it.”

“What would you say were the strengths and weak-
nesses of our approach?” Bill asked. “Or are there ways
you think we could do it better in this next iteration?”

“I really like the approach of first doing a rough design
using CRC cards,” Charlie replied. “It’s nice to have a cou-
ple of users there with us to verify that our collaborations
are correct. For the simple use cases, we can work with
the users to lay out the user interface. Between the CRC
cards and the user-interface specifications, we should
have enough to program from, especially now that we
have the basic structure set up. Then, for the more com-
plex use cases, we can go ahead and do a detailed design
with sequence diagrams. The nice thing about the
sequence diagrams is that they’re detailed enough for us
to hand the designs over to some of the junior program-
mers. It makes them much more effective in their team
contributions.”

“So, would you change our approach, or do you think
it’s working the right way?” Bill asked, still looking for
ways to improve the process.

“Well, it really is working pretty well right now,”
Charlie said. “One thing I really like about it is that we
have a common DCD that everyone can access and
review. That really helps when you’re ready to insert
some code into a class to check and see what is
already there. The central repository for all our code
and for the diagrams we do formalize is a great tool.
I wonder if there is a way to get more use out of that
tool. Other than that, I would say let’s stick with this
approach for another iteration and see if it needs chang-
ing after that.”

Overview
Chapter 10 explained the design concepts and models used for multilayer sys-
tems and their architectural design. The latter portion of that chapter introduced
the concepts associated with object-oriented detailed design. You also learned
how to begin the detailed design process by using CRC cards and design class
diagrams to identify which classes collaborate to carry out use cases. Simple use
cases can frequently be programmed from the design information developed
with these two steps.

This chapter pursues object-oriented detailed design in more depth and for-
mality. Detailed design is a subject that can be addressed at multiple levels. For
the beginner, a fairly straightforward yet complete process can be defined. This
chapter focuses on the foundation principles, which are based on the concepts
of use case realization by using sequence diagrams and design patterns. Once
you become proficient with these two subjects, you can consider yourself an
object-oriented designer. Several good books are available on design patterns
and design methods.

The method used to extend the process of detailed design is called use case
realization. In use case realization, each use case is taken individually to deter-
mine all the classes that collaborate on it. As part of that process, any other util-
ity or support classes are identified. Care is taken during this process to define
the classes so the integrity of the multilayer architectural design is maintained.

use case realization the process of
elaborating the detailed design with interaction
diagrams for a particular use case

328 PART 5 ■ Advanced Design and Deployment Concepts

As the details of the classes are designed—use case by use case—the design class
diagram is also updated as necessary.

The last section of this chapter is a brief introduction to design patterns. As
with any engineering discipline, certain procedures have become tried and
proven solutions. Even though object-oriented development is a relatively young
engineering discipline, it offers standard ways to design use cases that lead to
solid, well-constructed solutions. You will learn a few of those standard designs
or patterns.

Detailed Design of Multilayer Systems
The discussion of CRC cards in Chapter 10 introduced the idea of collaborating
objects to execute various use cases. However, design sessions using CRC cards
focus on the problem domain classes, with very little attention given to multi-
layer issues as they affect the detailed design. This chapter describes in depth
the detailed design of all layers of a multilayer system.

Looking back at Figure 10-1 in Chapter 10, there are three objects repre-
senting the three layers of a system. Each object has certain responsibilities. The
input window object has the primary responsibility of formatting and presenting
student information on the screen. It also has the responsibility of accepting
input data—either student ID or changed information—and forwarding it to the
system. The object probably also does some editing of the input data. Where
does this object come from? What are this object’s attributes and methods?
Identifying and defining the window objects are part of the application design
and the user interface design.

The student object represents the middle layer, or business logic layer, for
the use case. A CRC design session will help you design the structure of the
objects in this layer. However, you probably noticed that CRC cards are quite
informal, especially when trying to ascertain class methods from object responsi-
bilities. CRC cards provide little direction in defining method signatures with
appropriate input and output parameters. This chapter formalizes the process of
precisely identifying methods and defining method signatures.

Again referring to Figure 10-1, the database access object represents the
third layer in the multilayer design. It is responsible for connecting to the data-
base, reading the student information, and sending it back to the student object.
It is also responsible for writing the student information back to the database
when necessary. This object doesn’t come from a problem domain class; it is a
utility object created by the designer.

Several questions should come to mind as you review a detailed systems
design. First, how do all these objects get created in memory? For example,
how and when does the student object get created? How about the database
access object? Other questions include: Will other objects be necessary? What
object represents authentication? What is the life span of each object? Maybe
the student object should go away after the update—but what about the data-
base access object?

Patterns and the Use Case Controller
Patterns, also called templates, are used repeatedly in everyday life. A chef uses
a recipe, which is just another word for a pattern, to combine ingredients into a
flavorful dish. A tailor uses a pattern to cut fabric for a great-fitting suit.
Engineers take standard components and combine them into established config-
urations, or set patterns, to build buildings, sound systems, and thousands of
other products. Patterns are created to solve problems. Over time and with
many attempts, people who work on a particular problem develop a set solution
to the problem. The solution is general enough that it can be applied over and
over again. As time passes, the solution is documented and published, and even-
tually it becomes accepted as the standard.

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 329

Standard design templates have become popular among software developers
because they can speed object-oriented design work. The formal name for these
templates is design patterns. Design patterns became a widely accepted
object-oriented design technique in 1996 with the publication of Elements of
Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. These four authors are now referred to as the
Gang of Four (GoF). As you learn more about design patterns, you will often
see references to a particular design pattern as a GoF pattern. In their book, the
authors identified 23 basic design patterns. Today, scores of patterns have been
defined—from low-level programming patterns to mid-level architectural pat-
terns to high-level enterprise patterns. Two important enterprise platforms—
Java and .NET—have sets of enterprise patterns, which are described in various
books and publications.

In Chapter 10, you were introduced to the concept of a use case controller.
Let us formalize the concept of a use case controller and explain its importance
as a design pattern. For any particular use case, messages come from the exter-
nal actor to a windows class (that is, an electronic input form) and then to a
problem domain class. One issue in systems design is the question of which
problem domain class should receive input messages to reduce coupling, main-
tain highly cohesive domain classes, and maintain independence between the
user interface and the domain layer. Designers often define intermediary classes
that act as buffers between the user interface and the domain classes. We call
these classes use case controllers. For example, the use case Fill shopping cart
might have a controller class named CartHandler.

Figure 11-1 provides a more formal specification for the use case controller
pattern. Note that this specification has five main elements:

■ Pattern name
■ Problem that requires a solution
■ Solution to or explanation of the pattern
■ Example of the pattern
■ Benefits and consequences of the pattern

You should read this specification to understand the important principles
of the controller pattern, what problem it solves, how it works, and its bene-
fits. This same template will be used later in this chapter with the other
design patterns.

A use case controller acts as a switchboard, taking input messages and rout-
ing them to the correct domain class. In effect, the use case controller acts as an
intermediary between the outside world and the internal system. What if a par-
ticular window object needs to send messages to several problem domain
objects? Without the use case controller, the input window would need refer-
ences to all these domain objects. The coupling between the input window
object and the internal system would be very high; there would be many con-
nections. The coupling between the user interface objects and the problem
domain objects could be reduced by making a single use case controller object
to handle all the input messages. A use case controller also contains logic that
controls the flow of execution for the use case. In this way, domain layer design
classes can remain more cohesive by focusing only on the precise functions that
truly belong to that domain object.

In the examples that follow, we define a controller class for each use case.
This is a common practice, and many development environments (such as Java
Struts) automatically define a controller class for each use case. Of course, this
creates many artifact objects in a system. If there are 100 use cases, there would
be 100 use case controller artifact objects. To reduce the number of controllers,
developers sometimes combine the control of several closely related use cases
into a single use case controller. Either approach, if done judiciously, provides a
good solution.

design patterns standard design techni-
ques and templates that are widely recognized
as good practice

330 PART 5 ■ Advanced Design and Deployment Concepts

A use case controller is a completely artificial class created by the person
doing the system design. Sometimes, such classes are called artifacts or artifact
objects. As we get deeper into the explanation of design, you will see the need
to create many kinds of service classes as artifacts—classes that are needed to
execute the use case but aren’t based on any domain model classes.

The process illustrated in the preceding paragraphs and in Chapter 10—that
is, balancing the design principles of coupling, cohesion, class responsibility,

FIGURE 11-1 Pattern specification for the controller pattern

RMO New Customer

Controller

Domain classes have the responsibility of processing use cases. However,
since there can be many domain classes, which one(s) should be responsible
for receiving the input messages?

User- interface classes become very complex if they have visibility to all of the
domain classes. How can the coupling between the user-interface classes and
the domain classes be reduced?

Assign the responsibility for receiving input messages to a class that receives
all input messages and acts as a switchboard to forward them to the correct
domain class. There are several ways to implement this solution:
(a) Have a single class that represents the entire system, or
(b) Have a class for each use case or related group of use cases to act as a
 use case handler.

The RMO Customer account subsystem accepts inputs from a :CustomerForm window.
These input messages are passed to the :CustomerHandler, which acts as the switchboard to
forward the message to the correct problem domain class.

Benefits and
Consequences:

Other cases of the controller pattern will be used for each RMO use case.

Coupling between the view layer and the domain layer is reduced.
The controller provides a layer of indirection.

The controller is closely coupled to many domain classes.
If care is not taken, controller classes can become incoherent,
 with too many unrelated functions.
If care is not taken, business logic will be inserted into the controller class.

Example:

Solution:

Problem:

Name:

createNewCustomer ()

createNewCustomer () createNewCustomer ()

User interface Domain classes

:CustomerForm :CustomerHandler :Customer

Controller class

CancelSave

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 331

indirection, and protection from variations—is precisely the process of systems
design. As you read this chapter, you will see the importance of the design prin-
ciples discussed in Chapter 10.

Use Case Realization with Sequence Diagrams
Developing interaction diagrams is at the heart of object-oriented detailed design.
The realization of a use case—determining what objects collaborate and the
messages they send to each other to carry out the use case—is done through
the development of an interaction diagram. Two types of interaction diagrams
can be used during design: sequence diagrams or communication diagrams.
This section shows you how to design with sequence diagrams; then, in the
next section, we briefly explain how communication diagrams are used in
systems design.

Adaptive projects that use iteration and Agile modeling techniques minimize
the formality of design diagrams. For these kinds of projects, the same developers
will sometimes do the analysis, the design, and the programming. In those
instances, the design diagrams are often done on a whiteboard or scratch paper
and then discarded after the programming is done. However, it isn’t uncommon
to have distributed teams in which the analysts and designers are in one location
and the programmers are in another location—often offshore. In that case, design
diagrams are helpful in communicating design decisions throughout the team.

In this chapter (and possibly for your homework assignments), the diagrams
will be developed using MS Visio. However, in real projects, hand-drawn dia-
grams can be scanned and transmitted to all the team members just as easily.

The following sections explain in detail the steps and techniques required
for use case realization. In the first section, we provide a partial sequence dia-
gram to introduce the terms and composition of a sequence diagram. We then
demonstrate the process of use case realization by using the problem domain
classes for the use cases Create customer account and Fill shopping cart. These
examples illustrate the core process of organizing and structuring the problem
domain classes into the solution for the use case. The final examples explain
how to add the data access layer classes and the view layer classes. Each layer
is illustrated with a detailed example using the same use case.

Understanding Sequence Diagrams
You first heard about sequence diagrams in Chapter 5 when you learned how to
develop a system sequence diagram (SSD). By now, you should feel comfortable
reading, interpreting, and developing an SSD. Remember that an SSD is used to
document the inputs to and outputs from the system for a single use case or sce-
nario. The system itself is treated as a single object named :System. The inputs
to the system are messages from the actor, and the outputs are usually return
variables showing the data being returned. Figure 11-2 reviews the elements of
an SSD by showing a partial example for the Create customer account use case.
As shown in the figure, each message has a source and a destination.

Remember that the syntax of an input message, as discussed in Chapter 5, is:

* [true/false condition] return-value := message-name (parameter-list)

The starting point for the detailed design of a use case is always its SSD.
Remember that the SSD only has two lifelines—one for the actor and one for
the system. The most important information on an SSD is the sequence of mes-
sages between the actor and the system. Frequently, there are input and output
messages. There may be a single input message or many. The input messages
may have data parameters or not. There also may be Loop frames, Alt frames,
and Opt frames as well as repeating inputs and outputs. A Loop frame denotes
a set of messages within a loop. An Alt frame is similar to an if-then-else

sequence diagrams type of interaction
diagram that emphasizes the sequence of
messages sent between objects for a specific
use case

communication diagrams type of
interaction diagram that emphasizes the objects
that send and receive messages for a specific
use case

332 PART 5 ■ Advanced Design and Deployment Concepts

statement or switch statement, which allows the firing of different sets of mes-
sages. An Opt frame is an optional invoking of a set of messages. We will see
examples of these later in this chapter.

The three input and output messages in Figure 11-2 characterize the
sequence of actions required to add a customer. The first message sends the
basic information about customer name, telephone numbers, and e-mail
addresses. The same information is returned with a customer ID number. The
return information occurs after the system has created a new record in the data-
base. The next two input messages simply add more information to the account:
the customer address information and credit card information. The return mes-
sages are essentially a reformat of the input data for the customer to verify.
Additional complexity might be added in real life for such things as verifying
and correcting the entered information.

Figure 11-3 illustrates a two-level detailed design for this use case. Callouts
show the classes associated with each of the two layers. This use case has one
view layer object: the :CustomerForm object. Notice that the input messages
from the external actor always go to the view layer objects. The purpose of the
design process is to take each input message and determine what the system
must do to respond to the message. For the first message—createNewCustomer()—
the system simply uses the :CustomerForm screen to accept and possibly edit
the input values. At this point in the design, we won’t worry about the required
editing. The primary objective of the sequence diagram is to identify which
classes collaborate and what messages they must send to each other.

After the :CustomerForm object receives the createNewCustomer() message,
it sends a message to the :CustomerHandler object, which in turn sends a

Clerk

enterAddress (address)

createNewCustomer (name, phones, email)

(updated address)

(updated cc-info)

:System

Input message

Return value or
output message

A lifeline representing
the timeline for
the object

The external actor
that interacts with
the system

(custID, name, phones, email)

enterCreditCard (cc-info)

The system object
(underlined)

FIGURE 11-2
SSD for the Create customer account
use case

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 333

message to the Customer class, asking it to instantiate a new customer object.
This message is sent directly to the object rectangle, which is an optional but
preferred notation to indicate a message that invokes a constructor. The label in
the rectangle—aC:Customer—indicates that the box represents a customer
object with a reference variable name of aC. Notice on the create message that
the object reference is returned to the controller, which gives it visibility to the
customer object. It will need this reference later to send other messages.

After the customer object is created, it has the responsibility of saving itself
to the database. Because this is a fairly simple use case, we have limited it to a
two-layer design. In other words, the customer object includes customer logic
and database access statements to write itself to the database.

Once the customer object is created and saved to the database, the controller
receives a pointer to the object that it can use to access the custID field as well as
any other data for the newly created customer object: Ac. Once the data is returned
to the controller, it is then returned to the :CustomerForm screen, which is visible to
the external actor. Optionally, we could have added dashed lines going from the
:CustomerForm screen to the external actor to denote the user looking at the screen.
Note that there are two ways to document the returning data: either as a return
value on the function or as a dashed line returning specific values.

One thing should be evident at this point: When a message is sent from an
originating object to a destination object, in programming terms, it means that

FIGURE 11-3 Partial sequence diagram for the Create customer account use case

(custID, name, phones, email)

SQL Insert

enterAddress (address)

(updated address)

enterCreditCard (cc-info)
enterCreditCard (cc-info)

enterAddress (address)

(updated cc-info)

enterAddress (address)

:CustomerForm
«controller»

:CustomerHandler

enterCreditCard (cc-info)

aC:Customer

Clerk

createNewCustomer (name, phones, email)

createNewCustomer (name, phones, email)

aC:=createNewCustomer (name, phones, email)

Activation lifeline

View layer class Domain layer classes

Two ways to return data:
as a value or a return message

334 PART 5 ■ Advanced Design and Deployment Concepts

the originating object is invoking a method on the destination object. Thus, by
defining the messages to various internal objects, we are actually identifying the
methods of that object. The data that is passed by the messages corresponds to
the input parameters of the methods. The return data on a message is the return
value from a method. Hence, once a use case is realized with this detailed design
process, the set of classes and required methods can be extracted so program-
ming can be completed. These method names become part of the documentation
within a design class diagram.

Figure 11-3 contains a new notation called the activation lifeline, which is
represented by small vertical rectangles. Because a message invokes a method on
the destination object, one valuable piece of information might be the duration
of that method’s execution (i.e., the time during which a method is active). The
activation lifeline represents that information. That is why the input message is
normally at the top of the rectangle and the return message at the bottom.
Notice that the customer object has the constructor method attached to the bot-
tom of the object. It remains active until all the data is saved, even while other
get methods are invoked.

Design Process for Use Case Realization
Before we jump into the examples, let us review the final outcomes and the
required steps to get there. As indicated in Chapter 10, the purpose of detailed
design is to identify the classes required for the new system and the methods for
each of those classes. Therefore, one outcome is a comprehensive design class
diagram (DCD) with the attributes elaborated and the method signatures speci-
fied. This DCD may be modeled as one large diagram or as several subsystem
diagrams. The other outcome is either a detailed sequence diagram or a set of
CRC cards for each use case or each use case scenario. These two models are
the primary input that are used to write the program code.

Figure 11-4, which also appeared as Figure 10-10, lists the steps for doing
detailed design and the chapters where each step is discussed. We continue to follow
those steps in this chapter. In Chapter 10, you learned about the first-cut DCD and
the CRC cards. In this section, you learn how to develop the detailed sequence dia-
grams and update the first-cut DCD with additional information. As you learned in
Chapter 10, to develop the first-cut sequence diagram, each input message is
reviewed—one at a time—to determine what other internal messages and problem
domain classes are required to fully process the input request. This enables us to
develop the first-cut sequence diagram, which includes only the problem domain
classes. Once the processing with the problem domain classes is known, the data
access layer and the view layer classes and messages are added to the diagram.
Finally, the DCD is updated with method signatures from the details generated

Design Step Chapter

1. Develop the first-cut design class diagram showing navigation visibility. 10

2. Determine the class responsibilities and class collaborations for each use

 case using CRC cards.

10

3. Develop detailed sequence diagrams for each use case.

 (a) Develop the first-cut sequence diagrams.

 (b) Develop the multilayer sequence diagrams.

11

4. Update the DCD by adding method signatures and navigation information. 11

5. Partition the solution into packages, as appropriate. 11

FIGURE 11-4
Object-oriented detailed design steps

activation lifeline a representation of
the period during which a method of an object
is alive and executing

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 335

during use case realization. In the next two sections, we realize two use cases:
Create customer account and Fill shopping cart.

First-Cut Sequence Diagram: Create customer account Use Case
A detailed sequence diagram uses all the elements that an SSD uses. The differ-
ence is that the :System object is replaced by all the internal objects and mes-
sages within the system. We will identify the internal objects that collaborate
and the messages they send to each other to carry out the use case or the use
case scenario. Figure 11-2 illustrates the SSD for this use case.

The next step is to look at the problem domain classes and determine which
classes are required for this use case. Figure 11-5 is the class diagram for the
Customer account subsystem of the RMO CSMS, as first presented in Figure 4-22.
Obviously, the Customer class is needed. Of the other classes attached to the
Customer class, the Address class and the Account class will probably be created
within this use case. The other classes will be created with other use cases.

To create the first-cut DCD, we will elaborate the attributes with type infor-
mation. Then, we will make some logical decisions about navigation visibility.
Using the guidelines from Chapter 10, we decide that the Customer class would

FIGURE 11-5 Class diagram for the Customer account subsystem

number
street
city
state
zipcode

Address

saleDateTime
priorityCode
S&H
tax
totalAmt
mountainBucks

Sale

amtRMOCredits
amtPartnerCredits

CustPartnerCredit

name
address
contactPerson
telephone
agreementDescription

PromoPartner

date
transactionType
amount
paymentMethod

SaleTrans

customer1
customer2
status
dateLinkedUp

FriendLink

name
mobilePhone
homePhone
emailAddress
status

Customer

date
messageText

Message

typeOfAccount
creditCardNo

Account

1 1..*

0..*

1..*

1

0..*

0..*0..*

1..*

0..*

To

1

0..*

From

1

1..*

0..1

1..*1..*

0..1

336 PART 5 ■ Advanced Design and Deployment Concepts

have visibility to the other two classes: Account and Address. Figure 11-6 pro-
vides the first-cut DCD for this use case.

Based on Figure 11-2, which is the SSD for this use case, and Figure 11-6,
which is the DCD, we proceed with the detailed design of the Create customer
account use case. The first step in expanding an SSD is to place the problem
domain objects in the diagram, along with the input messages from the SSD.
Figure 11-7 shows this first step in the detailed design.

-accountNo:string {key}
-name:string
-mobilePhone:string
-homePhone:string
-emailAddress:string
-status:string

Customer

-accountNo:string
-typeOfAccount:string
-cardNumber:string
-expireDate:date
-comment:string

Account

-accountNo:string
-typeOfAddress:string
-street1:string
-street2:string
-city:string
-state-province:string
-country:string
-postalCode:string

Address

«controller»
CustomerHandler

FIGURE 11-6
First-cut DCD for the Create customer
account use case

:Customer :Address :Account
Clerk

createNewCustomer
(name, phones, email)

enterAddress (address)

enterCreditCard (cc-info)

«controller»
:CustomerHandler

FIGURE 11-7
Objects and input messages in the
Create customer account use case

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 337

The next step is to determine the internal messages that must be sent between
the objects, including which object should be the source and destination of each
message. Decisions about what messages are required and which objects are
involved are based on the design principles described earlier: coupling, cohesion,
object responsibility, and controllers. Figure 11-8 is the completed first-cut
sequence diagram for the design of the Create customer account use case. The
:CustomerHandler controller receives the input messages, searches for the correct
order object, and forwards the createNewCustomer message to the correct
:Customer object. The :Customer object takes responsibility to save itself to
the database based on the createNewCustomer input message. For the other
messages—enterAddress and enterCreditCard—it also takes responsibility for
creating these new objects. And it does this because it “owns” them in the sense
that they can’t exist without a customer object. These newly created objects then
save themselves to the database.

Note that there are a few differences between Figure 11-8 and Figure 11-3.
Figure 11-3 represents only a partial sequence diagram because it doesn’t iden-
tify all the domain classes. However, it does include the view-layer object
:CustomerForm, which was added to demonstrate a more complete sequence
diagram. Figure 11-8 focuses only on the domain classes. It is important for the
first-cut sequence diagram to identify all the domain classes and the required
internal messages between them. In a later step, the view layer classes and data
access layer classes will be added.

FIGURE 11-8 First-cut sequence diagram for the Create customer account use case

(CustID, name, phones, email)(CustID, name, phones, email)

enterAddress (address)enterAddress (address)

(updated address)(updated address)

enterCreditCard (cc-info)enterCreditCard (cc-info)

(updated cc-info)(updated cc-info)

aC:Customer

aAdd:Address

aAcc:Account

enterAddress (address)enterAddress (address)

enterCreditCard (cc-info)enterCreditCard (cc-info)

SQL InsertSQL Insert

SQL InsertSQL Insert

SQL InsertSQL Insert

«controller»
:CustomerHandler

aAdd:=createAddress (address)aAdd:=createAddress (address)

aC:=createNewCustomer (name, phones, email)aC:=createNewCustomer (name, phones, email)

aAcc:=createAccount (cc-info)aAcc:=createAccount (cc-info)

Clerk

createNewCustomer
(name, phones, email)
createNewCustomer

(name, phones, email)

338 PART 5 ■ Advanced Design and Deployment Concepts

When identifying and creating messages, we must first determine the origin
and destination objects for the message. The origin object is the one that needs
information or help in carrying out a responsibility so it will initiate a message.
The destination object is the one that has the information to help in the solution
and will receive the message and process it. After determining the origin and
destination objects, we must name the message. Because a message is requesting
a service from the destination object, the message name should reflect the
requested service. For example, when a quantity needs to be updated in the des-
tination object, the message name should indicate the requested process to
update the quantity. Notice also that the input parameters provide the informa-
tion that the destination object needs in order to provide the service.

Let us analyze this solution based on some of the principles of good design
that we discussed in Chapter 10 and earlier in this chapter: coupling, cohesion,
object responsibility, and use case controllers.

The use case controller provides the link between the internal objects and
the external environment. The problem domain objects are coupled to the use
case controller, and the use case controller is coupled to the external view layer.
Thus, the problem domain objects aren’t coupled directly with the view layer.
The responsibilities assigned to :CustomerHandler are to catch incoming mes-
sages, distribute them to the correct internal domain objects, and return the
required information to the external environment.

The responsibility assigned to :Customer is to be in charge of creating itself
and to control all the other required updates. The :Address and :Account objects
create themselves and save themselves to the database. Coupling is straightfor-
ward, being basically vertical on the hierarchy. Thus, the assignment of respon-
sibilities and corresponding messages conforms to good design principles. Other
issues will need to be addressed as the design expands to include three layers.

First-Cut Sequence Diagram: Fill Shopping Cart Use Case
Before moving ahead to multilayer design, let us work through a slightly more
complex example of a first-cut diagram. Figure 11-9 is an activity diagram for
the Fill shopping cart use case. You will remember from Figure 3-16 that
this use case “included” three other use cases, as shown in Figure 11-9. By
designing the use case in this manner, with other use cases included, our solu-
tion will only have to focus on those functions that actually add items to the
shopping cart.

The SSD for this use case is quite simple. Figure 11-10 shows that there
are only two input messages to the system: adding an item and adding an
accessory item. As you analyze the SSD, notice that adding an item to the
shopping cart and adding an accessory to the cart are the same operation. The
only difference is that adding accessories requires a loop for any additional
accessories added for that same item. Because this is the only difference, we
can simplify the diagram by limiting the solution to the first message. (Note:
An additional class—AccessoryPackage—is required for the use case Search
and view accessories, but because we aren’t designing that use case, it isn’t
required for this solution.)

We begin this design by developing the first-cut DCD. Refer back to
Figure 4-21, which presented the class diagram for the CSMS Sales subsystem.
Using that diagram, we can identify the classes that are required for this use
case. The Customer, Cart, and CartItem classes are necessary because the use
case will be adding items for this customer to the customer’s cart. To create a
cart item, the system will need to know what product it is, if there are items
in stock, and the price for the item. Therefore, other classes that are required
are InventoryItem, ProductItem, and PromoOffering. As we develop the solu-
tion, we may have to add classes, but this appears to be sufficient for now.
Navigation visibility between these classes will be from the controller to the

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 339

Customer System

Search for product

Search and view

accessories

Look at product
reviews

Select options and
quantity

Add to cart

Add to cart

Select accessory

options and

quantity

FIGURE 11-9
Activity diagram for the Fill shopping
cart use case

:SystemCustomer

addItemToCart (promoNo, prodID, size, qty)

(description, price, extendedPrice)

*addAccessoryToCart (promoNo, prodID, size, qty)

(description, price, extendedPrice)

FIGURE 11-10
System sequence diagram for the
Fill shopping cart use case

340 PART 5 ■ Advanced Design and Deployment Concepts

Customer class and to the Cart class once it has been created. The Cart class
will be able to access the CartItem class. The CartItem class should have visi-
bility to the other classes, such as ProductItem and InventoryItem, that contain
the necessary information. Figure 11-11 shows the first-cut DCD.

Figure 11-12 is the first-cut sequence diagram for the Fill shopping cart use
case. Even though there are a lot of messages on it, notice that the bottom half of
the diagram is simply a duplicate of the top half with a couple of minor changes.
Along the left side of the diagram appear the same four input and output messages
from the SSD that are shown in Figure 11-10. Along the top are the seven objects
from the seven classes in the first-cut DCD shown in Figure 11-11. The other
messages on the diagram are the result of our design activities.

The input addItemToCart message originates from the :Customer object
and is directed to the :CartHandler controller object. The controller object
determines if this is the very first item for this customer and, if so, sends a
message to the :Customer object to create a new online cart. In UML, when a
create message is sent to an object, it is often drawn directly to the object’s
box and not to the lifeline. The reference to the cart—aCrt—is then passed

FIGURE 11-11 First-cut DCD for the Fill shopping cart use case

Customer

-accountNo:string {key}
-name:string
-mobilePhone:string
-homePhone:string
-emailAddress:string{index}
-status:string

«controller»
CartHandler

OnlineCart

-saleID:int {key}
-saleDateTime:date
-priorityCode:string
-S&H:currency
-tax:currency
-totalAmt:currency

InventoryItem

-productItem:string
-inventoryItem:int
-size:string
-color:string
-options:string
-quantityOnHand:int
-averageCost:currency
-reorderQuantity:int
-dateLastOrder:date
-dateLastShipment:date

ProductItem

-gender:string
-description:string
-supplier:string
-manufacturer:string
-pictureID:string

PromoOffering

-regularPrice:currency
-promoPrice:currency

Cartitem

-saleItemId:int {key}
-productItem:string
-quantity:int
-soldPrice:currency
-shipStatus:string
-backOrderStatus:string

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 341

back to the controller, which uses it to send the addItemToCart message to the
:OnlineCart object. The :OnlineCart object processes that message by creating
a :CartItem object. The :CartItem object then takes responsibility to get its
price and description and see that the inventory is updated. It does this by
sending appropriate messages to those objects.

The bottom part of the sequence diagram is similar except that adding accessory
items may require multiple accessories to be added for each primary item. Hence, it is

FIGURE 11-12 First-cut sequence diagram for the Fill shopping cart use case

Customer

[firstItem]createCart ()

(aCrt)

:CartHandler :Customer

:OnlineCart

:ProductItem

:PromoOffering :InventoryItem

:CartItem

aCrt := createCart ()

addItemToCart

(promoNo, prodID, size, color, qty)

createCartItem

(promoNo, prodID, size, color, qty)

addItemToCart
(promoNo, prodID, size, color, qty)

(description, price, extendedPrice)
(description, price, extendedPrice)

Loop for all items

addItemToCart

(promoNo, prodID, size, color, qty)

(description, price, extendedPrice)

price := getPrice ()

description := getDesc ()

status := updateQty (qty)

(description, price, extendedPrice)

price := getPrice ()

status := updateQty (qty)

addAccessoryToCart
(promoNo, prodID size, color, qty)

(description, price,
extendedPrice)

createCartItem
(promoNo, prodID, size, color, qty)

(description, price, extendedPrice)

description := getDesc ()

342 PART 5 ■ Advanced Design and Deployment Concepts

shown with the rectangular box for the loop notation. Notice that the source for this
loop is the asterisk in that message, as shown in the SSD. It is exploded into a loop
box to indicate that all the enclosed messages participate in the loop.

The relevant design principle is that objects that “own” other objects are
responsible for creating those objects; for example, a customer creates an online
cart and then the online cart creates items in the cart. This approach ensures
that cart objects aren’t created in the absence of an owning customer object.
:CartItem has responsibility to get its own information. One interesting design
decision was whether :CartHandler should send the addItemToCart message
directly to :OnlineCart or should send it to :Customer and allow the :Customer
object to forward it to the :OnlineCart object. As noted, once a cart is created,
the controller will send messages directly to the cart. This decision promotes a
simpler solution with fewer messages. This design is a solid design based on
good design principles.

As we identify the specific messages, along with source and destination and
the passed parameters, we need to consider some critical issues. As before, an
important question is: Which object is the source or initiator of a message? If
the message is a query message, the source is the object that needs information.
If the message is an update or create message, the source is the object that con-
trols the other object or that has the information necessary for its creation.

Another important consideration is navigation visibility. To send a message
to the correct destination object, the source object must have visibility to the
destination object. Remember that the purpose of doing design is to prepare for
programming. As a designer, you must think about how the program will work
and consider programming issues. Given these two considerations and the
source considerations discussed in the previous paragraph, we have determined
that the following internal messages will be required. For each message, a source
object and a destination object have been identified.

■ createCart()—The :CartHandler object will know whether it has received
earlier messages to add items. If it hasn’t, it knows it must tell the
:Customer object to create a cart.

■ createCart()—The :Customer object owns the :OnlineCart object.
■ addItemToCart()—A forwarded version of the input message from

:CartHandler to :OnlineCart. Because :CartItem objects are dependent on a
cart, :OnlineCart is the logical object to create :CartItem objects. The con-
troller has visibility to :OnlineCart from the previous return message, when
aCrt was returned.

■ createCartItem()—The internal message from :Cart to :CartItem. Because
:CartItem will be responsible for obtaining the data for its attributes, it
needs visibility to :PromoOffering, :ProductItem, and :InventoryItem. As a
result, those keys are sent as parameters.

■ getPrice()—The message to get the price from the :PromoOffering object. The
:CartItem initiates the message. It has visibility because it has the key values.

■ getDescription()—The message initiated by :CartItem to get the description
from :ProductItem.

■ updateQty(qty)—The message that checks for sufficient quantity on hand.
This message also initiates updates of the quantity on hand. The :CartItem
object initiates the message.

By focusing only on the domain classes, we could design the core processing
for the use case without having to worry about the user interface or the data-
base. Figure 11-12 is rather complex, even though it only contains domain
objects. However, this design provides a solid base for programming. Working
with design models enables the designer to think through all the requirements
to process a use case without having to worry about code. More importantly, it
enables the designer to modify and correct a design without having to throw

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 343

away code and write new code. In the next section, we will add the view layer
and data access layer objects to the telephone order scenario.

Guidelines and Assumptions for First-Cut Sequence
Diagram Development
From the two previous examples, we can distill several guidelines that can help
you develop a design for a use case or scenario using sequence diagrams. Several
assumptions are also implicit in this process. (Note that the tasks aren’t done
sequentially but only when necessary to build the sequence diagram. We identify
them here as separate tasks simply to ensure that all three are completed.)

Guidelines
Designing a use case or scenario by using sequence diagrams involves perform-
ing these tasks:

■ Take each input message and determine all the internal messages that result
from that input. For each message, determine its objective. Determine what
information is needed, what class needs it (the destination), and what class
provides it (the source). Determine whether any objects are created as a
result of the input.

■ As you work with each input message, identify the complete set of classes
that will be affected by the message. In other words, select all the objects
from the domain class diagram that need to be involved. In Chapter 5, you
learned about use case preconditions and postconditions. Any classes that
are listed in either the preconditions or postconditions should be included in
the design. Other classes to include are those that are created, classes that
are the creators of objects for the use case, classes updated during the use
case, and those that provide information used in the use case.

■ Flesh out the components for each message; that is, add iteration, true/false
conditions, return values, and passed parameters. The passed parameters
should be based on the attributes found in the domain class diagram.
Return values and passed parameters can be attributes, but they may also
be objects from classes.

These three steps will produce the preliminary design. Refinements and modifi-
cations may be necessary; again, we are focusing only on the problem domain
classes involved in the use case.

Assumptions
The development of the first-cut sequence diagram is based on several assump-
tions, including:

■ Perfect technology assumption—We first encountered this assumption in
Chapter 3, when we identified business events. The assumption continues
here. We don’t include messages such as the user having to log on.

■ Perfect memory assumption—You might have noticed our assumption that
the necessary objects were in memory and available for the use case. We
didn’t ask whether those objects were created in memory. We will change
this assumption when we get to multilayer design. In multilayer design,
we do include the steps necessary to create objects in memory.

■ Perfect solution assumption—The first-cut sequence diagram assumes that
there are no exception conditions. No logic is included to handle a situation
in which the requested catalog or product isn’t found. More serious excep-
tion conditions, such as the failure of a credit check, might also be encoun-
tered. Many developers design the basic processing steps first and then add
the other messages and processes to handle the exception conditions later.
We do the same here.

344 PART 5 ■ Advanced Design and Deployment Concepts

Developing a Multilayer Design
The development of the first-cut sequence diagram focuses only on the classes in
the problem domain layer. In many instances, this may be sufficient documentation
to program the solution—either by yourself or with another programmer. Once
you have a solid design for the problem domain classes, adding the view layer and
the data access layer is a straightforward process. Conforming to the principles of
Agile modeling, we don’t want to create diagrams unless there is real benefit. We
also don’t normally keep the design diagrams as documentation because over
time the system will be modified and the diagrams will become obsolete. As Agile
modeling suggests, be prudent in the development of models. However, there are
times when it is important to see the total picture and identify the need and use of
the view layer classes and the data access layer classes. A systems developer needs
to know how to do complete design for those instances when it is necessary.

Every system will need view layer classes to represent the input and output
screens for the application. Data access layer classes aren’t always required.
The data access layer is required when the business logic is fairly complex and
should be isolated from the SQL statements that access the database. In the
sequence diagram shown in Figure 11-8, which illustrates the creation of a new
customer account, the business logic and data access logic are combined. Each
domain layer object also contains the SQL insert statements to write itself to the
database. We can do that because there really is no business logic required.
Hence, Figure 11-8 shows a two-layer design after the view layer is added. In this
section, we show a complete three-layer design for the Fill shopping cart use case.

Designing the Data Access Layer
The principle of separation of responsibilities is the motivating factor behind
the design of the data access layer. On large, complex systems, designers create
three-layer designs, including classes whose sole responsibility is executing data-
base SQL statements, getting the results of the query, and providing the infor-
mation to the domain layer. As hardware and networks became more
sophisticated, multilayer design was used to support multitier networks in
which the database server was on one machine, the business logic was on
another server, and the user interface was on several desktop client machines.
This way of designing systems creates more robust and more flexible systems.

In most cases, problem domain classes are also persistent classes, which
means that their data values must be stored by the system even when the applica-
tion isn’t executing. The whole purpose of a relational database is to provide this
ability to make problem domain objects persistent. Executing SQL statements on a
database enables a program to access a record or a set of records from the data-
base. One of the problems with object-oriented programs that use relational data-
bases is that there is a slight mismatch between programming languages and
database SQL statements. For example, in a database, tables are linked through
the use of foreign keys (see Chapter 13), such as a cart having a CustomerID as a
column so the order can be joined with the customer in a relational join. However,
in object-oriented programming languages, the navigation is often in the opposite
direction (i.e., the Customer class may have an array of references that point to the
OnlineCart objects, which are in computer memory and are being processed by the
system). In other words, design classes don’t have foreign keys.

In this chapter, we take a somewhat simplified design approach in order to
teach the basic ideas without getting embroiled in the complexities of database
access. Let us assume that every domain object has a table in a relational data-
base. (More complex situations exist in which tables must be combined to pro-
vide the correct set of objects in memory.) There are several techniques (that
provide different designs) for linking the domain layer to the data access layer.
One way is to have the constructor method of each problem domain object
invoke the data access object to get the necessary information to complete the
instantiation of the new object. Another way is to send a message to the data

separation of responsibilities a
design principle that recommends segregating
classes into separate components based on the
primary focus of the classes

persistent classes problem domain
classes that must be remembered between
program executions (i.e., require storage in a
database)

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 345

access layer object and have it read the database and then instantiate a new
problem domain object. This second technique is better when a set of objects
needs to be created from a database access that returns an unknown number of
rows. However, both techniques are good solutions.

The Data Access Layer for the Fill shopping cart Use Case
To design the data access layer, we no longer assume that the objects are auto-
matically in memory when we need them; that is, we disregard the perfect mem-
ory assumption. The design of the use case now requires additional messages to
save data to the database and to retrieve data to instantiate classes. Inasmuch as
there are two sets of almost identical messages, we will only illustrate the upper
set of messages from Figure 11-12.

Figure 11-13 is the sequence diagram that includes the domain classes and the
data access classes. Notice that all the original internal messages from Figure 11-12

FIGURE 11-13 Sequence diagram for the Fill shopping cart use case with data access layer

:ProductItem

:CartHandler

aCrt:OnlineCart

aC:Customer

:CustomerDA

Customer
:PromoOfferingDA :ProductItemDA :InventoryItemDA

:PromoOffering :InventoryItem

description := getDesc ()

findProdItem (prodID)

price := getPrice ()

findPromo (promoID, prodID)

:OnlineCartDA

:CartItemDA

aCI:CartItem

addItemToCart
(promoNo, prodID,
size, color, qty)

aC := findCustomer (acctNo)

(description, price, extendedPrice)

(description, price, extendedPrice)
(description, price, extendedPrice)

saveCart (aCrt)

saveCartItem (aCI)

readPO ()

readInv ()

aCrt := createCart ()
[firstItem]createCart()

(aCrt)

addItemToCart
(promoNo, prodID, size, color, qty)

readProd ()

aC := readCust (acctNo)

findInvltem (prodID, size, color)

status := updateQty (qty)

createCartItem
(promoNo, prodID, size, color, qty)

346 PART 5 ■ Advanced Design and Deployment Concepts

are still there. However, associated with each problem domain object is a data
access class, and associated with each original internal message are additional mes-
sages to retrieve data from or save data to the database via the data access object.

It is important during this process to ensure that source objects have naviga-
tion visibility to destination objects so messages can be sent. We assume but
don’t show that the data access objects have global visibility. (In your program-
ming class, you will learn that factory or singleton classes are often designed
with global methods.) After the appropriate problem domain object is created,
a reference to it is returned to the object that needs visibility. As you look
closely at Figure 11-13, note that every object that sends a message to another
object must have navigation visibility to that object. Remember this important
design point as you develop your design solutions.

An effective method for understanding what is going on in Figure 11-13 is
to begin with the internal messages from the first-cut sequence diagram in
Figure 11-12. Let us review each one and see what changes are required.

■ [firstTime]createCart—The cart handler is going to send a message to a cus-
tomer object to create a cart. First, it needs to ensure that there is a customer
object in memory. It sends a findCustomer message to the aC:Customer object
to find and create itself from the database. It does so by sending a message to
the :CustomerDA object to read the database and return the appropriate cus-
tomer object. Only then can it send the createCart message to aC:Customer.
Also, note that at the end of this execution, the aCrt:OnlineCart object sends
a message to the data access object to save the data to the database.

■ addItemToCart—This message is initially the same in both figures. After
aCrt:CartItem has been created and populated with data, a message is sent
to the data access object to save the data to the database.

■ getPrice, getDesc, updateQty—These three messages all access or update the
database. Therefore, each also requires a previous message to find the appro-
priate data from the database, which is stored in a domain object in memory.

Even though Figure 11-13 appears rather crowded, looking at each internal
message to a problem domain class makes the figure easier to understand. The
primary thing to remember is that data access objects are necessary to retrieve
data and thereby provide navigation visibility to the required object.

Designing the View Layer
The final step in the multilayer design of a particular use case is to add the view
layer. User interface design is a complex process, as you learned in Chapter 7. It
often precedes the realization of the use cases with sequence diagrams because it
is more complex than can be documented with sequence diagrams. However,
documenting the user interface design with the view layer on a sequence dia-
gram often helps to envision the integration of the user interface with other sys-
tem object classes.

User interface design and the integration of the view layer into a sequence
diagram are made even more complex by the fact that many systems require a
Web-based interface and an internal, network-based interface. Fortunately,
browsers are becoming more sophisticated, so many new systems can now be
designed for only one type of interface. Designing a system with multiple user
interfaces is a difficult endeavor.

Although adding the user interface classes may sound simple, it must be
done in conjunction with the detailed design of the user interface forms, as
described in Chapter 7. Figure 11-14 is a partial sequence diagram showing
only the view layer classes and the controller class. There are two sources of
inputs for the design of the view layer. First, of course, is the user-interface com-
ponents that were designed during user-interface design. The second source is
either the first-cut sequence diagram or the sequence diagram with the data
access classes identified.

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 347

FIGURE 11-14 Partial sequence diagram for the Fill shopping cart use case with view layer

addItemToCart
(promoNo, prodID, size, color, qty)

(description, price, extendedPrice)

«view»
:CustLoginWindow

addAccessoryToCart
(promoNo, prodID, size, color, qty)

(description, price, extendedPrice)

(description, price, extendedPrice)

«view»
:SearchItemWindow

«view»
:AddItemWindow

«view»
:DisplayItemWindow

«view»
:ViewAccessWindow

«view»
:AddAccessWindow

«view»
:DisplayItem+AccessWindow

:CartHandler

Customer
addItemToCart
(promoNo, prodID, size, color, qty)

addItemToCart
(promoNo, prodID, size, color, qty)

custInfo := requestCustID ()

addAccessoryToCart
(promoNo, prodID, size, color, qty)

addAccessoryToCart
(promoNo, prodID, size, color, qty)

(description, price, extendedPrice)

348 PART 5 ■ Advanced Design and Deployment Concepts

Remember that the Fill shopping cart use case included other use cases for
Search for item and View accessory combinations. Obviously, all those use cases
go together for a rich and efficient user experience. In Figure 11-14, we have
added the two view layer objects for searching items and viewing accessories. The
first input message—addItemToCart—will go through the :SearchItemWindow
object. In other words, when the customer finds something he or she likes, he or
she will initiate adding it to his or her cart from that window. The message then
causes a detailed :AddItemWindow object to display and show the details to verify
the addition to the cart. This later window will forward the message on to the
:CartHandler object.

In Figure 11-13 the :CartHandler object required that there be an identified
user. Therefore, in our example, we have shown a login window where the
customer can log in to the system. Remember from the perfect technology
assumption that we often omit this step. Either way is acceptable. Eventually, it
does need to be added to the solution, so we included it this time.

Once the item has been added to the cart, another window displays that
shows the results of adding this new item. Depending on the design of the user
interface, this window might show the single newly added item or it could also
be the total shopping cart.

The next three view layer objects—:ViewAccessWindow, :AddAccessWindow,
and :DisplayItem+AccessWindow—function in a manner similar to the other view
layer objects. The only difference is that the data includes the item and the accesso-
ries that have been added to the online cart.

Adding the view layer to your design is a good way to verify that the user
interface that was developed with the users is consistent with the application
design. All the input messages that were identified and documented on SSDs
must be handled by the user interface. If there are messages without input win-
dows or windows without messages, you will know that part of the design is
incomplete and that more definition is required.

Designing with Communication Diagrams
Communication diagrams and sequence diagrams are interaction diagrams, and
they capture the same information. The process of designing is the same whether
you use communication diagrams or sequence diagrams. Which model you use is
primarily your personal preference. Many designers prefer to use sequence diagrams
because use case descriptions and dialog designs follow a sequence of steps.
Communication diagrams are useful for showing a different view of the use case—one
that emphasizes coupling. Communication diagrams are also easier to use to sketch
design ideas in a meeting, as they are easier to change and rearrange on the fly.

A communication diagram uses the same symbols for actors, objects, and
messages as a sequence diagram. The lifeline and activation lifeline symbols aren’t
used. However, a different symbol—the link symbol—is used. Figure 11-15
illustrates the four symbols used in most communication diagrams.

The format of the message descriptor for a communication diagram differs
slightly from that for a sequence diagram. Because no lifeline shows the passage
of time during a scenario, each message is numbered sequentially to indicate the
order of the messages. The syntax of the message descriptor in a communication
diagram is as follows:

[true/false condition] sequence-number: return-value := message-name
(parameter-list)

As you can see in Figure 11-15, a colon always directly follows the sequence
number.

The connecting lines between the objects or between actors and objects rep-
resent links. In a communication diagram, a link shows that two items share a
message—that one sends a message and the other receives it. The connecting

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 349

lines are essentially used only to carry the messages, so you can think of them as
the wires used to transmit the messages. The numbers on the messages indicate
the sequence in which the messages are sent. The hierarchical dot numbering
scheme is used when messages depend on previous messages.

Figure 11-16 presents a communication diagram for the RMO Fill shop-
ping cart use case. The diagram contains only domain model objects and not
the view layer or the data access layer. However, multilayer design can be done
just as effectively with communication diagrams as with sequence diagrams.

When you compare the communication diagrams with the sequence diagrams,
it should be evident that the focus of a communication diagram is on the objects
themselves. Drawing a communication diagram is an effective way to get a quick
overview of the objects that work together. However, as you look at the diagrams,
you should see that it is more difficult to visualize the sequence of the messages.
You have to hunt to find the numbers to see the sequence of the messages.

Many designers use communication diagrams to sketch out a solution. If the
use case is small and not too complex, a simple communication diagram may suf-
fice. However, for more complex situations, a sequence diagram may be required
to allow you to visualize the flow and sequence of the messages. It isn’t unusual to
find a mix within the same set of specifications—some use cases described by com-
munication diagrams and others shown with sequence diagrams.

FIGURE 11-16 Communication diagram for the Fill shopping cart use case

:CartHandler

:OnlineCart :CartItem

1.2.1:createCartItem
(promoNo, prodID,

size, color, qty)1.2:addItemToCart

(promoNo, prodID,

size, color, qty)

1:addItemToCart
(promoNo, prodID,

size, color, qty)
1.2.1.1:price := getPrice () 1.2.1.3:status := updateQty (qty)

1.1.1:aCrt := createCart ()

[firstItem]1.1:createCart () :Customer :PromoOffering :ProductItem :InventoryItem

Customer 1.2.1.2:description := getDesc ()

FIGURE 11-15 Symbols used in a communication diagram

An actor who sends
the initial message

An object that
receives a message
and sends other
messages

1: firstMessage ()

4: finalResponse ()

2: secondMessage ()

3: returnMessage ()
Actor

:Object :Object2

A message arrow and
descriptive name

A link between
symbols that send or
receive messages

350 PART 5 ■ Advanced Design and Deployment Concepts

Updating and Packaging the Design Classes
Design class diagrams can now be developed for each layer. In the view layer
and the data access layer, several new classes must be specified. The domain
layer also has some new classes added for the use case controllers.

In Figure 11-5, we developed a partial first-cut design class diagram for the
domain layer based on the Create customer account use case. At that point in
the development, no method signatures had been developed. Now that several
sequence diagrams have been created, method information can be added to the
classes. We also mentioned that the navigation arrows may need updating from
the decisions that were made during sequence diagram development. In Chapter
10, we briefly introduced the idea of creating method names in the classes based
on responsibilities identified on the CRC cards. However, at that point, we
didn’t have enough information to rigorously define method signatures with
names, return types, and parameter lists. Use case realization with sequence dia-
grams generates enough information to be rigorous in defining methods.

The first step in updating the DCD is to add the method signatures based
on the information from the sequence diagrams. Three types of methods are
found in most classes: (1) constructor methods, (2) data-get and data-set meth-
ods, and (3) use case-specific methods. Constructor methods create new
instances of objects. Get and set methods retrieve and update attribute values.
To avoid information overload, most developers don’t include the get and set
methods in the DCD. The third type of method—use case-specific methods—
must be included in the design class diagram.

As in sequence diagrams, every message has a source object and a destination
object. When a message is sent to an object, the object must be prepared to accept
the message and initiate some activity. This process is nothing more than invoking
or calling a method on an object. In other words, every message that appears in a
sequence diagram requires a method in the destination object. In fact, the syntax
for a message looks very much like the syntax for a method. Thus, the process of
adding method signatures to a design class is to go through every sequence dia-
gram and find the messages sent to that class. Each message indicates a method.

Let us work through an example based on the InventoryItem class. In
Figure 11-14, two messages are sent to InventoryItem. The first is a constructor,
and the other is an update message: updateQty(qty). The update message return
can be void or it can return a success status value as a string. We need to add a
method signature that corresponds to this message. Adding this method to the
InventoryItem class is shown in Figure 11-17.

This process is continued for every class in the domain layer, including the
added use case controller classes. Figure 11-18 contains the completed design
class diagram for the domain layer classes for the two use cases illustrated in this

InventoryItem

-productItem:string

-inventoryItem:int
-size:string
-color:string

-options:string

-quantityOnHand:int
-averageCost:currency

-reorderQuantity:int
-dateLastOrder:date

-dateLastShipment:date

+updateQty (qty):string

FIGURE 11-17
DCD for the InventoryItem class with
method signature

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 351

chapter. As you can see, this diagram provides excellent, thorough documentation
of the design classes and serves as the blueprint for programming the system.

The two major additions to the domain layer classes are the two use case
handlers. Additional navigation arrows have also been added to document
which classes are visible from the controller classes. The other navigation

FIGURE 11-18 Updated partial DCD for the domain layer

Account

+createAccount(cc-info)

-accountNo:string
-typeOfAccount:string
-cardNumber:string
-expireDate:date
-comment:string

«controller»
CustHandler

+createNewCustomer (name, phones, email)
+enterAddress (address)
+enterCreditCard (cc-info)

«controller»
CartHandler

+addItemToCart (promoNo, prodID,
 invID, size, color, qty)
+addAccessToCart (promoNo, prodID,
 invID, size, color, qty)

PromoOffering

-regularPrice:currency
-promoPrice:currency

+getPrice ():currency

InventoryItem

-productItem:string
-inventoryItem:int
-size:string
-color:string
-options:string
-quantityOnHand:int
-averageCost:currency
-reorderQuantity:int
-dateLastOrder:date
-dateLastShipment:date

+updateQty (qty):string

Address

-accountNo:string
-typeOfAddress:string
-street1:string
-street2:string
-city:string
-state-province:string
-country:string
-postalCode:string

+createAddress (address)

Cartitem

-saleItemId:int {key}
-productItem:string
-quantity:int
-soldPrice:currency
-shipStatus:string
-backOrderStatus:string

+createCartItem (promoID,
InvID, size, color, qty)

Customer

-accountNo:string {key}
-name:string
-mobilePhone:string
-homePhone:string
-emailAddress:string{index}
-status:string

+createNewCustomer ()
+enterAddress (address)
+enterCreditCard (cc-info)
+createCart ()

OnlineCart

-saleID:int {key}
-saleDateTime:date
-priorityCode:string
-S&H:currency
-tax:currency
-totalAmt:currency

+createCart ()
+addItemToCart (promoID,
 invID, size, color, qty)

ProductItem

-gender:string
-description:string
-supplier:string
-manufacturer:string
-pictureID:string

+getDesc ():string

352 PART 5 ■ Advanced Design and Deployment Concepts

arrows, which were defined during the first cut of the class diagram, have
proved to be adequate for these two use cases. Additional use case development
will enable us to add more navigation arrows.

Structuring the Major Components with Package Diagrams
As you learned previously, a package diagram in UML is simply a high-level
diagram that allows designers to associate classes of related groups. The previ-
ous sections illustrated three-layer design, which includes the view layer, the
domain layer, and the data access layer. In the interaction diagrams, the objects
from each layer were shown together in the same diagram. However, designers
sometimes need to document differences or similarities in the objects’ relation-
ships in these different layers—perhaps separating or grouping them based on a
distributed processing environment. This information can be captured by show-
ing each layer as a separate package. Figure 11-19 illustrates how these layers
might be documented.

The classes are placed inside the appropriate package based on the layer to
which they belong. Classes are associated with different layers as they are
developed in the interaction diagrams. To develop this package diagram, we
simply extracted the information from design class diagrams and interaction
diagrams for each use case. Figure 11-19 is only a partial package diagram

SearchItemWindow

AddItemWindow

AddAccessWindow

CustLoginWindow

View Layer

Domain Layer

CartHandler

OnlineCart

CartItem

PromoOffering

CustomerDA

OnlineCartDA

CartItemDA

PromoOfferingDA

ProductItemDA

InventoryItemDA

CustomerHandler

Customer

Address

InventoryItem

Account

ProductItem

ViewAccessWindow

DisplayItem+AccessWindow

DisiplayItemWindow

Data Access Layer

FIGURE 11-19
Partial design of three-layer package
diagram for RMO

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 353

because the packages contain only the classes from the use case interaction
diagrams that were developed in this chapter.

The other symbol used on a package diagram is a dashed arrow, which
represents a dependency relationship. The arrow’s tail is connected to the
package that is dependent, and the arrowhead is connected to the independent
package. Dependency relationships are used in package diagrams, class dia-
grams, and even interaction diagrams. A good way to think about a depen-
dency relationship is that if one element changes (the independent element),
the other (dependent) element might also have to be changed. Dependency
relationships can be between packages or between classes within packages.
Figure 11-19 indicates that several classes in the view layer are dependent on
classes in the domain layer. Thus, for example, if a change is made in the
ProductItem class, the SearchItemWindow class should be evaluated to capture
that change. However, the reverse isn’t necessarily true. Changes to the view
layer usually don’t carry through to the domain layer.

Two examples of dependency relationships are given in Figure 11-19. The
first, we have seen, is between classes. Another example is less detailed and indi-
cates a dependency between packages. Figure 11-20 indicates that the view
layer and the domain layer depend on the data access layer. For some simple
queries against the database, the view layer may directly access the data layer
without requiring any involvement of the domain layer. These dependencies
indicate that changes to the data structures, as reflected in the data access layer,
usually require changes at the domain layer and the view layer.

FIGURE 11-20 RMO subsystem packages

SearchItemWindow

AddItemWindow

AddAccessWindow

CustLoginWindow

Sales Subsystem

CartHandler

OnlineCart

CartItem

ReturnItem

Sale

SaleItem

AccessoryPackage

SaleTxn

Data Access Layer

PromoOfferingDA

ProductItemDA

InventoryItemDA

CustomerDA

OnlineCartDA

CartItemDA

ViewAccessWinodw

DisplayItem+AccessWindow

DisiplayItemWindow

Reporting Subsystem

Customer Account Subsystem

CustomerHandler

Customer

Address

FamilyLink

Message

Suggestion

Account CustPartnerCredit

Order Fulfillment Subsystem

Shipment Shipper

View Layer

Domain Layer

ProductItem

Inventory Item

PromoPartner

Promotion

PromoOffering

Marketing Subsystem

dependency relationship a relation-
ship between packages, classes, or use cases
in which a change in the independent item
requires a change in the dependent item

354 PART 5 ■ Advanced Design and Deployment Concepts

Package diagrams can also be nested to show different levels of packages.
Figure 11-20 indicates that the packages as well as some of the classes contained
within them are all part of the Order-entry subsystem. The RMO system can be
divided into subsystems, and one way to document them is with package dia-
grams. A major benefit of this documentation is that different packages can be
assigned to different teams of programmers to program the classes. The depen-
dency arrows will help them recognize where communication among teams is
needed to ensure an integrated system.

In summary, package diagrams show related components and dependencies.
Generally, we use package diagrams to relate classes or other system components
such as network nodes. The preceding figures show two uses of package diagrams:
dividing a system into subsystems and showing the nesting within packages.

Implementation Issues for Three-Layer Design
Using design class diagrams, interaction diagrams, and package diagrams,
programmers can begin to build the components of a system. Thus, implementa-
tion in this sense means constructing the system with a programming language
such as Java, PHP, or such Visual Studio languages as VB or C#. Over the last few
years, integrated development environment (IDE) tools have been developed to
help programmers construct systems. Such tools as Jbuilder and Eclipse (for Java),
Aptana (for PHP), Visual Studio (for Visual Basic), and C# and CþþBuilder (for
Cþþ) provide a high level of programming support, especially in building the
view layer classes—the windows and window components of a system.

Unfortunately, these same tools have propagated some bad programming
habits in some developers. The ease with which programmers can build GUI win-
dows and automatically insert code has allowed them to put all the code in the
windows. Each window component has several associated events where code can
be inserted. Thus, some programmers find it easy to build a window with an IDE
tool, let the tool automatically generate the class definition, and merely insert busi-
ness logic code. No new classes need to be defined, and little other coding is
required. Some of these tools also have database engines, so the entire system can
be built with windows classes. However, taking such shortcuts exacts a price later.

The problem with this approach is the difficulty of maintaining the system. Code
snippets scattered throughout the GUI classes are hard to find and maintain. Plus,
when the user interface classes need to be upgraded, the programmer must also find
and update the business logic. If a network-based system needs to be enhanced to
include a Web front end, a programmer must rebuild nearly the entire system. Or if
two user interfaces are desired, all the business logic is programmed twice. Finally,
without the tool that generates the code, it is almost impossible to keep the system
current. This problem is exacerbated by new releases of the IDE tools, which may
not be compatible with earlier versions. Many programmers have had to completely
rewrite the front end of a system because the new release of an IDE tool didn’t
generate code the same way the previous release did. Thus, we advise analysts and
programmers to use good design principles in the development of new systems.

Based on the design principle “object responsibility,” it is possible to define
which program responsibilities belong to each layer. If you follow these guide-
lines when writing code, a system will be much easier to maintain throughout
its lifetime. Let us summarize the primary responsibilities of each layer.

View layer classes should have programming logic to perform the following:

■ Display electronic forms and reports.
■ Capture such input events as clicks, rollovers, and key entries.
■ Display data fields.
■ Accept input data.
■ Edit and validate input data.
■ Forward input data to the domain layer classes.
■ Start and shut down the system.

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 355

Domain layer classes should have responsibilities to perform the following:

■ Create problem domain (persistent) classes.
■ Process all business rules with appropriate logic.
■ Prepare persistent classes for storage to the database.

Data access layer classes should have responsibilities to perform the following:

■ Establish and maintain connections to the database.
■ Contain all SQL statements.
■ Process result sets (the results of SQL executions) into appropriate

domain objects.
■ Disconnect gracefully from the database.

Design Patterns
Systems that are based on good design principles aren’t only easier to develop
and put into operation the first time, they are also much easier to maintain.
Such concepts as object responsibility, coupling, cohesion, protection from var-
iations, and indirection were introduced in Chapter 10 and have been applied
throughout the discussion in Chapter 11.

You are also familiar with the concepts of design patterns and with two specific
patterns: three-layer design and use case controllers. Patterns exist at various levels
of abstraction. At a concrete level, a pattern may be a class definition that is written
in code to be used by any developer. At the most abstract level, a pattern might only
be an approach to solving a problem. For example, the multilayer design pattern
tends to be more abstract and recommends that it is better to separate system func-
tions into three layers of classes; the GUI logic is placed in a set of view-layer classes
that are separate and distinct from the domain layer and data access layer. Thus,
multilayer design is an approach to building a system rather than a specific solution.

The use case controller pattern is more concrete. It defines a specific class or
classes that act as the switchboard for all incoming messages from the environ-
ment. As with all patterns, there are multiple ways to implement the controller
pattern. A single controller class can be defined to handle all messages from the
view layer to the domain layer. Alternatively, a class can be defined for each use
case or some combination of the two can be used. Regardless of the specific
approach, the controller pattern does require a separate, specified class.

Adapter
We start with the adapter pattern because the concept is straightforward. The
adapter pattern is also a good example of the design principles “protection from
variations” and “indirection.” An adapter pattern is roughly akin to an electrical
adapter used for international travel. Thus, if you are traveling to England,
you might decide to take your hair dryer with you. It has a switch for either
110 volts or 220 volts, so you think you can run it on either voltage. However,
the plug on the end of the power cord has two flat prongs. Unfortunately, wall
sockets in England have slots for three large prongs set at angles. You need some-
thing that can adapt the power cord’s two prongs to the wall’s three angled slots.
Figure 11-21 shows a typical electrical adapter you might use.

FIGURE 11-21
Electrical adapter

356 PART 5 ■ Advanced Design and Deployment Concepts

The adapter design pattern works just like the electrical adapter; it plugs an
external class into an existing system. The method signatures on the external
class are different from the method names being called from within the system,
so the adapter class is inserted to convert the method calls from within the sys-
tem to the method names in the external class.

Figure 11-22 describes the details of the adapter design pattern. The sam-
ple diagram has four UML classes. The one labeled System represents the

FIGURE 11-22 Adapter pattern template

TaxCalculator

Adapter

A class must be replaced, or is subject to being replaced, by another standard
or purchased class. The replacing class already has a predefined set of method
signatures that are different from the method signatures of the original class.
How do you link in the new class with a minimum of impact so that you don’t
have to change the names throughout the system to the method names in
the new class?

Write a new class, the adapter class, which serves as a link between the original system
and the class to be replaced. This class has method signatures that are the same as
those of the original class (and the same as those expected by the system). Each method
then calls the correct desired method in the replacement class with the method signature.
In essence, it “adapts” the replacement class so that it looks like the original class.

There are several places in the RMO system where class libraries were purchased to
provide special processing. These purchased libraries provide specialized services
such as tax calculations and shipping and postage rates. From time to time, these
service libraries are updated with new versions. Sometimes a service library is even
replaced with one from an entirely different vendor. The RMO systems staff applies
protection from variations and indirection design principles by placing an adapter
in front of each replaceable class.

Benefits and
consequences:

Example:

Solution:

Problem:

Name:

ABCTaxCalculator

«interface»
TaxCalculatorIF

TaxCalcAdapter

System

The adaptee class can be replaced as desired. Changes are confined to the adapter
class and do not ripple through the system.

Two classes are defined, an interface class and the adapter class.

Passed parameters may add more complexity, and it is difficult to limit changes to
the adapter class.

getSTax ()
getUTax ()

findTax1 ()
findTax2 ()

getSTax ()
getUTax ()

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 357

entire system. The classes within the system use such method names as
getSTax() and getUTax() to access the tax routines. The TaxCalculator class
has the method names findTax1() and findTax2(). The two UML classes in
the middle represent the adapter. The top middle class symbol represents an
interface class. An interface is useful to specify the method names; although
not absolutely necessary, it is a simple way to specify and enforce the use of
the correct method names. The adapter class then inherits those method
names and provides the method logic for those methods. The body of each
method simply extends a call to the final method name findTax1() or
findTax2(). In other words, it “adapts,” or translates, the method names
from one to the other.

As you become familiar with this design pattern, you will find that it has
a multitude of uses. It is a powerful and elegant solution to making a system
more maintainable. Experienced developers use this pattern frequently—for
foreign classes and for internally written classes that may need frequent
upgrades. It is an excellent way to insulate the system from frequently chang-
ing classes.

Factory
In the discussions of detailed design, we have often expressed the need to have
utility classes, which include the data access objects or controller classes. An
adapter in an adapter pattern situation is also a utility class. What class should
create these utility objects? In most situations, it doesn’t make sense for
domain classes to create them because it isn’t a listed responsibility of domain
classes. A popular solution in object-oriented programming is to have some
classes that are factories. In other words, these classes instantiate objects from
utility classes.

For example, an executing customer object may need to write some data.
If the factory class is designed with static methods, which means they have
global visibility, the customer object can just say to the factory, “Get me a ref-
erence to a data access object for the customer table.” The factory will create
a new data access object and return the reference. If a customer data access
object already exists in memory, it simply returns the reference. The customer
object doesn’t have to be concerned about creating objects to access the data-
base. It just uses whatever is passed to it. This reduces coupling, enhances
cohesion, and assigns responsibilities to the right classes. Figure 11-23 is an
example of a factory class.

The factory class has private attributes to hold the references to the data
objects that are created. When a request is made to get the reference to a data
object, the method simply checks to see if the attribute is null. If so, it creates a
new object, places its reference in the attribute, and returns the value.
Otherwise, it just returns the parameter with the reference already in it.

Singleton
Some classes must have exactly one instance—for example, a factory class or the
main window class. Because these classes are instantiated from only one place, it
is easy to limit the logic to create only one object.

Other classes must have exactly one instance but can’t be easily controlled
by having only one place to invoke the constructor. Depending on the sys-
tem’s flow of logic, a particular class might get instantiated from multiple
locations. However, only one instance needs to be created, so the first one
that needs it creates it, and every other class uses the one that was initially
created. Usually, these classes are service classes that manage a system
resource, such as a database connection. In fact, the factory class that was
just described is an excellent example. This common problem has a standard
solution: the singleton pattern.

358 PART 5 ■ Advanced Design and Deployment Concepts

Figure 11-24 presents the template of the description for the singleton pat-
tern. The singleton pattern provides a solution in which the class itself controls
the creation of only one instance.

Notice that the singleton pattern has the same basic logic as the factory
method pattern. The difference is that the singleton class has code that applies
to itself as static methods. The approach of the singleton solution is that the

FIGURE 11-23 Factory method pattern template

Benefits and
Consequences:

Example:

Solution:

Problem:

Name: Factory or Factory Method

Who should be responsible for creating utility type objects that do not specifically
belong to the problem domain classes? These utility objects may also be accessed
from various places within the system, so a given object may need to be instantiated
from several classes.

Create an artifact that is a factory class. Its responsibility is only to instantiate utility
classes. In many situations, only one instance of a particular utility class is allowed.
Hence, all classes that need access to the class come through the factory. The
factory ensures that only one instance is created.

Several places in the RMO system need to get data from an Order object and need
to have a reference to an Order_DA [data access] object. The Order_DA object may
or may not already have been instantiated. A data access factory is defined and an
interface is created. The requesting object uses the methods defined in the interface
to request the reference to the Order_DA object. It then can read the database
of orders.

Higher cohesion of problem domain classes
Less coupling between business logic layer and data layer
Smaller, more maintainable classes

Customer

Shipment

Order

Order_DA

«interface»
DAFactory_iF

getOrder_DA ()
getCustomer_DA ()
getShipment_DA ()

DAFactory

getOrder_DA ()
getCustomer_DA ()
getShipment_DA ()

-myODA: Order_DA
-myCDA: Customer_DA
-mySAD: Shipment_DA

:System «uses»

«creates»

«requiresDA»

public synchronized Order_DA getOrder_DA () {
 if (myODA == null) {
 myODA = new Order_DA ();
 }
 return myODA;
}

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 359

class has a static variable that refers to the created object. A method such as
getConnection is defined and used to get the reference to the object. The first
time the getConnection method is called, it instantiates an object and returns a
reference to it. On later calls to the method, it simply returns a reference to the
already instantiated object. The code is simple and elegant. The example doesn’t
show the constructor; however, to ensure that only one instance is created, all
constructors are specified as private—not accessible—so no other class can acci-
dentally invoke one.

In the singleton template, the pattern is represented by code. To specify this
in your design, you should stereotype the class as a �singleton�. Good pro-
grammers will recognize the stereotype and know exactly how to code the class.

FIGURE 11-24 Singleton pattern technique

Singleton

Only one instantiation of a class is allowed. The instantiation (new) can be
called from several places in the system. The first reference should make a
new instance, and later attempts should return a reference to the already
instantiated object. How do you define a class so that only one instance is
ever created?

A singleton class has a static variable that refers to the one instance of itself.
All constructors to the class are pr ivate and are accessed through a method
or methods, such as getInstance(). The getInstance() method checks the variable;
if it is null, the constructor is called. If it is not null, then only the reference to
the object is returned.

In RMO’s system, the connection to the database is made through a class called
Connection. However, for efficiency, we want each desktop system to open
and connect to the database only once, and to do so as late as possible. Only
one instance of Connection—that is, only one connection to the database—is
desired. The Connection class is coded as a singleton. The following coding
example is similar to C# and Java:

Class Connection
{
private static Connection conn = null;
public synchronized static getConnection ()
 {
 if (conn == null) {

 conn = new Connection ();}
 return conn;
 }
}

Another example of a singleton pattern is a utilities class that provides services for the system,
such as a factory pattern. Because the services are for the entire system, it causes confusion if
multiple classes provide the same services.

An additional example might be a class that plays audio clips. Since only one audio clip should
be played at one time, the audio clip manager will control that.
must be only one instance of the audio clip manager.

There are other times when only one instance of an object is needed, but if it is instantiated from
only one place, then a singleton may not be required. The singleton object controls itself
and ensures that only one instance is created—no matter how many times it is called and
wherever the call occurs in the system.

The code to implement the singleton is very simple, which is one of the desirable characteristics

of a good design pattern.

Benefits and
consequences:

Example:

Solution:

Problem:

Name:

However, for this to work, there

360 PART 5 ■ Advanced Design and Deployment Concepts

Chapter Summary
Multilayer design of new systems isn’t limited to architec-
tural design. Detailed object-oriented design also identi-
fies the various levels in a system. The identification of
classes and their responsibilities follows the three-layer
pattern explained in this chapter. The three layers are
the view layer, the business (or logic) layer, and the data
access layer.

Three-layer design is part of the overall movement in
systems design based on design patterns. A design pattern
is a standard solution or template that has proven to be
effective to a particular requirement in systems design.
The other pattern, introduced in Chapter 10, is a use
case controller, which addresses the need to isolate the
view layer from the business layer in a simple way that
limits coupling between the two layers.

Detailed design is use case driven in that each use
case is designed separately. This type of design is called
use case realization. The two primary models used for
detailed design are the design class diagram and the
sequence diagram. Design class diagrams were discussed
in Chapter 10.

Detailed design of use cases entails identifying prob-
lem domain classes that collaborate to carry out a use
case. Each input message from an external actor triggers
a set of internal messages. Using a sequence diagram or a
communication diagram, the designer identifies and
defines all these internal messages. In the first cut, only
the problem domain classes and their internal messages
are identified. Next, the solution is completed by adding

the classes and messages for the view layer and the data
access layer.

The final step is to convert each message, along with
the passed parameters and return values, into method sig-
natures located in the correct classes. This information is
used to update the design class diagram. Changes are also
made to the design class diagram to show required visi-
bility between the classes in order to send messages in the
sequence diagrams.

As classes are identified during the design process,
they are added to the DCD. The DCD can also be parti-
tioned into several layers or into subsystems. Package dia-
grams are used to partition the DCD into appropriate
packages. Dependency between the classes and the
packages is also added to the package diagram.

Popular design patterns include the adapter pattern,
factory pattern, singleton pattern, and observer pattern.
The adapter pattern implements the design principle
“protection from variations” by allowing a changing
piece of the system to simply plug into a more stable
part of the system. When the pluggable piece of the sys-
tem needs to change, it can just be unplugged and the
updated component can be plugged in.

The factory and singleton patterns have much in
common. Both return a reference to a specific object.
Both allow only one instance of that object to exist in
the system. The difference is that the factory pattern
enforces a single occurrence for utility classes and the sin-
gleton only enforces a single occurrence for itself.

Key Terms

activation lifeline 335

communication diagrams 332

dependency relationship 354

design patterns 330

persistent classes 345

separation of responsibilities 345

sequence diagrams 332

use case realization 328

Review Questions
1. What is meant by the term use case realization?

2. What are the benefits of knowing and using design
patterns?

3. What is the contribution to systems development by
the Gang of Four?

4. What are the five components of a standard design
pattern definition?

5. List five elements included in a sequence diagram.

6. How does a sequence diagram differ from an SSD?

7. What is the difference between designing with CRC
cards and designing with sequence diagrams?

8. Explain the syntax of a message on a sequence
diagram.

9. What is the purpose of the first-cut sequence
diagram? What kinds of classes are included?

10. What is the purpose of the use case controller?

11. What is meant by an activation lifeline? How is it
used on a sequence diagram?

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 361

12. Describe the three major steps in developing
the set of messages for the first-cut sequence
diagram.

13. What assumptions do developers usually make
while doing the initial use case realization?

14. When doing multilayer design, what is the order in
which layers should be designed? Why?

15. What is the “separation of responsibilities” principle?

16. Explain the two methods of accessing the database
to create new objects in memory.

17. What symbols are used in a communication
diagram, and what do they mean?

18. Explain the components of message syntax in a
communication diagram. How does this syntax
differ from that of a sequence diagram message?

19. Explain the method syntax on design classes.

20. What is meant by a dependency relationship? How
is it indicated on a drawing?

21. List the major implementation responsibilities of
each layer in a three-layer design.

22. What is the purpose of the adapter pattern?

23. What common element is found in the singleton
pattern and the factory pattern? What is the basic
difference between the two patterns?

Problems and Exercises
Problems 1 through 7 are based on the solutions you
developed in Chapter 5 for problems 1 and 2, which
involved a university library system. Alternatively, your
instructor may provide you with a use case diagram and a
class diagram.

1. Figure 11-25 is an SSD for the use case Check out
books in the university library system.Do the following:
a. Develop a first-cut sequence diagram that only

includes the actor and problem domain classes.
b. Develop a design class diagram based on your

solution. Be sure to include your controller class.

2. Using your solution to problem 1, do the following:
a. Add the view layer classes and the data access

classes to your diagram. You may do this with
two separate diagrams to make them easier to
work with and read.

b. Develop a package diagram showing a three-
layer solution with view layer, domain layer, and
data access layer packages.

3. Figure 11-26 is an activity diagram for the use case
Return books in the university library system. Do
the following:
a. Develop a first-cut sequence diagram that only

includes the actor and problem domain classes.
b. Develop a design class diagram based on the

domain class diagram.

4. Using your solution to problem 3, do the following:
a. Add the view layer classes and the data access

classes to your diagram.
b. Develop a package diagram showing a three-

layer solution with view layer, domain layer, and
data access layer packages.

LibraryEmployee

verifyPatron (ID, name)

title, author, copy#, dueDate

closeLoan ()

verificationInformation

checkOutBook (catalog#)

:System

Loop for all books

FIGURE 11-25
System sequence diagram for the
Check out books use case

362 PART 5 ■ Advanced Design and Deployment Concepts

5. Figure 11-27 is a fully developed use case descrip-
tion for the use case Receive new book in the uni-
versity library system. Do the following:
a. Develop a first-cut communication diagram that

only includes the actor and problem domain classes.
b. Develop a design class diagram based on the

domain class diagram.

6. Using your solution to problem 5, do the following:
a. Add the view layer classes and the data access

classes to your diagram.
b. Develop a package diagram showing a three-

layer solution with view layer, domain layer, and
data access layer packages.

7. Integrate the design class diagram solutions you
developed for problems 1, 3, and 5 into a single
design class diagram.

Problems 8 through 14 are based on the solu-
tions you developed for problems 3 and 4 in
Chapter 5, which involved a dental clinic system.
Alternatively, your instructor may provide you with
a use case diagram and a class diagram.

8. Figure 11-28 is an SSD for the use case Record
dental procedure in the dental clinic system. Do the
following:
a. Develop a first-cut sequence diagram that only

includes the actor and problem domain classes.
b. Develop a design class diagram based on the

domain class diagram.

9. Using your solution to problem 8, do the following:
a. Add the view layer classes and the data access

classes to your diagram.
b. Develop a package diagram showing a three-

layer solution with view layer, domain layer, and
data access layer packages.

10. Figure 11-29 is an activity diagram for the use case
Enter new patient information in the dental clinic
system. Do the following:
a. Develop a first-cut sequence diagram that

only includes the actor and problem domain
classes.

b. Develop a design class diagram based on the
domain class diagram.

SystemLibraryEmployee

Remove book from
loan

Change book status/
display status

Scan book into system

Collect returned books

Place book on
reshelve cart

Close return
form

Close form

for each book

end for each

FIGURE 11-26
Activity diagram for the Return books
use case

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 363

FIGURE 11-27 Fully developed use case description for the Receive new book use case

Use Case Name: Receive new book

Scenario: Receive new book

Triggering Event: Newly purchased book arrives

Brief Description: The librarian decides on purchases of new books and places order (prior to this use case).

Shipments of new books arrive. Each new book is assigned a library catalog number. Some

books are simply additional copies of existing titles. Some books are new editions of existing titles.

Some books are new titles and new physical books. The new book information is added to the

system.

Actors: Library Employee

Stakeholders: Library Employee, Librarian

Preconditions: None

Postconditions:

Flow of Activities:

Book Title exists, Physical Book exists

Exception

Conditions: Duplicate numbers require further research and reassignment of catalog numbers.

Actor System

1. Collect new books from receipt of shipment.

2. For each book, research book category and catalog

numbers. Assign tentative number.

3a. If new copy of existing title, enter book information

 and catalog number into system.

3b. If new edition of existing title, enter book information,

 edition information, and catalog number.

3c. If new title, assign general catalog number. Assign

 book copy number.

4. Mark book with number.

5. Place book on shelving cart.

6. Repeat for each book (back to step 2).

3a.1 Update catalog with new

number.Verify that not duplicate.

3b.1 Update catalog with new

number. Verify that not duplicate.

3c.1 Verify that catalog number

 not duplicate.

Dental Aide

find Patient (name, telephone#)

updateVerificationMessage

closePatientFile

patientID, name, telephone, address

enterDescription (dentistID, hygienistID, description)

:System

Loop for all procedures

FIGURE 11-28
System sequence diagram for the
Record dental procedure use case

364 PART 5 ■ Advanced Design and Deployment Concepts

11. Using your solution to problem 10, do the
following:
a. Add the view layer classes and the data access

classes to your diagram.
b. Develop a package diagram showing a three-

layer solution with view layer, domain layer, and
data access layer packages.

12. Figure 11-30 is a fully developed use case
description for the use case Print patient
invoices in the dental clinic system. Do the
following:
a. Develop a first-cut communication diagram

that only includes the actor and problem domain
classes.

b. Develop a design class diagram based on the
domain class diagram.

13. Using your solution to problem 12, do the following:
a. Add the view layer classes and the data access

classes to your diagram.
b. Develop a package diagram showing a three-

layer solution with view layer, domain layer, and
data access layer packages.

14. Integrate the design class diagram solutions that
you developed for problems 8, 10, and 12 into a
single design class diagram.

15. In Figure 11-31, the package on the left contains the
classes in a payroll system. The package on the right is
a payroll tax subsystem. What technique would you
use to integrate the payroll tax subsystem into the
payroll system? Show how you would solve the prob-
lem bymodifying the existing classes (in either figure).
What new classes would you add? Use UMLnotation.

System

Existing

Dental Aide

Review completed patient
information form

Patient in existing
household? Or new

household?

Enter head of
household
identifier

new HH

Enter HH information

Verify HH information

correct

Enter new patient
information

Verify patient
information correct

End new patient
process

Build new
patient record

Close new
patient process

Build new HH
record

Display HH
information

FIGURE 11-29
Activity diagram for the Enter new
patient information use case

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 365

FIGURE 11-30 Fully developed use case description for the Print patient invoices use case

1. Collect all written notes about procedures
 completed this month.
2. View several patients to verify that procedure
 information has all been entered.
3. Review log of payments received and verify that
 payments have been entered.
4. Enter month-end date and request invoices.
5. Verify invoices are correct.
6. Close invoice print process.

2.1 Display patient information, including
 procedure records.
3.1 Display patient information, including
 account balance and last payment
 transactions.
4.1 Review every patient record. Find unpaid
 procedures. List on report as aged or
 current. Calculate and break down by
 copay and insurance pay.

Use Case Name: Print patient invoices

Scenario: Print patient invoices

Triggering Event: At the end of the month, invoices are printed

Brief Description: The billing clerk manually checks to see that all procedures have been collected. The clerk spot-
checks, using the written records to make sure procedures have been entered by viewing them
with the system. The clerk also makes sure all payments have been entered. Finally, he/she prints
the invoice reports. An invoice is sent to each patient.

Actors: Billing Clerk

Stakeholders: Billing Clerk, Dentist

Preconditions: Patient Records must exist, Procedures must exist

Postconditions:

Flow of Activities:

Patient Records are updated with last billing date

Exception
Conditions: None

Actor System

FIGURE 11-31 Payroll system packages and classes

Payroll System Payroll Tax Subsystem

calcHourlyPayrollTax (payperiod, payAmt, depend)

calcSalaryPayrollTax (month, salary, depend)

Employee PRollTaxCalculator

PRTHourly (pp, amt, dep)

PRTSal (pp, amt, dep)

366 PART 5 ■ Advanced Design and Deployment Concepts

Case Study

MoveYourBooksNow.com Book Exchange

MoveYourBooksNow.com is a book exchange that does
business entirely on the Internet. The company acts as a
clearinghouse for buyers and sellers of used books.

To offer books for sale, a person must register with
MoveYourBooksNow.com. The person must provide a
current physical address and telephone number as well
as a current e-mail address. The system maintains an
open account for this person. Access to the system as a
seller is through a secure, authenticated portal.

A seller can list books on the system through a special
Internet form. Information required includes all the perti-
nent information about the book, its category, its general
condition, and the asking price. A seller may list as many
books as desired. The system maintains an index of all
books in the system so buyers can use the search engine
to search for books. The search engine allows searches by
title, author, category, and keyword.

Peoplewhowant to buy books come to the site and search
for the books they want. When they decide to buy, they must
open an account with a credit card to pay for the books. The
systemmaintains all this information on secure servers.

When a request to purchase ismade and the payment is
sent, MoveYourBooksNow.com sends an e-mail notice to
the seller of the book. It also marks the book as sold. The
system maintains an open order until it receives notice that
the book has been shipped. After the seller receives notice

that a listed book has been sold, the seller must notify the
buyer via e-mail within 48 hours. Shipment of the order
must bemadewithin 24 hours of the seller sending the notifi-
cation e-mail. The seller sends a notification to the buyer and
MoveYourBooksNow.com when the shipment is made.

After receiving notice of shipment,MoveYourBooksNow.
commaintains the order in shipped status. At the end of each
month, a check ismailed to each seller for the book orders that
have been in shipped status for 30 days. The 30-day waiting
period allows the buyer to notifyMoveYourBooksNow.com if
the shipment doesn’t arrive for some reason or if the book
isn’t in the same condition as advertised.

If they want, buyers can enter a service code for the
seller. The service code is an indication of how well the
seller is servicing book purchases. Some sellers are very
active and use MoveYourBooksNow.com as a major outlet
for selling books. Thus, a service code is an important indi-
cator to potential buyers.

For this case, develop the following diagrams:

1. A domain model class diagram
2. A use case diagram
3. SSDs for two use cases, such as Add a seller and

Record a book order
4. A first-cut sequence diagram for each of the above

use cases
5. An integrated design class diagram that includes clas-

ses, methods, and navigation attributes

RUNNING CASE STUDIES

Community Board of Realtors

In Chapter 3, you identified use cases for the business
events for the Community Board of Realtors. In
Chapter 5, you elaborated on those use cases. In
Chapter 4, you identified the classes associated with
the business events. Using your solutions from those
chapters, develop:

1. A first-cut DCD by using the problem domain
classes that you identified in Chapter 4.

2. A first-cut communication diagram for the Create
new listing use case (domain classes and controller
class only).

3. A first-cut sequence diagram for the Update agent
information use case (domain classes and controller
class only).

4. A multilayer sequence diagram for the Update
agent information use case that includes domain
classes and data access classes.

5. A separate multilayer sequence diagram for
the Update agent information use case that
includes the domain classes and the view layer
classes.

6. A final design class diagram that includes the
classes from both use cases. Include elaborated
attributes, navigation arrows, and all the method
signatures from both use cases.

(continued on page 368)

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 367

The Spring Breaks ‘R’ Us Travel Service

In Chapter 3, you identified use cases for the business
events for the Spring Breaks ‘R’ Us Travel Service. In
Chapter 5, you elaborated on those use cases. In
Chapter 4, you identified the classes associated with
the business events. Using your solutions from those
chapters, develop:

1. A first-cut DCD by using the problem domain
classes you identified in Chapter 4.

2. A first-cut communication diagram for the Add a
resort use case (domain classes and controller class
only).

3. A first-cut sequence diagram for the Book a res-
ervation use case (domain classes and controller
class only).

4. A multilayer sequence diagram for the Book a
reservation use case that includes domain classes
and data access classes.

5. A separate multilayer sequence diagram for the
Book a reservation use case that includes the
domain classes and the view layer classes.

6. A final design class diagram that includes the
classes from both use cases. Include elaborated
attributes, navigation arrows, and all the method
signatures from both use cases.

7. A package diagram of the four subsystems (Resort
relations, Student booking, Accounting and
finance, and Social networking) that includes all
the problem domain classes.

On the Spot Courier Services

In Chapter 10, you developed a first-cut design class
diagram and CRC card solutions for two use cases:
Request a package pickup and Pickup a package.

Let us extend your solution from that chapter by
developing the following:

1. A first-cut sequence diagram for each use case
(domain classes and controller classes only).

2. A multilayer sequence diagram for each use case that
includes domain classes and data access classes.

3. A separate multilayer sequence diagram for each
use case that includes the domain classes and the
view layer classes. (We won’t combine view and
data access layers on the same drawing. It makes
the drawing too complex.)

4. A final design class diagram that includes the
classes from both use cases. Include elaborated
attributes, navigation arrows, and all the method
signatures from both use cases.

In Chapter 9, we defined four subsystems:

■ Customer account (like customer account)
■ Pickup request (like sales)
■ Package delivery (like order fulfillment)
■ Routing and scheduling

Even though these subsystems are somewhat arbitrary,
we can treat each one as a separate package. Develop a
package diagram for each of the four subsystems by
assigning domain model classes to each package. A
domain model class should belong to only one subsys-
tem package. Normally, it is the subsystem that
instantiates objects from that class. Also, show depen-
dency relationships among the various packages and
classes.

Sandia Medical Devices

Review your answers to the case-related questions in
Chapter 10 and then do the following:

1. Develop a first-cut sequence diagram for the
patient use case View/respond to alert.

2. Develop a multilayer sequence diagram that
includes domain classes and data access classes.

3. Develop a separate multilayer sequence diagram
that includes the domain classes and the view layer

classes. (We won’t combine view and data access
layers on the same drawing. It makes the drawing
too complex.)

4. Update your DCD from Chapter 10 to include the
methods you have identified. Also, include any
changes you may have made to navigation visibil-
ity and attribute details.

(continued from page 367)

368 PART 5 ■ Advanced Design and Deployment Concepts

Further Resources

Grady Booch, James Rumbaugh, and Ivar
Jacobson, The Unified Modeling Language

User Guide. Addison-Wesley, 1999.

Grady Booch, et al., Object-Oriented Analysis and

Design with Applications, 3rd edition. Addison-
Wesley, 2007.

Frank Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal, Pattern-Oriented

Software Architecture: A System of Patterns.
John Wiley and Sons, 1996.

Alur Deepak, J. Crupi, and D. Malks, Core J2EE

Patterns: Best Practices and Design Strategies.
Sun Microsystems Press, 2001.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons,
and David Fado, UML 2 Toolkit. John Wiley and
Sons, 2004.

Erich Gamma, R. Helm, R. Johnson, and
J. Vlissides, Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995.

Mark Grand, Patterns in Java, Volumes I and II.
John Wiley and Sons, 1999.

Craig Larman, Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and

Design and the Unified Process, 3rd edition.
Prentice Hall, 2004.

David S. Linthicum, Next Generation Application

Integration: From Simple Information to Web

Services. Addison-Wesley, 2004.

James Rumbaugh, Ivar Jacobson, and Grady Booch,
The Unified Modeling Language Reference

Manual. Addison-Wesley, 1999.

CHAPTER 11 ■ Object-Oriented Design: Use Case Realizations 369

This page intentionally left blank

12
Databases, Controls,
and Security

Chapter Outline

■ Databases and Database Management Systems

■ Relational Databases

■ Data Access Classes

■ Distributed Database Architectures

■ Database Design Timing and Risks

■ Designing Integrity Controls

■ Designing Security Controls

Learning Object ives

After reading this chapter, you should be able to:

■ Design a relational database schema based on a class diagram

■ Evaluate and improve the quality of a database schema

■ Describe the different architectural models for distributed databases

■ Determine when and how to design the database

■ Explain the importance of integrity controls for inputs, outputs, data, and
processing

■ Discuss issues related to security that affect the design and operation of
information systems

371

OPENING CASE

Downslope Ski Company: Designing a Secure Supplier System Interface

Downslope Ski Company is a medium-sized manufacturer
of skis and snowboards. In the company’s early years, ski
manufacturing was simple and straightforward. However,
manufacturing has become more complex in recent years
with such newer technology as carbon-laced resins, other
high-tech materials, and product features such as skis
with integrated bindings. To ensure product quality,
computers control such production processes as ingredi-
ent mixtures as well as furnace temperatures and curing
times. These changes have gone hand in hand with
increased attention to raw materials quality. The company
has changed suppliers frequently to respond to global
market changes and to ensure an adequate supply of
high-quality raw materials.

As in most modern manufacturing companies,
Downslope uses a just-in-time (JIT) manufacturing pro-
cess, which means that it doesn’t stockpile a large quantity
of raw materials. It keeps about a five-day supply on hand
and depends on its suppliers to restock materials at
least weekly. To facilitate quick ordering and delivery,
Downslope has a simple system used by its suppliers to
check inventory levels and the production schedule.
Suppliers access a password-protected Web page, view
inventory and production schedule data, and enter data
about planned shipments. The page incorporates
JavaScript code that interacts with Downslope’s Oracle
Database management system.

Senior management had been considering implement-
ing a more sophisticated version of the supplier system for
some time, but this hadn’t yet risen to the top of the prior-
ity list. The current system was designed under the
assumption that supplier employees would use it interac-
tively once or twice per week. However, suppliers have
increasingly asked for a fully automated interface that
would be more efficient and would support more frequent
or continuous monitoring and inventory replenishment.
Downslope’s production and purchasing departments
also have a list of enhancements that would streamline
their operations.

The priority for a replacement system received a sig-
nificant boost after a recent external audit of Downslope’s
financial records and information systems. The auditing
firm was concerned about whether Downslope was
adequately managing system-related risks and whether
a major disruption or security breach would affect the
company’s financial health. The auditing firm hired an
external security consultant to conduct penetration tests.
Within a matter of minutes, the consultant bypassed
username and password security to access the supplier

Web page and then gained administrative access to the
entire database. He also demonstrated how simple it
would be for a hacker to destroy database contents
by using an SQL injection attack or to download database
content, including sensitive data on company finances
and detailed payroll and benefit records for company
employees. The auditing firm refused to certify
Downslope’s financial statements unless immediate
short-term security measures were implemented and
unless a replacement system was scheduled for imple-
mentation within six months.

Nathan Lopez, Downslope’s system development
project manager, was charged with developing a replace-
ment system that better met supplier needs and
addressed security-related issues to the satisfaction of
the auditors. He met with Downslope senior managers to
review the results of a quick study to determine the feasi-
bility of various alternatives for upgrading the system and
the extent of the security issues that needed to be
addressed.

Nathan began the meeting by saying: “I met with our
production and purchasing staff and with most of our sup-
pliers to determine information and format requirements.
As expected, there was little consistency in the suppliers’
desired formats. I have been able to consolidate some of
their needs into three basic formats. But we will
need some format flexibility to enable us to add or change
suppliers over time.

“Of course, our suppliers’ need for greater access to
our data and flexibility must be balanced with system and
database security. To protect our data and systems, we
need to ensure that only our suppliers can access the
data, that the data is secured in transit, and that a security
breach of a supplier system won’t compromise our own
systems. As the audit tests showed, there are weak-
nesses that must be addressed in the new system and
across the existing infrastructure. We need more time
to fully analyze the required changes, and we will want
some outside assistance to design and test those
changes.”

The meeting lasted a long time, with considerable
discussion about the benefits and dangers of the new
system. Senior management decided that Nathan should
study the situation for a couple of weeks more and
develop a list of every possible breach of security, with
potential solutions for each one. They also authorized him
to contract with an outside security firm for immediate
assistance. Only after the security issues were fully
addressed would the project move forward.

372 PART 5 ■ Advanced Design and Deployment Concepts

Overview
Databases and database management systems are important components of a
modern information system. Database management systems provide designers,
programmers, and end users with sophisticated capabilities to store, retrieve,
and manage data. Sharing and managing the vast amounts of data needed by a
modern organization wouldn’t be possible without a database management
system.

In Chapter 4, you learned to construct a domain model class diagram,
which is a conceptual model of the information manipulated and stored by an
information system. To design and build the system, developers must transform
conceptual models into more detailed design models. In this chapter, we trans-
form the domain model class diagram into a detailed database model and imple-
ment that model by using a database management system.

Databases lie at the heart of modern organizations, supporting internal
activities and interactions with suppliers, customers, and other external parties.
Designers expend considerable effort to ensure that databases contain data that
is correct and complete and that the database and the systems that interact with
it are accessible yet secure. The trade-offs among data correctness, completeness,
accessibility, and security are complex issues that must be addressed with a
carefully designed system of controls and security measures. Although these
measures are a critical issue in database design, they also extend to all other
aspects of the system.

Databases and Database Management
Systems
A database (DB) is an integrated collection of stored data that is centrally
managed and controlled. A database typically stores information about dozens
or hundreds of classes. A database is managed and controlled by a database
management system (DBMS). A DBMS is a system software component that
is generally purchased and installed separately from other system software com-
ponents (e.g., operating systems). Examples of modern database management
systems include Microsoft SQL Server, Oracle, and MySQL.

Figure 12-1 illustrates the components of a typical database and its interac-
tion with a DBMS, application programs, users, and administrators. The data-
base consists of two related information stores: the physical data store and the
schema. The physical data store contains the raw bits and bytes of data that
are created and used by the information system (e.g., names, prices, and account
balances). The schema contains descriptive information about the data stored
in the physical data store, including:

■ Organization of individual stored data items into higher level groups, such
as tables

■ Associations among tables or classes (e.g., pointers from customer objects
to related sale objects)

■ Details of physical data store organization, including types, lengths,
locations, and indexing of data items

■ Access and content controls, including allowable values for specific data
items, value dependencies among multiple data items, and lists of users
allowed to read or update data items

A DBMS has four key components: an application program interface (API),
a query interface, an administrative interface, and an underlying set of data
access programs and subroutines. Application programs, users, and administra-
tors never access the physical data store directly. Instead, they tell an appropri-
ate DBMS interface what data they need to read or write, using names defined

database (DB) an integrated collection of
stored data that is centrally managed and
controlled

database management system
(DBMS) a system software component that
manages and controls one or more databases

physical data store database compo-
nent that stores the raw bits and bytes of data

schema database component that contains
descriptive information about the data stored in
the physical data store

CHAPTER 12 ■ Databases, Controls, and Security 373

in the schema. The DBMS accesses the schema to verify that the requested data
exist and that the requesting user has appropriate access privileges. If the request
is valid, the DBMS extracts information about the physical organization of the
requested data from the schema and uses that information to access the physical
data store on behalf of the requesting program or user.

Databases and database management systems provide several important
data access and management capabilities, including:

■ Simultaneous access by many users and application programs
■ Access to data without writing application programs (i.e., via a query

language)
■ Application of uniform and consistent access and content controls
■ Integration of data stored on multiple servers distributed across multiple

locations

For these and other reasons, databases and DBMSs are widely used in modern
information systems.

DBMSs have evolved through a number of technology stages since their
introduction in the 1960s. The most significant change has been the type of
model used to represent and access the content of the physical data store. Early
models, including the hierarchical and network models, have been replaced
by the relational and object-oriented (OO) models. Most deployed databases
and DBMSs are based on the relational model.

Relational Databases
A relational database management system (RDBMS) is a DBMS that orga-
nizes stored data into structures called tables or relations. Relational database
tables are similar to conventional tables; that is, they are two-dimensional data
structures of columns and rows. However, relational database terminology is
somewhat different from conventional table and file terminology. A single row
of a table is called a row, tuple, or record, and a column of a table is called an

Application
program

Application
program
interface

Database access and control logic

End-user
query

processor

Administrative
interface

User
Database

administrator

Database management system

Physical
data
store

Schema

Database

FIGURE 12-1
DB and DBMS components and their
interaction with application programs,
users, and database administrators

relational database management
system (RDBMS) a DBMS that
organizes data in tables or relations

table a two-dimensional data structure of
columns and rows

row one horizontal group of data attribute
values in a table

374 PART 5 ■ Advanced Design and Deployment Concepts

attribute or field. A single cell in a table is called an attribute value, field
value, or data element.

Figure 12-2 shows the content of a table as displayed by the Microsoft
Access relational DBMS. Note that the first row of the table contains a list of
attribute names (column headings) and that the remaining rows contain a collec-
tion of attribute values, each of which describes a specific product. Each row
contains the same attributes in the same order.

Each table in a relational database must have a unique key. A key is an
attribute or set of attributes, the values of which occur only once in all the
rows of the table. If only one attribute (or set of attributes) is unique, then that
key is also called the table’s primary key. If there are multiple unique attributes
(or sets of attributes), then the database designer must choose one of the possi-
ble keys as the primary key.

Key attributes may be natural or invented. An example of a natural key
attribute in chemistry is the atomic weight of an element in a table containing
descriptive data about elements. Unfortunately, in business, few natural
key attributes are useful for information processing, so most key attributes in a
relational database are invented. Your wallet contains many examples of
invented keys, including your Social Security number, driver’s license number,
and credit card numbers.

Primary keys are critical elements of relational database design because they
are the basis for representing relationships among tables. Keys are the “glue”
that binds rows of one table to rows of another table—in other words, keys
relate tables to each other. For example, consider the class diagram fragment
from the RMO example, which is shown in Figure 12-3, and the tables
that are shown in Figure 12-4. The class diagram fragment shows an optional
one-to-many association between the classes ProductItem and InventoryItem.
The upper table in Figure 12-4 contains data representing the ProductItem
class. The lower table contains data representing the InventoryItem class.

The association between the ProductItem and InventoryItem classes is
represented by a common attribute value within their respective tables. The
ProductID attribute (the primary key of the ProductItem table) is also stored
within the InventoryItem table, where it is called a foreign key. A foreign key
is an attribute that duplicates the primary key of a different (or foreign) table.

Field, or
attribute,

names

One field,
or attribute,

value

One
field or

attribute

One row,
tuple, or

record

FIGURE 12-2
Partial display of a relational
database table

attribute one vertical group of data
attribute values in a table

attribute value the value held in a single
table cell

key an attribute or set of attributes, the
values of which occur only once in all the rows
of the table

primary key the key chosen by a data-
base designer to represent relationships among
rows in different tables

foreign key an attribute that duplicates
the primary key of a different (or foreign) table

CHAPTER 12 ■ Databases, Controls, and Security 375

In Figure 12-4, the existence of the value 1244 as a foreign key within the
InventoryItem table indicates that the values of Gender, Description and
Supplier in the first row of the ProductItem table also describe inventory items
86779 through 86790.

Designing Relational Databases
The starting point for designing a relational database schema is either a class
diagram or entity-relationship diagram (ERD). Starting with an ERD is
the more traditional approach, but the widespread use of class diagrams for
software design has made them more common than ERDs. For purposes of
relational database design, there is no particular advantage to either diagram
type. We will base our discussion and examples on class diagrams because they
are more common today than ERDs.

As you have learned in earlier chapters, there are multiple types of class
diagrams, including domain model and design class diagrams. For database
design, the preferred starting point is the domain model class diagram because

gender
description
supplier
manufacturer
picture

ProductItem

size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

0..*1

FIGURE 12-3
Portion of the RMO class diagram

FIGURE 12-4
An association between rows in two
tables represented with primary and
foreign keys

376 PART 5 ■ Advanced Design and Deployment Concepts

it omits many design details that aren’t relevant to database design. To
create a relational database schema from a domain model class diagram, fol-
low these steps:

1. Create a table for each class.
2. Choose a primary key for each table (invent one, if necessary).
3. Add foreign keys to represent one-to-many associations.
4. Create new tables to represent many-to-many associations.
5. Represent classification hierarchies.
6. Define referential integrity constraints.
7. Evaluate schema quality and make necessary improvements.
8. Choose appropriate data types.
9. Incorporate integrity and security controls.

The following subsections discuss steps 1–8 in detail. Controls are discussed
at the end of this chapter.

Representing Classes
The first step in creating a relational database schema is to create a table for
each class on the class diagram. Figure 12-5 shows a partial class diagram for
the RMO customer support system, with 17 classes, including three specialized
classes of Sale and two of OnlineCart. For the moment, we will treat each
group of generalized and specialized classes as if it were a single class. The
attributes of each table will be the same as those defined for the corresponding
class in the class diagram. To avoid confusion, table and attribute names should
match the names used in the class diagram, although abbreviations should be
avoided. Initial table definitions for the classes in Figure 12-5 are shown in
Figure 12-6.

Choosing Primary Keys
After creating tables for each class, the designer selects a primary key for each
table. If a table already has an attribute or set of attributes that are guaranteed
to be unique, then the designer can choose that attribute or set of attributes as
the primary key. If the table contains no possible keys, then the designer must
invent a new key attribute. Any name can be chosen for an invented key field,
but the name should indicate that the attribute contains unique values. Typical
names include Code, Number, and ID—possibly combined with the table name
(for example, ProductCode and OrderID). Figure 12-7 shows the class tables
with primary key columns in boldface type.

Because key creation and management are critical functions in databases
and information systems, many relational DBMSs automate key creation.
DBMSs typically provide a special data type for invented keys (e.g., the
AutoNumber type in Microsoft Access). The DBMS automatically assigns a key
value to newly created rows and communicates that value to the application
program for use in subsequent database operations. Embedding this capability
in the DBMS frees the IS developer from designing and implementing custom-
ized key-creation software modules.

Invented keys that aren’t assigned by the information system or DBMS must
be given careful scrutiny to ascertain their uniqueness and usefulness over time.
For example, employee databases in the United States commonly use Social
Security numbers as keys. Because the U.S. government has a strong interest in
guaranteeing the uniqueness of Social Security numbers, the assumption that
they will always be unique seems safe. But will all employees who are stored in
the database have a Social Security number? What if the company opens a
manufacturing facility in Asia or South America?

Invented keys assigned by nongovernmental agencies deserve even more
careful scrutiny. For example, FedEx, UPS, and most shipping companies assign
a tracking number to each shipment they process. Tracking numbers are

CHAPTER 12 ■ Databases, Controls, and Security 377

guaranteed to be unique at any given point in time, but are they guaranteed
to be unique forever (that is, are they ever reused)? Could reuse of a tracking
number cause a primary key duplication in your database? And what
would happen if two different shippers assigned the same tracking number to
two different shipments?

FIGURE 12-5 Subset of the RMO domain model class diagram

elapsedTime

ActiveCart

holdForDays

OnReserveCart

storeID
registerID
clerkID

InStoreSale

timeOnSite
chatUse

OnlineSale

clerkID
lengthOfCall

TelephoneSale

quantity
soldPrice
shipStatus
backOrderStatus

SaleItem

saleDateTime
priorityCode
S&H
tax
totalAmt
mountainBucks

Sale

date

transactionType
amount
paymentMethod

SaleTrans

season
year
description
startDate
endDate

Promotion

date
rating
comment

ProductComment

size
color
options
quantityOnHand
averageCost
reorderQuantity

InventoryItem

name
mobilePhone
homePhone

emailAddress
status

Customer

gender
description
supplier
manufacturer
picture

ProductItem

startDateTime
noOfItems
valueOfItems
status

OnLineCart

1

1

0..2

1..*

1..*

1..* 1

1..*

1

1 0..*

1

0..*

0..*

1

0..*

0..*

0..* 1..*

0..*

1

0..*

1

1

PromoOffering

regularPrice
promoPrice

category
description

AccessoryPackage

quantity
currentPrice

CartItem

378 PART 5 ■ Advanced Design and Deployment Concepts

Representing Associations
Associations are represented within a relational database by foreign keys.
Which foreign keys should be placed in which tables depends on the type of
association being represented. The RMO class diagram in Figure 12-4 contains
10 one-to-many associations, two many-to-many associations, and two
generalization/specialization association groups. We will deal with the

Attributes

Category, Description

Quantity, CurrentPrice

Name, MobilePhone, HomePhone, EmailAddress, Status

Size, Color, Options, QuantityOnHand, AverageCost, ReorderQuantity

StartDateTime, NumberOfItems, ValueOfItems, Status, ElapsedTime,

HoldForDays

Date, Rating, Comment

Gender, Description, Supplier, Manufacturer, Picture

RegularPrice, PromoPrice

Season, Year, Description, StartDate, EndDate

SaleDateTime, PriorityCode, ShippingAndHandling, Tax, TotalAmount,

MountainBucks, StoreID, RegisterID, ClerkID, TimeOnSite, ChatUse,

LengthOfCall

Quantity, SoldPrice, ShipStatus, BackOrderStatus

Table

AccessoryPackage

CartItem

Customer

InventoryItem

OnlineCart

ProductComment

ProductItem

PromoOffering

Promotion

Sale

SaleItem

SaleTransaction Date, TransactionType, Amount, PaymentMethod

FIGURE 12-6
Initial set of tables representing RMO
classes

Attributes

AccessoryPackageID, Category, Description

CartItemID, Quantity, CurrentPrice

AccountNumber, Name, MobilePhone, HomePhone, EmailAddress,

Status

InventoryItemID, Size, Color, Options, QuantityOnHand, AverageCost,

ReorderQuantity

OnlineCartID, StartDateTime, NumberOfItems, ValueOfItems, Status,

ElapsedTime, HoldForDays

ProductCommentID, Date, Rating, Comment

ProductItemID, Gender, Description, Supplier, Manufacturer, Picture

PromoOfferingID, RegularPrice, PromoPrice

PromotionID, Season, Year, Description, StartDate, EndDate

SaleID, SaleDateTime, PriorityCode, ShippingAndHandling, Tax,

TotalAmount, MountainBucks, StoreID, RegisterID, ClerkID,

TimeOnSite, ChatUse, LengthOfCall

SaleItemID, Quantity, SoldPrice, ShipStatus, BackOrderStatus

Table

AccessoryPackage

CartItem

Customer

InventoryItem

OnlineCart

ProductComment

ProductItem

PromoOffering

Promotion

Sale

SaleItem

SaleTransaction SaleTransactionID, Date, TransactionType, Amount, PaymentMethod

FIGURE 12-7
Class tables with primary keys
identified in bold

CHAPTER 12 ■ Databases, Controls, and Security 379

generalization/specialization associations in a later step. The rules for represent-
ing one-to-many and many-to-many associations are as follows:

■ One-to-many associations—Add the primary key attribute(s) of the “one”
class to the table that represents the “many” class.

■ Many-to-many associations—If no association class exists, create a new
table to represent the association. Add the primary key attribute(s) of the
associated classes to the table that represents the association.

One-to-Many Associations Figure 12-8 shows the results of representing the
10 one-to-many associations within the tables from Figure 12-7. Each foreign
key (shown in italics) represents a single association between the table contain-
ing the foreign key and the table that uses that same key as its primary key. For
example, the attribute CustomerAccountNumber was added to the Sale table as
a foreign key representing the one-to-many association between the Customer
and Sale classes. The foreign key SaleID was added to the SaleTransaction table
to represent the one-to-many association between Sale and SaleTransaction.

Many-to-Many Associations Figure 12-9 expands the table definitions in
Figure 12-8 by updating the PromoOffering table to represent the many-
to-many association between Promotion and ProductItem. The primary key of the
PromoOffering becomes the combination of PromotionID and ProductItemID. The
old primary key PromoOfferingID is discarded. The two attributes that comprise
the primary key are also foreign keys and are displayed in boldface and italics to
indicate their dual status. PromotionID is a foreign key from the Promotion table,
and ProductItemID is a foreign key from the ProductItem table.

Because there is no association class representing the many-to-many
association between ProductItem and AccessoryPackage, a new table named
AccessoryPackageContents is created. As with PromoOffering, it contains two
foreign key columns that combine to form a primary key. The class diagram

Attributes

AccessoryPackageID, Category, Description

CartItemID, InventoryItemID, OnlineCartID, Quantity, CurrentPrice

AccountNumber, Name, MobilePhone, HomePhone, EmailAddress,

Status

InventoryItemID, ProductItemID, Size, Color, Options,

QuantityOnHand, AverageCost, ReorderQuantity

OnlineCartID, CustomerAccountNumber, StartDateTime,

NumberOfItems, ValueOfItems, Status, ElapsedTime, HoldForDays

ProductCommentID, ProductItemID, CustomerAccountNumber, Date,

Rating, Comment

ProductItemID, Gender, Description, Supplier, Manufacturer, Picture

PromoOfferingID, RegularPrice, PromoPrice

PromotionID, Season, Year, Description, StartDate, EndDate

SaleID, CustomerAccountNumber, SaleDateTime, PriorityCode,

ShippingAndHandling, Tax, TotalAmount, MountainBucks, StoreID,

RegisterID, ClerkID, TimeOnSite, ChatUse, LengthOfCall

SaleItemID, InventoryItemID, SaleID, Quantity, SoldPrice, ShipStatus,

BackOrderStatus

Table

AccessoryPackage

CartItem

Customer

InventoryItem

OnlineCart

ProductComment

ProductItem

PromoOffering

Promotion

Sale

SaleItem

SaleTransaction SaleTransactionID, SaleID, Date, TransactionType, Amount,

PaymentMethod

FIGURE 12-8
One-to-many associations represented
by adding foreign key attributes
(shown in italics)

380 PART 5 ■ Advanced Design and Deployment Concepts

contains other classes—including ProductComment, SaleItem, and CartItem—

that are similar to PromoOffering. Though not shown the same way as
PromoOffering on the class diagram, each represents a many-to-many associa-
tion. For example, SaleItem represents a many-to-many association between
Sale and InventoryItem and contains foreign keys for both associated classes.

Because the combination of foreign key values in SaleItem is always unique,
the foreign key combination can serve as the table’s primary key, and the
invented key (SaleItemID) created earlier can be discarded. A similar situation
exists for CartItem but not for ProductComment. With ProductComment, it is
possible for a single customer to make multiple comments about the same prod-
uct. If that were to happen, there would be two rows in the ProductComment
table with the same values of CustomerAccountNumber and ProductItemID.
Thus, the invented key ProductCommentID is retained and the two primary key
attributes aren’t part of the primary key.

Representing Classification Hierarchies
Classification hierarchies, such as the association among Sale, InStoreSale,
TelephoneSale, and WebSale, are a special case in relational database design.
Just as a specialized class inherits the data and methods of a generalized class, a
table representing a specialized class inherits some or all of its data from the
table representing its generalized class. This inheritance can be represented in
multiple ways, including:

■ Combining all the tables into a single table containing the superset of all classes
■ Using separate tables to represent the child classes and using the primary

key of the parent class table as the primary key of the child class tables

Attributes

AccessoryPackageID, Category, Description

InventoryItemID, OnlineCartID, Quantity, CurrentPrice

AccessoryPackageID, InventoryItemID

AccountNumber, Name, MobilePhone, HomePhone,

EmailAddress, Status

InventoryItemID, ProductItemID, Size, Color, Options,

QuantityOnHand, AverageCost, ReorderQuantity

OnlineCartID, CustomerAccountNumber, StartDateTime,

NumberOfItems, ValueOfItems, Status, ElapsedTime,

HoldForDays

ProductCommentID, ProductItemID, CustomerAccountNumber,

Date, Rating, Comment

ProductItemID, Gender, Description, Supplier, Manufacturer,

Picture

PromotionID, ProductItemID, RegularPrice, PromoPrice

PromotionID, Season, Year, Description, StartDate, EndDate

SaleID, CustomerAccountNumber, SaleDateTime, PriorityCode,

ShippingAndHandling, Tax, TotalAmount, MountainBucks,

StoreID, RegisterID, ClerkID, TimeOnSite, ChatUse,

LengthOfCall

InventoryItemID, SaleID, Quantity, SoldPrice, ShipStatus,

BackOrderStatus

Table

AccessoryPackage

CartItem

AccessoryPackageContents

Customer

InventoryItem

OnlineCart

ProductComment

ProductItem

PromoOffering

Promotion

Sale

SaleItem

SaleTransaction SaleTransactionID, SaleID, Date, TransactionType, Amount,

PaymentMethod

FIGURE 12-9
PromoOffering table modified to
represent the many-to-many
association between Product and
Promotion

CHAPTER 12 ■ Databases, Controls, and Security 381

Either method is an acceptable approach to representing a classification
hierarchy.

Figure 12-9 shows the definition of the Sale table under the first method. All
the non-key attributes in the InStoreSale, TelephoneSale, and OnlineSale classes
are stored in the Sale table. For any particular sale, some of the attribute values
in each row will be empty or, in database terminology, NULL. For example, a
row representing a telephone sale would have no values for the attributes
StoreID, RegisterID, TimeOnSite, and ChatUse.

Figure 12-10 shows separate table definitions for specialized classes. The
relationship among Sale, InStoreSale, TelephoneSale, and WebSale is represented
by the foreign key SaleID in all three specialized class tables. In each case, the
foreign key representing the inheritance association also serves as the primary
key of the table representing the specialized class. A similar situation exists for
OnlineCart, ActiveCart, and OnReserveCart.

Enforcing Referential Integrity
In general terms, referential integrity is a constraint on database content—
for example, “A sale must be to a customer” and “A sale item must be some-
thing that we normally stock in inventory.” For relational databases, the
term referential integrity describes a consistent state among foreign key and

Attributes

AccessoryPackageID, Category, Description

OnlineCartID, ElapsedTime

InventoryItemID, OnlineCartID, Quantity, CurrentPrice

AccountNumber, Name, MobilePhone, HomePhone,

EmailAddress, Status

SaleID, StoreID, RegisterID, ClerkID

OnlineCartID, HoldForDays

ProductCommentID, ProductItemID,CustomerAccountNumber,
Date, Rating, Comment

ProductItemID, Gender, Description, Supplier, Manufacturer,

Picture

PromotionID, ProductItemID, RegularPrice, PromoPrice

PromotionID, Season, Year, Description, StartDate, EndDate

SaleID, CustomerAccountNumber, SaleDateTime, PriorityCode,

ShippingAndHandling, Tax, TotalAmount, MountainBucks

Table

AccessoryPackage

ActiveCart

AccessoryPackageID, InventoryItemIDAccessoryPackageContents

CartItem

Customer

InStoreSale

OnReserveCart

SaleID, TimeOnSite, ChatUse OnlineSale

OnlineCartID, CustomerAccountNumber, StartDateTime,

NumberOfItems, ValueOfItems, Status, ElapsedTime,

HoldForDays

OnlineCart

ProductComment

ProductItem

PromoOffering

Promotion

Sale

SaleTransaction SaleTransactionID, SaleID, Date, TransactionType, Amount,

PaymentMethod

TelephoneSale SaleID, ClerkID, LengthOfCall

SaleItem

InventoryItemID, ProductItemID, Size, Color, Options,

QuantityOnHand, AverageCost, ReorderQuantity

InventoryItem

InventoryItemID, SaleID, Quantity, SoldPrice, ShipStatus,

BackOrderStatus

FIGURE 12-10
Specialized classes of Sale and
OnlineCart represented as separate
tables

referential integrity a consistent state
among foreign key and primary key values

382 PART 5 ■ Advanced Design and Deployment Concepts

primary key values. In most cases, a database designer wants to ensure that
these references are consistent. That is, foreign key values that appear in one
table must also appear as the primary key value of the related table.

The DBMS usually enforces referential integrity automatically once the
schema designer identifies primary and foreign keys. For example, when a new
row is added to a table containing a foreign key, the DBMS checks that the
value also exists as a primary key value in the related table and rejects the new
row if no such primary key value exists. The database designer “tells” the
DBMS which columns are foreign keys and to which primary key columns they
refer by creating a referential integrity constraint. For example, a referential
integrity constraint for SaleID in the SaleItem table would be written in SQL as:

ADD CONSTRAINT FK_SaleItem_Sale FOREIGN KEY
SaleID REFERENCES Sale(ID)

Evaluating Schema Quality
Database design is the final step in a complex modeling process. There are
multiple possibilities for database design errors, including errors in the domain
class diagram, poor choice of primary keys, and errors in converting the
class diagram into relational tables. Even if no obvious errors were made, some
database designs are simply better than others.

Systems and programs are frequently revised, and new systems often replace
old ones. But the databases embedded within information systems often survive
several generations of programs. Because databases are difficult to change once
they are populated with data, analysts take extra steps to ensure a high-quality
database design.

A high-quality relational database schema has these features:

■ Flexibility or ease of implementing future data model changes
■ Lack of redundant data

A database schema is considered flexible and maintainable if changes to the
database schema can be made with minimal disruption to existing data content
and structure. For example, adding a new class to the schema shouldn’t require
redefining existing tables. Adding a new one-to-many association should only
require adding new foreign keys and/or tables. Redundancy also plays a role in
database longevity and usability. Excessive redundancy reduces schema flexibil-
ity and also reduces system performance.

Analysts use various formal and informal techniques to evaluate schema
quality. A common informal technique is a design review by other technical
staff or outside consultants. The most common formal technique is called
normalization, which is described in detail in the next section.

Database Normalization
Normalization is a formal technique for evaluating and improving the quality
of a relational database schema. It determines whether a database schema is
flexible and whether it contains any of the “wrong” kinds of redundancy. It
also defines specific methods to eliminate redundancy and improve flexibility.
A complete discussion of normalization is well beyond the scope of this text-
book. We will briefly define a few key concepts supplemented by short descrip-
tions and examples.

First Normal Form
A table is in first normal form (1NF) if all rows contain the same number of
columns. 1NF prohibits attributes such as Dependent, which is shown in
Figure 12-11. Instead, the database designer must either provide a fixed number
of columns in which dependent information is stored or must represent

referential integrity constraint a
constraint, stored in the schema, that the
DBMS uses to automatically enforce referential
integrity

normalization a formal technique for
evaluating and improving the quality of a
relational database schema

first normal form (1NF) restriction that
all rows of a table must contain the same
number of columns

CHAPTER 12 ■ Databases, Controls, and Security 383

Dependent as a separate class with an association to the Employee class. The
latter approach would result in at least one additional table for the dependent
information, with an invented primary key and a corresponding foreign key in
the employee table (for a one-to-many association) or in a table representing an
associative entity (for a many-to-many association).

Functional Dependency
A functional dependency is a one-to-one association between the values of
two attributes. The association is formally stated as follows:

Attribute A is functionally dependent on attribute B if for each value of
attribute B there is only one corresponding value of attribute A.

The most precise way to determine whether functional dependency exists is
to pick two attributes in a table and insert their names in the italic portions of
the previous statement and ask whether the result is true. For example, consider
the attributes ProductItemID and Description in the ProductItem table (see
Figure 12-12). ProductItemID is an internally invented primary key that is
guaranteed to be unique within the table. To determine whether Description is
functionally dependent on ProductItemID, substitute Description for “attribute A”
and ProductItemID for “attribute B” in the italicized portion of the functional
dependency definition:

Description is functionally dependent on ProductItemID if for each value of
ProductItemID there is only one corresponding value of Description.

Now ask whether the statement is true for all rows that could possibly exist
in the ProductItem table. If the statement is true, then Description is functionally
dependent on ProductID. As long as the invented key ProductID is guaranteed
to be unique within the ProductItem table, then the preceding statement is true.
Therefore, Description is functionally dependent on ProductItemID.

FIGURE 12-11 Employee table with repeating attribute

SSN Name Department Salary Dependent1 Dependent2 Dependent3 ... DependentN

111-22-3333 Mary Smith Accounting 40,000 John Alice Dave
222-33-4444 Jose Pena Marketing 50,000
333-44-5555 Frank Collins Production 35,000 Jan Julia

functional dependency a one-to-one
association between the values of two
attributes

FIGURE 12-12
RMO ProductItem table

384 PART 5 ■ Advanced Design and Deployment Concepts

A less formal way to analyze functional dependency of Description on
ProductItemID is to remember that the ProductItem table represents a specific
product sold by RMO. If that product can have only a single description in the
database, then Description is functionally dependent on the key of the table
that represents products (ProductItemID). If it is possible for any product to
have multiple descriptions, then the attribute Description isn’t functionally
dependent on ProductItemID.

Second Normal Form
A table is in second normal form (2NF) if it is in 1NF and if each non-key
attribute is functionally dependent on the entire primary key. A table violates
2NF when a non-key attribute is functionally dependent on only part of the
primary key, which is only possible if the primary key contains multiple attri-
butes. Thus, if the ProductItem table is in 1NF, it is also in 2NF because its
primary key is a single column.

When a table’s primary key consists of two or more attributes, the analyst
must examine functional dependency of non-key attributes on each part of the
primary key. For example, consider a modified version of the RMO
PromoOffering table, as shown in Figure 12-13. Recall that this table represents
a many-to-many association between Promotion and ProductItem. Thus, the
table representing this association has a primary key consisting of the primary
keys of Promotion (PromotionID) and ProductItem (ProductID).

If this table is in 2NF, then each non-key attribute must be functionally
dependent on the combination of PromotionID and ProductItemID. The sim-
plest way to test for 2NF is to test for functional dependency of non-key
attributes on each subset of the primary key. Because the primary key contains
two attributes, there are two statements that must be tested for each non-key
attribute. For RegularPrice, these statements are:

RegularPrice is functionally dependent on PromotionID if for each value
of PromotionID there is only one corresponding value of Regular Price.

RegularPrice is functionally dependent on ProductItemID if for each value
of ProductItemID there is only one corresponding value of Regular Price.

If either statement is true, then a 2NF violation exists. In this example, the
first statement is true, but the second is false. RegularPrice depends on
ProductItemID regardless of what promotions, if any, a product participates in.
Another way to think about this example is to think about the underlying
association represented by the PromoOffering table. A product can be part of
multiple promotions at the same time. Although a product’s promotional price
can be different in different promotions, its regular price is the same whether it
participates in one promotion, three promotions, or none.

If a non-key attribute such as RegularPrice is functionally dependent on
only part of the primary key, then you must remove the non-key attribute from
its present table and place it in another table to satisfy the requirements of
2NF. Because the first functional dependency statement is true, RegularPrice
belongs in a table that has ProductItemID as its primary key. If such a table
doesn’t already exist, it must be created. However, in this case, there is already
a table with ProductItemID as its primary key: the ProductItem table. Thus, the

FIGURE 12-13
Version of the RMO PromoOffering
table that violates 2NF

second normal form (2NF) restriction
that a table is in 1NF and that each non-key
attribute is functionally dependent on the entire
primary key

CHAPTER 12 ■ Databases, Controls, and Security 385

column RegularPrice is removed from the PromoOffering table and added to the
ProductItem table, thus ensuring that the PromoOffering table is in 2NF.

Third Normal Form
A table is in third normal form (3NF) if it is in 2NF and if no non-key attribute is
functionally dependent on any other non-key attribute. To verify that a table is in
3NF, we must check the functional dependency of each non-key attribute on every
other non-key attribute. This can be cumbersome for a large table because the
number of pairs that must be checked grows quickly as the number of non-key attri-
butes grows. The number of functional dependencies to be checked is N × (N − 1),
where N is the number of non-key attributes. Note that functional dependency
must be checked in both directions (i.e., A dependent on B, and B dependent on A).

A common example of a 3NF violation is an attribute that can be computed
by a formula or algorithm that uses other stored values as inputs. Common
examples of computable attributes include subtotals, totals, and taxes—for
example, the attribute TotalAmount, which appears in the Sale table shown in
Figure 12-14. Here is the formula for computing the TotalAmount:

TotalAmount = (∑ Quantity × SoldPrice) + Shipping + Tax

Note that all the inputs to the formula aren’t stored in the same table (see
Figure 12-13). Violations of 3NF involving computable attributes can be local-
ized to a single table or spread across multiple tables. In this case, Shipping and
Tax are stored in the Sale table, whereas Quantity and SoldPrice are stored in
related rows of the SaleItem table. An algorithm that computes TotalAmount
for a particular sale needs to extract all matching rows in the SaleItem table by
using the SaleID foreign key.

Computational dependencies are a form of redundancy because a change to
the value of any input variable in the computation (e.g., Shipping) also changes
the result of the computation (i.e., TotalAmount). The way to correct this type of
3NF violation is simple: Remove the computed attribute from the database.
Eliminating the computed attribute from the database doesn’t mean that its value
is lost. For example, any program or method that needs TotalAmount can query
the SaleItem table for matching values of Quantity and SoldPrice, sum the result
of multiplying each Quantity and SoldPrice, and add Shipping and Tax.

Data Types
A data type defines the storage format and allowable content of a program
variable, class attribute, or relational database attribute or column. Primitive
data types are supported directly by computer hardware and programming
languages and include integers, single characters, and real numbers (floating-
point numbers). Complex data types are combinations of or extensions to
primitive data types that are supported by programming languages, operating
systems, and DBMSs. Examples include arrays and tables, strings (character
arrays), dates, times, currency (money), audio streams, still images, motion
video streams, and uniform resource locators (URLs or Web links).

FIGURE 12-14
TotalAmount computed from attributes
in two tables

third normal form (3NF) restriction
that a table is in 2NF and that no non-key
attribute is functionally dependent on any other
non-key attribute

data type the storage format and
allowable content of a program variable, class
attribute, or relational database attribute or
column

primitive data type a data type sup-
ported directly by computer hardware or a
programming language

complex data type combinations of or
extensions to primitive data types that are
supported by programming languages,
operating systems, and DBMSs

386 PART 5 ■ Advanced Design and Deployment Concepts

A database designer must choose an appropriate data type for each attribute
in a relational database schema. For many attributes, the choice of a data type is
relatively straightforward. For example, designers can represent customer names
and addresses as strings, inventory quantities as integers, and item prices as
currency. RDBMSs support a variety of primitive and complex data types
required by modern information systems. Figure 12-15 contains a partial listing
of some of the data types available in the Microsoft SQL Server RDBMS. The
varbinary data type is typically used to store such data items as pictures, sound,
and video encoded in such standardized formats as JPEG, MP3, and MP4.

Data Access Classes
In Chapter 10, you learned how to develop an OO design based on three-layer
architecture. Under that architecture, data access classes implement the
bridge between data stored in program objects and in a relational database.
Figure 12-16 illustrates the interaction among the RMO problem domain class
Promotion, the data access class PromotionDA, and the relational database.
The data access class has methods that add, update, find, and delete fields and
rows in the table or tables that represent the class. Data access class methods
encapsulate the logic needed to copy values from the problem domain class to
the database and vice versa. Typically, that logic is a combination of program
code in a language such as C++, C#, Java, Visual Basic, or PHP and embedded
relational database commands in SQL.

The lower-left part of Figure 12-16 shows a fragment of Java code with an
embedded SQL statement that implements the find method of PromotionDA.
Similar code is needed for all other methods in the data access class.

Distributed Database Architectures
Because databases and DBMSs are such a crucial part of modern information
systems, most organizations employ complex database architectures to improve
reliability and performance. Although a detailed discussion of these architectures
is beyond the scope of this textbook, a database design isn’t complete unless
these issues are addressed. In this section, we will briefly describe distributed
database architectures and show how they might be applied for Ridgeline
Mountain Outfitters.

Architectural approaches to support database services include:

■ Single database server architecture—One or more databases are hosted
by a single DBMS running on a single server.

■ Replicated database server architecture—Complete database copies are
hosted by cooperating DBMSs running on multiple servers. The servers are

Description

Date, time, and time zone

Whole numeric values

Numeric values with fractional quantities

Currency values and related symbols (e.g., $ and)

Fixed- and variable-length Unicode string

Variable-length byte sequence up to 2 GB

XML document up to 2 GB

Type(s)

datetimeoffset

int, small int, and bigint

float and real

money

nchar and nvarchar

varbinary

xml

FIGURE 12-15
Examples of data types available in the
Microsoft SQL Server RDBMS

single database server architecture
one or more databases are hosted by a single
DBMS running on a single server

replicated database server
architecture complete database copies
are hosted by cooperating DBMSs running on
multiple servers

CHAPTER 12 ■ Databases, Controls, and Security 387

usually distributed across geographic locations. Application programs can
access any server and usually make database updates to only one server.
Servers periodically exchange update information to synchronize their
database copies.

■ Partitioned database server architecture—Multiple distributed database
servers are used and the database schema is partitioned, with some content
on only one server and some content copied on all servers. Content that
appears on multiple servers is periodically synchronized.

■ Cloud-based database server architecture—This architecture isn’t really
a separate architecture. Rather, it is a specific implementation of one or
more of the other architectures by using the services of a cloud computing
provider, such as Amazon or Google. The cloud provider hosts the database
on multiple servers distributed across a predefined geographic area.
Application programs access database services through the cloud provider.
The cloud provider takes care of database synchronization and backup.

The primary advantage of single database server architecture is its simplic-
ity. There is only one server to manage, and all clients are programmed to direct
requests to that server. Disadvantages include susceptibility to server failure and
possible overload of the network or server. All application programs that

FIGURE 12-16 Interaction among problem domain class, data access class, and the DBMS

promotionID
season
year

Promotion

description
startDate
endDate

getPromotionID()
setPromotionID()
getSeason()
setSeason()
getYear()
setYear()

getDescription()
setDescription()
getStartDate()
setStartDate()
getEndDate()
setEndDate()

Data updates
and queries

Extracted data and
processing results

Database

DBMS

DataSQL

dbConnection

PromotionDA

updatePromotionID()
updateSeason()
updateYear()
updateDescription()
updateStartDate()
updateEndDate()

addNew()
delete()
find()

// find() - find a Promotion in the database
// based on PromotionID

public Promotion find(int promotionID)
 throws NotFoundException
{
openConnection(dbConnection);

// Build an SQL query

String query;
query = "SELECT * FROM Promotion";
query += " WHERE PromotionID = ";
query += promotionID;
try
{
 result = executeQuery(query);
}

// remaining statements not shown

partitioned database server
architecture multiple distributed data-
base servers are used and the database schema
is partitioned, with some content on only one
server and some content copied on all servers

cloud-based database server
architecture use of a cloud computing
service provider to provide some or all database
services

388 PART 5 ■ Advanced Design and Deployment Concepts

depend on the server are disabled whenever the server is unavailable (such as
during a crash or during hardware maintenance). Thus, single database server
architecture is poorly suited to applications that must be available on a seven-
day, 24-hour basis.

Replicated database servers make an information system more fault-tolerant.
Applications can direct access requests to any available server, with preference to
the nearest server. When a server is unavailable, clients can redirect their requests
to another available server. In spite of their advantages, replicated database
servers do have some drawbacks. When data is updated on one database copy,
clients accessing that same data from another database copy receive an outdated
response. To counteract this problem, each database copy must periodically
be updated with changes from other database servers. This process is called
database synchronization.

The time delay between an update to a database copy and the propagation
of that update to other database copies is an important database design deci-
sion. During the time between the original update and the update of database
copies, application programs that access outdated copies aren’t receiving
responses that reflect current reality. Designers can address this problem by
synchronizing more frequently or continuously. Synchronization then consumes a
substantial amount of database server capacity, and a large amount of network
capacity among the related database servers must be provided. The proper syn-
chronization strategy is a complex trade-off among cost, hardware and network
capacity, and the need of application programs and users for current data.

Designers can minimize the need for database synchronization by partition-
ing database contents among multiple database servers. Figure 12-17 shows the
division of a hypothetical database schema into two partitions. A different
group of clients accesses each partition. It is seldom possible to partition a
database schema into mutually exclusive subsets. Some portions of a database
are typically needed by most or all users, and those portions must exist in each
partition. For example, data in the region of overlap in Figure 12-17 should be

1

1 1..* 1

1 1..*

1..*

0..*

1

1..*

0..*

1..*

1

0..*

0..*

1

Schema subset
used by

client group A

Schema subset
used by

client group B

0..*

0..*

FIGURE 12-17
Partitioning a database schema into
client access subsets

database synchronization updating
one database copy with changes made to other
database copies

CHAPTER 12 ■ Databases, Controls, and Security 389

stored on each server with periodic synchronization. Thus, partitioning can
reduce the problems associated with database synchronization, but it seldom
eliminates them entirely.

Because advanced database architectures can be very complex and difficult
to manage, many organizations outsource data services to a cloud computing
vendor. Cloud computing vendors manage large server farms and deal with
such issues as replication and synchronization every day. They have the requisite
expertise to manage complex database architectures and can generally provide
services more cheaply than user organizations. The primary drawbacks to using
cloud providers are proprietary database interaction methods that vary among
vendors and the need to maintain high-capacity Internet connections to support
access to database services in the cloud.

RMO Distributed Database Architecture
The starting point for designing a distributed database architecture is informa-
tion about the data needs of geographically dispersed users. Some of this infor-
mation for RMO was gathered as an analysis activity and is summarized here:

■ Warehouse staff members (Portland, Salt Lake City, and Albuquerque) need
to check inventory levels, query orders, record back orders and order fulfill-
ment, and record order returns.

■ Phone-order staff members (Salt Lake City) need to check inventory levels;
create, query, update, and delete orders; query customer account informa-
tion; and query catalogs.

■ Customers using the online sales system and sales associates in retail stores
need the same access capabilities as phone-order staff.

■ Marketing staff members (Park City) need to query and adjust orders, query
and adjust customer accounts, and create and query product and promotion
information.

RMO has already decided to manage its database by using the existing
server cluster in the Park City data center. That same center will also host
servers supporting the online sales, order fulfillment, and marketing systems.
Thus, a high-capacity wide area network (WAN) will be required to connect
the servers to local area networks (LANs) in the warehouses, phone-order
centers, retail stores, headquarters, and data centers.

A single-server architecture is infeasible for the CSMS. There are many
accesses from many locations at many different times. Inevitable database server
downtime would result in lost productivity, sales, and reputation. In essence,
the entire company would grind to a halt, and its future revenue stream would
be jeopardized. As for many modern organizations, that risk is simply too
much to bear.

A more complex alternative that addresses the risk is shown in Figure 12-18.
Each remote location employs a combination of database partitioning and replica-
tion. A server at each warehouse stores a local copy of the order and inventory
portions of the database. Servers in the phone-order center and retail stores host
local copies of a larger subset of the database. Corporate headquarters relies on
the central database server in the data center.

The primary advantages of this architecture are fault tolerance and reduced
WAN capacity requirements. Each location could continue to operate indepen-
dently if the central database server failed. However, as the remote locations
continued to operate, their database contents would gradually drift out of
synchronization.

The primary disadvantages to the distributed architecture are cost and com-
plexity. The architecture saves WAN costs through reduced capacity require-
ments but adds costs for additional database servers. The cost of acquiring,
operating, and maintaining the additional servers would probably be much
higher than the cost of adding greater WAN capacity.

390 PART 5 ■ Advanced Design and Deployment Concepts

So, does the proposed architecture make sense for RMO? The answer
depends on some data that hasn’t yet been gathered and on answers to some
questions about desired system performance, tolerances for downtime, cost and
reliability of WAN connections, and the cost and availability of cloud services.
RMO management must also determine its goals for system performance and
reliability. The distributed architecture would provide higher performance and
reliability but at substantially increased cost. Management must determine
whether the extra cost is worth the expected benefits.

If management wants to reduce costs by using a cloud provider, it will save
money on database servers and their management, but it will also require more
expensive high-capacity or redundant network connections to each location.
Even with such connections, the risk of database inaccessibility would be greater
with a cloud provider than with locally replicated database servers.

Database Design Timing and Risks
Database design has profound impacts on other development activities. Key
questions that many analysts raise are when to design the database and whether
to design and build the entire database at once or spread those activities across
multiple project iterations. Unfortunately, there are no simple answers to those
questions.

The primary factors in deciding when and how to perform database design are:

■ Architecture—Decisions about DBMSs, database servers, and database
distribution are tightly integrated with other architectural decisions,
including network design, Web and component services, and security.

■ Existing databases—Most new or upgraded systems must interact with
existing databases, with their pre-existing constraints. While adapting
existing databases to new or updated systems, analysts must ensure their
continued operation.

■ Domain model class diagram—Database design can’t proceed until related
parts of the class diagram have been developed.

Central
database

server

Replicated
database
partition

Replicated
database
partition

Replicated
database
partition

Corporate
headquarters

LAN

Wide
area

network

Data
center

LAN

Phone-
order center

LAN

Retail store
LAN

(multiple
locations)

Warehouse
LAN

(three locations)

FIGURE 12-18
Replicated and partitioned database
server architecture for RMO

CHAPTER 12 ■ Databases, Controls, and Security 391

The first two factors are the most significant; they make database design
one of the highest-risk elements in many development projects. The risk is
multidimensional, encompassing financial and operational risks through high
costs, pervasive impacts on the new system, and possible disruption to or
modification of existing systems and the business functions that rely on them.
As described in Chapter 9, Agile development purposely addresses high risks in
early iterations. Thus, in many projects, database design is performed in its
entirety in the first few iterations.

The risks associated with database design are substantially reduced when
the system being developed doesn’t have to interact with existing databases. In
that case, the most significant remaining risks are associated with architecture.
The primary question to be answered is how the database architecture of the
new system will interact with the architecture that supports existing systems.
More specific questions include whether the new system will use existing
DBMSs and servers—it is possible for a single DBMS or server to support multi-
ple independent databases—and whether the existing servers and the network
have sufficient unused capacity to support the new system. Those questions are
typically asked and answered in an early project iteration or before the project
is even approved. If the answer to both questions is yes, then the database-
related risks of the new project are relatively low and the need to front-load
database design in the project is substantially reduced.

When database-related risks are low, database design and deployment tasks
can be spread across multiple iterations. Typically, the database schema is
developed incrementally as related portions of the domain model class diagram
are developed. As portions of the schema are developed, corresponding portions
of the database are created and populated with test data. This enables develop-
ment and testing of application software in general and data access classes in
particular. As the database and application software move closer to completion,
performance and stress testing can proceed in earnest.

Designing Integrity Controls
Controls are mechanisms and procedures that are built into a system to safe-
guard the system and the information within it. Here are a few scenarios that
illustrate the need for controls:

■ A furniture store sells merchandise on credit with internal financing.
Salespeople sometimes sell furniture on credit to friends and relatives. How
do we ensure that only authorized employees can extend credit and record
payments and adjustments to credit accounts?

■ A bookkeeper uses accounting software to generate electronic payments to
suppliers. How does the system ensure that the payment is for goods or
services that were actually received? How does the system ensure that no
one can generate payments to a bogus supplier?

■ An online retailer collects and stores credit card and other information
about customers. How does the company ensure that customer data is
protected and secure?

As shown in Figure 12-19, controls are incorporated into various parts of
the system. Some of the controls—called integrity controls—must be integrated
into the application programs that are being developed and the database that
supports them. Other controls—usually called security controls—are part of
the operating system and the network. Integrity controls ensure correct system
function by rejecting invalid data inputs, preventing unauthorized data outputs,
and protecting data and programs against accidental or malicious tampering.
Security controls tend to be less application specific. The distinction between the
two isn’t precise because there is some overlap and because designers typically

integrity control a control that rejects
invalid data inputs, prevents unauthorized data
outputs, and protects data and programs
against accidental or malicious tampering

392 PART 5 ■ Advanced Design and Deployment Concepts

use both types. This section explains integrity controls. Later sections discuss
security controls.

The primary objectives of integrity controls are to:

■ Ensure that only appropriate and correct business transactions occur.
■ Ensure that the transactions are recorded and processed correctly.
■ Protect and safeguard the assets of the organization (including hardware,

software, and information).

As described in the following subsections, organizations incorporate many
types of controls into their systems and databases to achieve these objectives.
Each control type addresses such specific issues as accuracy of inputs and limiting
access to authorized users. No control type is sufficient by itself to achieve all the
objectives. Thus, a layered and multifaceted system of controls is required.

Input Controls
Input controls prevent invalid or erroneous data from entering the system.
Input controls can be applied to data entered by people or data transmitted
from internal or external systems. Input controls can be implemented within
application programs, the database schema, or both. Commonly used input
control types include:

■ Value limit controls—These check numeric data inputs to ensure that the
amount entered is reasonable. For example, the amount of a sale or the
amount of a commission usually falls within a certain range of values. A
control might reject negative values or those that exceed a certain threshold,
such as $10,000.

FIGURE 12-19 Security and integrity control locations

Firewall

Internet Internal network

Network access
controls

Input, processing, and
OS controls

Output
controls

Input, processing, and
OS controls

Processing
controls Encryption OS

controls
Processing

controls
OS

controls
Database
controls

input control a control that prevents
invalid or erroneous data from entering the
system

value limit control a control that checks
numeric data input to ensure that the value is
reasonable

CHAPTER 12 ■ Databases, Controls, and Security 393

■ Completeness controls—These ensure that all required data values
describing an object or transaction are present. For example, when a ship-
ping address is entered, the system might check whether enough information
has been provided to ensure successful delivery.

■ Data validation controls—These ensure that numeric fields containing
codes or identifiers are correct. For example, a program for entering letter
grades for a course might check that entered values match a set of prede-
fined valid grades (such as A, B, C, D, and F) and reject any other entries.

■ Field combination controls—These review various combinations of data
inputs to ensure that the correct data are entered. For example, on an
insurance policy, the application date must be prior to or the same as the
effective date of policy coverage.

Access Controls
Access controls restrict which persons or programs can add, modify, or view
information resources. Access controls are generally implemented through the
operating system (as security controls) or through the DBMS to restrict access
to individual attributes, tables, or entire databases. A DBMS stores access
control information within the schema and applies controls each time data are
read or written. Controls can be defined on such schema subsets as groups of
related tables or objects, single tables or objects, or single attributes. For exam-
ple, different controls might be applied to the name, Social Security number,
and salary fields of an employee table. Also, controls on a single column might
differ for read and write access.

Transaction Logging
Transaction logging is a technique by which any update to the database is
logged with such audit information as user ID, date, time, input data, and type
of update. Transaction logging provides a record of database changes that is
stored in a separate location and can be checked independently of the database
itself. The fundamental idea is to create an audit trail of all database updates
and therefore track any errors or problems that occur. Most DBMSs include
transaction logging as part of the DBMS software, although database designers
or administrators can customize its application.

Transaction logging achieves two objectives. First, it helps discourage fraudu-
lent transactions or malicious database changes. For example, if a person knows
that his or her ID will be associated with every check request, that person isn’t
likely to request a bogus payment. Similarly, a disgruntled employee who might be
tempted to delete important records knows that his or her actions are being logged.

Second, a logging system provides a recovery mechanism for erroneous
transactions. A mid-level logging system maintains the set of all updates.
The system can then recover from errors by “unapplying” the erroneous
transactions. More sophisticated logging systems can provide “before” and
“after” images of the attributes or rows that are changed by the transaction as
well as the audit trail of all transactions. These sophisticated systems are
typically used only for highly sensitive or critical data files, but they do repre-
sent an important control mechanism that is available when necessary.

Complex Update Controls
Complex update controls prevent errors that can occur when multiple programs
try to update the same data at the same time or when recording a single transaction
requires multiple related database updates. Because DBMSs support many applica-
tion programs simultaneously, multiple programs may want to access and update a
record or field at the same time. Update controls within a DBMS provide locking
mechanisms to protect against multiple updates that might conflict with or over-
write each other. For example, while a sale is being processed, inventory levels of
the products being purchased might be locked until the sale is completed, thus
ensuring that the same inventory item isn’t sold twice.

completeness control a control that
ensures that all required data values describing
an object or transaction are present

data validation control a control that
ensures that numeric fields that contain codes
or identifiers are correct

field combination control a control
that reviews combinations of data inputs to
ensure that the correct data are entered

access control a control that restricts
which persons or programs can add, modify,
or view information resources

transaction logging a technique by
which any update to the database is logged
with such audit information as user ID, date,
time, input data, and type of update

complex update control a control that
prevents errors that can occur when multiple
programs try to update the same data at the
same time or when recording a single trans-
action requires multiple related database
updates

394 PART 5 ■ Advanced Design and Deployment Concepts

In addition, some transactions that are applied to the database have multiple
parts, such as a financial transaction that must credit one account and debit a differ-
ent account. Locking all updated rows until all changes are written to the database is
a technique used to protect the data from partial updates of complex transactions.

Redundancy, Backup, and Recovery
Redundancy, backup, and recovery procedures are designed to protect software
and data from hardware failure and from such catastrophes as fire and flood.
Most operating systems and DBMSs incorporate support for all three. Many
organizations that need continuous access to their data and systems employ
redundant databases, servers, and sites. Each server or site hosts copies of the
database and all application software. Updates made to one database copy are
immediately or frequently synchronized with the other copy or copies to ensure
consistency. If one site or server fails, the other(s) is (are) still accessible and the
organization continues to function.

Backup procedures make partial or full copies of a database to removable
storage media, such as magnetic tape, or to data storage devices or servers at
another site. Unlike redundant sites or servers, backup copies stored off-site
can’t be accessed directly by application software. Instead, recovery procedures
read the off-site copies and replicate their contents to a database server that can
then provide access to programs and users. Backup and recovery operations can
take from minutes to hours. Backups are typically scheduled during periods of
low utilization. Recovery is performed when needed, and the database is
unavailable until the recovery procedures are completed.

Output Controls
Systems outputs come in various forms, including output that is used by other
systems, printed reports, and data displayed on traditional or mobile computer
displays. Output controls ensure that output arrives at the proper destination
and is accurate, current, and complete. It is especially important that outputs
with sensitive information arrive at the proper destination and that they not be
accessed by unauthorized persons. Common types of output controls include:

■ Physical access controls to printers—Printers and printed outputs should be
located in secure areas accessible only by authorized personnel.

■ Discarded output control—Although often ignored during system design,
physical control of discarded printed outputs containing sensitive data is a
must because “dumpster diving” is an effective way to access data without
authorization. Sensitive printed documents should be segregated from other
trash and shredded or burned.

■ Access controls to programs that display or print—Program access controls
restrict which users can access specific programs and program functions,
usually via such a mechanism as a username and password. In some
instances, a system designer might restrict program or function access by
access device. This extra safeguard is used primarily for military or other
systems that house workstations in secure areas and provide access to the
system’s information to anyone who has access to the area.

■ Formatting and labeling of printed outputs—System developers ensure
completeness and accuracy by printing control data on the output report.
For example, every report should have a date and time stamp—for the time
the report was printed and for the date(s) of the underlying data. To ensure
that a document is complete, designers typically incorporate such formatting
features as pagination in the “page of ” format, control totals, and an
“end of report” trailer.

■ Labeling of electronic outputs—Electronic outputs typically include internal
labels or tags that identify their source, content, and relevant dates. They
may also include control totals or checksums that enable the recipient to
determine whether content has been lost or altered.

output control a control that ensures
that output arrives at the proper destination and
is accurate, current, and complete

CHAPTER 12 ■ Databases, Controls, and Security 395

Integrity Controls to Prevent Fraud
System designers and administrators are rightly concerned with security
breaches arising from outside the organization. But they often pay inadequate
attention to an equally serious problem: the use of the system by authorized
people to commit fraud. Obviously, integrity and security controls won’t
completely eliminate fraud. However, system developers should be aware of the
fundamental elements that make fraud possible and incorporate controls to
combat it.

In the 1950s, fraud researchers developed a widely used model called the
fraud triangle (see Figure 12-20). Much as a fire needs fuel, heat, and oxygen
to burn, fraud requires three elements:

■ Opportunity—the ability of a person to take actions that perpetrate a fraud.
For example, unrestricted access to all functions of an accounts payable sys-
tem enables an employee to generate false vendor payments.

■ Motivation—a desire or need for the results of the fraud. Money is the
usual motivation, although a desire for status or power as well as a need to
be a “team player” may be contributing factors.

■ Rationalization—an excuse for committing the fraud or an intention to
“undo” the fraud in the future. For example, an employee might falsify
financial reports to stave off bankruptcy, thus enabling fellow workers to
keep their jobs. Or an employee might steal money to pay a gambling debt
or medical bills, with the intention of repaying the money later.

System designers have little or no impact on motive and rationalization, but
they can minimize or eliminate opportunity by designing and implementing
effective controls. Figure 12-21 contains several of the more important factors
that increase the risk of fraud. This list isn’t comprehensive, but it does provide
a foundation on which developers can design a computer system that reduces
the opportunity for fraud. As a system developer, you should include discus-
sions with your users and within the project teams to ensure that adequate con-
trols have been included to reduce fraud.

Designing Security Controls
Although the objective of security controls is to protect the assets of an orga-
nization from all threats, as indicated earlier, the primary focus is on external
threats. In addition to the objectives enumerated earlier for integrity controls,
security controls have two objectives:

■ Maintain a stable, functioning operating environment for users and applica-
tion systems (usually 24 hours a day, 7 days a week).

■ Protect information and transactions during transmission across the Internet
and other insecure environments.

Rationalization

O
pp

or
tu

ni
ty M

otive

FIGURE 12-20
The fraud triangle

fraud triangle model of fraud that states
that opportunity, motivation, and rationalization
must all exist for a fraud to occur

security control a control that protects
the assets of an organization from all threats,
with a primary focus on external threats

396 PART 5 ■ Advanced Design and Deployment Concepts

The first objective—to maintain a stable operating environment—focuses on
security measures to protect the organization’s systems from external attacks
from hackers, viruses, and worms as well as denial-of-service attacks. Most
organizations have firewalls between their internal systems and the Internet (see
Figure 12-19). Every time someone in an organization communicates through
the Internet, there is the potential for a security violation and for undesirable
access that could disrupt the internal systems. Thus, eliminating and controlling
any undesirable access helps avoid disruption of the system.

The second objective—to protect transactions during transmission—focuses
on the information that is sent or received via the Internet. Once a transaction
is sent outside the organization, it could be intercepted, destroyed, or modified.
Thus, security controls use techniques to protect data while they are in transit
from the source to the destination.

The most common security control points are network and computer oper-
ating systems because they exercise direct control over such assets as files,
application programs, and disk drives. All modern operating systems contain
extensive security features that can identify users, restrict access to files and pro-
grams, and secure data transmission among distributed software components.
Operating system security is the foundation of security for most information
systems.

Access Controls
Access controls limit the ability of specific users to access such specific resources
as servers, files, Web pages, application programs, and database tables.
Operating systems, networking software, and DBMSs all provide access control
systems, and all can be configured to share a common access control system.
Most access control systems rely on these common principles and processes:

■ Authentication—the process of identifying users who request access to
sensitive resources. Users can be authenticated through usernames and pass-
words, smart cards, challenge questions and responses, or such biometric
methods as fingerprint and retinal scans or voice recognition. Multifactor
authentication uses multiple methods for increased reliability.

■ Access control list—a list attached or linked to a specific resource that
describes users or user groups and the nature of permitted access (e.g., read
data, update data, and execute program). Users who don’t appear in the
access control list can’t use the associated resource.

Risk-reduction techniques

Design systems so those with asset custody have limited

access to related records. Also, ensure that no one has

sufficient system access to commit and cover up a fraud.

Incorporate regular and systematic procedures to review

records and logs for unusual transactions, accesses,

and other patterns.

Limit physical access to valuable assets, such as

inventory, and periodically reconcile physical asset

counts with related records.

Design security features into individual systems and

supporting infrastructure. Review and test security

features frequently. Use outside consultants to conduct

penetration testing attack and fraud vectors from

external and internal sources.

Factors affecting fraud risk

Separation of duties

Monitoring

Record all transactions and changes in asset status. Log

all changes to records and databases, and restrict log

access to a few trusted persons.

Records and audit trails

Asset control and

reconciliation

Security

FIGURE 12-21
Fraud risks and prevention techniques

authentication the process of identifying
users who request access to sensitive
resources

multifactor authentication using
multiple authentication methods for increased
reliability

access control list a list attached or
linked to a specific resource that describes
users or user groups and the nature of permit-
ted access

CHAPTER 12 ■ Databases, Controls, and Security 397

■ Authorization—the process of allowing or restricting a specific authenti-
cated user’s access to a specific resource based on an access control list.

To build an effective access control system, a designer must categorize
system users and determine what type(s) of access each requires to every
resource. Figure 12-22 illustrates three user categories or types and the role of
the access control system in allowing or restricting their access:

■ Unauthorized users—people who aren’t allowed access to any part or
functions of the system. Such users include employees who are
prohibited from accessing the system, former employees who are no
longer permitted to access the system, and such outsiders as hackers
and intruders.

■ Registered users—those who are authorized to access the system.
Normally, various types of registered users are defined depending on what
they are authorized to view and update. For example, some users may be
allowed to view data but not update them, and other users can update only
certain data fields. Some screens and functions of the new system may be
hidden from other levels of registered users.

FIGURE 12-22 Users and their access to computer systems

Internet

Plotter

Hackers Former employees

Suppliers
Internet

customers

System
developers

System

administrators

Managers

Registered
users

Registered
users

Unauthorized users

Privileged users

Employees

Data

Access control system

authorization the process of allowing or
restricting a specific authenticated user’s
access to a specific resource based on an
access control list

unauthorized user a person who isn’t
allowed access to any part or functions of the
system

registered user a person who is
authorized to access the system

398 PART 5 ■ Advanced Design and Deployment Concepts

■ Privileged users—people who have access to the source code, executable
program, and database structure of the system, including system programmers,
application programmers, operators, and system administrators. These people
may have differing levels of security access.

Data Encryption
No access control system is perfect, so designers must anticipate access control
breaches and provide other measures to protect the confidentiality of data.
Protective measures must also be applied to data that is stored or transmitted out-
side the organization’s own network, such as transaction data sent by remote sup-
pliers or customers and interactions between internal applications and cloud service
providers. Common types of information that require additional protection include:

■ Financial information
■ Credit card numbers, bank account numbers, payroll information, health-

care information, and other personal data
■ Strategies and plans for products and other mission-critical data
■ Government and sensitive military information
■ Data stored on such portable devices as laptop computers and cell phones

The primary method of maintaining the security of data—data on internal
systems and transmitted data—is by encrypting the data. Encryption is the pro-
cess of altering data so unauthorized users can’t view them. Decryption is the
process of converting encrypted data back to their original state. Data stored in
files or a database on hard drives or other storage devices can be encrypted to
protect them against theft. Data sent across a network can be encrypted to pre-
vent eavesdropping or theft during transmission. A thief or eavesdropper who
steals or intercepts encrypted data receives a meaningless group of bits that is
difficult or impossible to convert back into the original data.

An encryption algorithm is a complex mathematical transformation that
encrypts or decrypts binary data. An encryption key is a binary input to the
encryption algorithm—typically a long string of bits. The encryption algorithm
varies the data transformation based on the encryption key so data can be
decrypted only with the same key or a compatible decryption key. Many encryp-
tion algorithms are available, and a few—including Data Encryption Standard
(DES) and several algorithms developed by RSA Security—are widely deployed
governmental or Internet standards. An encryption algorithm must generate
encrypted data that are difficult or impossible to decrypt without the encryption
key. Decryption without the key becomes more difficult as key length is
increased. Sender and receiver must use the same or compatible algorithms.

Figure 12-23 shows an example of symmetric key encryption, in which
the same key encrypts and decrypts the data. A significant problem with

FIGURE 12-23 Symmetric key encryption

Secret key Secret key

Person 1 Person 2

Same key

InternetMessage:
How are you?

Message:

How are you?

Message:

wp93nznieh?

Message:

wp93nznieh?

privileged user a person who has access
to the source code, executable program, and
database structure of the system

encryption the process of altering data so
unauthorized users can’t view them

decryption the process of converting
encrypted data back to their original state

encryption algorithm a complex math-
ematical transformation that encrypts or
decrypts binary data

encryption key a binary input to the
encryption algorithm—typically a long string
of bits

symmetric key encryption encryption
method that uses the same key to encrypt and
decrypt the data

CHAPTER 12 ■ Databases, Controls, and Security 399

symmetric key encryption is that sender and receiver use the same key, which
must be created and shared in a secure manner. Security is compromised if the
key is transmitted over the same channel as messages encrypted with the key.
Also, sharing a key among many users increases the possibility of key theft.
Because of these risks, symmetric key encryption is primarily used with data
stored in files and databases but not with data transmitted over networks.

Data stored by file and database servers can be encrypted with symmetric
key encryption to protect against unauthorized access that bypasses the OS or
DBMS to directly access the physical data store. Typically, the encryption key
is stored on a different server that is queried via a secure logon when the
server first boots up. Data stored on laptops and other portable devices are
often encrypted to protect against unauthorized access due to loss, theft, or
disposal.

An additional security measure for portable devices is a technique com-
monly called remote wipe, which automatically deletes sensitive data from
portable devices under certain conditions, such as repeated failure to enter a
valid username and password or an attempt to access a database or file from
an unauthorized application. Remote wipe is commonly used with apps on
portable devices that sync sensitive data from a server. An authorized syn-
chronization attempt triggers the remote wipe via command from the app or
the server.

Asymmetric key encryption uses different but compatible keys to encrypt
and decrypt data. Public key encryption is a form of asymmetric key encryp-
tion that uses a public key for encryption and a private key for decryption. The
two keys are like a matched pair. Once information is encrypted with the public
key, it can be decrypted only with the private key. It can’t be decrypted with the
same public key that encrypted it. Organizations that use this technique broad-
cast their public key so it is freely available to anybody who wants it. Then,
when some entity—for example, someone who wants to order something from
the vendor—wishes to transmit a secure message to a vendor, that customer
reads the vendor’s public key from a public source, such as a Web site. The cus-
tomer encrypts the message with the public key and sends the message to the
vendor. The vendor then decrypts the message with the private key. Because no
one else has the private key, no one else can decrypt the message.

Some asymmetric encryption methods can encrypt and decrypt messages in
both directions. That is, in addition to using the public key to encrypt a message
that can be decrypted with the private key, an organization can also encrypt a
message with the private key and decrypt it with the public key. Notice that
both keys must still work as a pair, but the message can go forward or back-
ward through the encryption/decryption pair. This second technique is the basis
for digital signatures and certificates, which are explained in the next section.
Figure 12-24 illustrates an asymmetric key encryption transmittal.

Digital Signatures and Certificates
The encryption of messages is an effective technique to enable a secure exchange
of information between two entities who have appropriate keys. However, how
do you know that the entity on the other end of the communication is really
who you think it is? A digital signature is a technique in which a document is
encrypted by using a private key to verify who wrote the document. If you
have the public key of an entity and then that entity sends you a message with
its private key, you can decode it with the public key. You know that the party
is the one you want to communicate with because that entity is the only one
who can encode a message with that private key. The encoding of a message
with a private key is called digital signing.

Taking the example one step further, you can ask the question “How do I
know that the public key I have is the correct public key and not some

remote wipe security measure that
automatically deletes sensitive data from a
portable device when unauthorized accesses
are attempted

asymmetric key encryption
encryption method that uses different keys
to encrypt and decrypt the data

public key encryption a form of asym-
metric key encryption that uses a public key for
encryption and a private key for decryption

digital signature a technique in which a
document is encrypted by using a private key to
verify who wrote the document

400 PART 5 ■ Advanced Design and Deployment Concepts

counterfeit key?” In other words, maybe someone is impersonating another
entity and is passing out false public keys to be able to intercept encoded
messages (such as financial transactions) and steal information. In essence, the
problem is ensuring that the key that is purported to be the public key of some
institution is in fact that institution’s public key. The solution to that problem is
a certificate.

A certificate—or digital certificate—is an institution’s name and public
key (plus other information, such as address, Web site URL, and validity
date of the certificate), encrypted and certified by a third party. Many third
parties, such as VeriSign and Equifax, are very well known and widely
accepted certifying authorities. In fact, they are so well known that their
public keys are built right into Netscape and Internet Explorer. As shown in
Figure 12-25, you can know that the entities with whom you are communi-
cating are in fact who they say they are and that you do have their correct
public key.

An entity that wants a certificate with its name and public key goes to a
certifying authority and buys a certificate. The certifying authority encrypts the
data with its own private key (signs the data) and gives the data back to the
original entity. Then, when someone, such as a customer, asks the entity for its
public key, it sends the certificate. The customer receives the certificate and
opens it with the certifying authority’s public key. Again, the certifying author-
ity is so well known that its public key is built into everyone’s browser and is
essentially impossible to counterfeit. The customer can now be sure that he
or she is communicating with the original entity and can do so with encrypted
messages by using the entity’s public key.

A variation of this scenario occurs when the buyer and seller transmit their
certificates to one another. Each participant can decrypt the certificate by using
the certifying authority’s public key to extract such information as name and
address. However, to ensure that the public key contained within the certificate
is valid, the certificates are transmitted to the certifying authority for

FIGURE 12-24 Asymmetric key encryption

Person 1 Person 2

Get public key
Broadcast public key

Public key
of person #2

Private key
of person #2

Message:
xitow7ei12q

Message:
xitow7ei12q

Internet
Message:

How are you?
Message:

How are you?

digital certificate an institution’s name
and public key (plus other information, such as
address, Web site URL, and validity date of the
certificate) encrypted and certified by a third
party

certifying authority a widely accepted
issuer of digital certificates

CHAPTER 12 ■ Databases, Controls, and Security 401

verification. The authority stores certificate data, including public keys, within
its database and verifies transmitted certificates by matching their content
against the database.

Secure Transactions
Secure electronic transactions require a standard set of methods and protocols
that address authentication, authorization, privacy, and integrity. Netscape
originally developed the Secure Sockets Layer (SSL) to support secure trans-
actions. SSL was later adopted as an Internet standard and renamed
Transport Layer Security (TLS), although the original name—SSL—is still
widely used.

TLS is a protocol for a secure channel to send messages over the Internet.
Sender and receiver first establish a connection by using ordinary Internet proto-
cols and then ask each other to create a TLS connection. Sender and receiver
then verify each other’s identity by exchanging and verifying identity certificates
as explained previously. At this point, either or both have exchanged public
keys, so they can send secure messages. Because asymmetric encryption is
quite slow and difficult, the two entities agree on a protocol and encryption
method—usually a single-key encryption method. Of course, all the messages to
establish a secure connection are sent by using the public key/private key combi-
nation. Once the encryption technique has been determined and the secret,
single key has been transmitted, all subsequent transmission is done by using
the secret, single key.

IP Security (IPSec) is a newer Internet standard for secure message trans-
mission. IPSec is implemented at a lower layer of the network protocol stack,
which enables it to operate with greater speed. IPSec can replace or comple-
ment SSL. The two protocols can be used at the same time to provide an
extra measure of security. IPSec supports more secure encryption methods
than SSL.

Secure Hypertext Transport Protocol (HTTPS or HTTP-S) is an Internet
standard for securely transmitting Web pages. HTTPS supports several types of
encryption, digital signing, and certificate exchange and verification. All
modern Web browsers and servers support HTTPS. It is a complete approach to
Web-based security, although security is enhanced when HTTPS documents are
sent over secure TLS or IPSec channels.

FIGURE 12-25 Using a digital certificate

1. Client sends request to
connect to secure server.

3. Client verifies certificate
signer is a trusted certifying
authority and authenticates
server.

4. Client generates a secret
key to be used for the session
and encrypts it with the
server’s public key.

Client Secure server

6. Server uses its private key
to decrypt secret session key.

2. Server sends signed digital certificate
(containing server’s public key).

7. Client and server communicate
securely using the secret session key.

5. Client sends encrypted secret session key.

Secure Sockets Layer (SSL) a
standard set of methods and protocols that
address authentication, authorization, privacy,
and integrity

Transport Layer Security (TLS) an
Internet standard equivalent to SSL

IP Security (IPSec) an Internet standard
for secure transmission of low-level network
packets

Secure Hypertext Transport Protocol
(HTTPS) an Internet standard for securely
transmitting Web pages

402 PART 5 ■ Advanced Design and Deployment Concepts

Chapter Summary
Most modern information systems store data in a data-
base and access and manage the data by using a DBMS.
One of the key activities of system design is developing a
relational or object database schema. A relational data-
base is a collection of data stored in tables. A relational
database schema is normally developed from a domain
class diagram. Each class is represented as a separate
table. One-to-many associations are represented by
embedding foreign keys in class tables. Many-to-many
associations are represented by creating additional tables
containing foreign keys of the related classes.

Database design is usually performed in an early
iteration of a development project to minimize project

risk. Many new systems interact with existing databases,
and the architectural decisions associated with databases
are intertwined with other architectural issues. The
combination of these factors increases the risk associated
with database design tasks. When the risks are low, the
database can be designed and implemented incrementally
across multiple project iterations.

Because stored data is such an important organiza-
tional asset, database design incorporates controls to ensure
the correctness, completeness, and security of data. Integrity
and security controls extend beyond the database to all
other system components, including application programs,
operating systems, Web sites, and networks.

Key Terms

access control list 397

access controls 394

asymmetric key encryption 400

attribute 375

attribute value 375

authentication 397

authorization 398

certifying authorities 401

cloud-based database server
architecture 388

completeness controls 394

complex data types 386

complex update controls 394

data type 386

data validation controls 394

database (DB) 373

database management system (DBMS) 373

database synchronization 389

decryption 399

digital certificate 401

digital signature 400

encryption 399

encryption algorithm 399

encryption key 399

field combination controls 394

first normal form (1NF) 383

foreign key 375

fraud triangle 396

functional dependency 384

input controls 393

integrity controls 392

IP Security (IPSec) 402

key 375

multifactor authentication 397

normalization 383

output controls 395

partitioned database server architecture 388

physical data store 373

primary key 375

primitive data types 386

privileged users 399

public key encryption 400

referential integrity 382

referential integrity constraint 383

registered users 398

relational database management system
(RDBMS) 374

remote wipe 400

replicated database server architecture 387

row 374

schema 373

second normal form (2NF) 385

Secure Hypertext Transport Protocol
(HTTPS or HTTP-S) 402

Secure Sockets Layer (SSL) 402

security controls 396

single database server architecture 387

symmetric key encryption 399

CHAPTER 12 ■ Databases, Controls, and Security 403

tables 374

third normal form (3NF) 386

transaction logging 394

Transport Layer Security (TLS) 402

unauthorized users 398

value limit controls 393

Review Questions
1. List the components of a DBMS and describe the

function of each.

2. What is a database schema? What information does
it contain?

3. Why are databases the preferred method of storing
data used by an information system?

4. With respect to relational databases, briefly define
the terms row and attribute value.

5. What is a primary key? Are duplicate primary key
values allowed? Why or why not?

6. What is the difference between a natural key and an
invented key? Which type is most commonly used
in business information processing?

7. What is a foreign key? Why are foreign keys used or
required in a relational database? Are duplicate
foreign key values allowed? Why or why not?

8. Describe the steps used to transform a domain class
diagram into a relational database schema.

9. What is referential integrity? Describe how it is
enforced when a new foreign key value is created,
when a row containing a primary key is deleted,
and when a primary key value is changed.

10. What types of data (or attributes) should never be
stored more than once in a relational database?
What types of data (or attributes) usually must be
stored more than once in a relational database?

11. What is relational database normalization? Why is
a database schema in third normal form considered
to be of higher quality than an unnormalized
database schema?

12. Describe the process of relational database normal-
ization. Which normal forms rely on the definition
of functional dependency?

13. What is the difference between a primitive data type
and a complex data type?

14. Briefly describe these distributed database
architectures: replicated database servers,
partitioned database servers, and cloud-based
database servers. What are the comparative
advantages of each?

15. What additional database management complexi-
ties are introduced when database contents are
replicated in multiple locations?

16. Describe the risk factors associated with database
design.

17. When should database design be performed? Can
the database be designed iteratively or must the
entire database be designed at once?

18. Explain four types of integrity controls for input
forms. Which have you seen most frequently? Why
are they important?

19. What are the objectives of integrity controls in
information systems? In your own words, explain
what each of the three objectives means. Give an
example of each.

20. What are the four types of input controls used to
reduce input errors? Describe how each works.

21. What is the basic purpose of transaction logging?

22. What are the two primary objectives of security
controls?

23. Briefly define or describe authentication, access
control lists, and authorization.

24. How does single-key (symmetric) encryption work?
What are its strengths? What are its weaknesses?

25. How does public key (asymmetric) encryption
work? What are its strengths? What are its
weaknesses?

26. What is a digital certificate? What role do certifying
authorities play in security systems?

27. What is a digital signature? What does it tell a user?

Problems and Exercises
1. The Universal Product Code (UPC) is a bar-coded

number that uniquely identifies many products sold
in the United States. For example, all printed copies
of this textbook sold in the United States have the

same UPC bar code on the back cover. Now con-
sider how the design of the RMO database might
change if all items sold by RMO were required by
law to carry a permanently attached UPC (e.g., on a

404 PART 5 ■ Advanced Design and Deployment Concepts

label sewn into a garment or on a radio frequency
ID tag attached to a product). How might the RMO
relational database schema change under this
requirement?

2. Assume that RMO will begin asking a random
sample of customers who order by telephone about
purchases made from competitors. RMO will give
customers a 15 percent discount on their current
order in exchange for answering a few questions.
To store and use this information, RMO will add
two new classes and three new associations to the
class diagram. The new classes are Competitor and
ProductCategory. Competitor has a one-to-many
association with ProductCategory, and the existing
Customer class also has a one-to-many association
with ProductCategory. Competitor has a single
attribute called Name. ProductCategory has four
attributes: Description, DollarAmountPurchased,
MonthPurchased, and YearPurchased. Revise the
relational database schema shown in Figure 12-10
to include the new classes and associations. All
tables must be in 3NF.

3. Assume that RMO will use a relational database, as
shown in Figure 12-10. Assume further that a new
catalog group located in Milan, Italy, will now cre-
ate and maintain the product catalog. To minimize
networking costs, the catalog group will have a
dedicated database server attached to its LAN.
Develop a plan to partition the RMO database.
Which tables should be replicated on the catalog
group’s local database server? Update Figure 12-18
to show the new distributed database architecture.

4. Visit the Web site of an online catalog vendor
similar to RMO (such as www.llbean.com) or an
online vendor of computers and related merchan-
dise (such as www.cdw.com). Browse the online

catalog and note the various types of information
contained there. Construct a list of complex data
types that would be needed to store all the online
catalog information.

5. This chapter described various situations that
emphasized the need for controls. In the first sce-
nario presented, a furniture store sells merchandise
on credit. Based on the descriptions of controls
given in this chapter, identify the various controls
that should be implemented in the system to ensure
that corrections to customer balances are made only
by someone with the correct authorization. In the
second scenario illustrating the need for controls, an
accounts payable clerk uses the system to write
checks to suppliers. Based on the information in this
chapter, what kinds of controls would you imple-
ment to ensure that checks are written only to valid
suppliers, that checks are written for the correct
amount, and that all payouts have the required
authorization? How would you design the controls
if different payment amounts required different
levels of authorization?

6. Look on the Web for an e-commerce site (such as
Amazon.com or eBay). What kinds of security and
controls are integrated into the system?

7. Examine the information system of a local business,
such as a fast-food restaurant, doctor’s office, video
store, grocery store, etc. Evaluate the screens (and
reports, if possible). What kind of integrity controls
are in place? What kinds of improvements would
you make?

8. Search the Web and find out what you can about
Pretty Good Privacy. What is it? How does it work?
Find what you can about a passphrase. What does it
mean? Start your research at www.pgpi.org.

Case Study

Computer Publishing, Inc.

In only a decade, Computer Publishing, Inc. (CPI) grew from a
small textbook publishing house into a large international
company with significant market share in traditional text-
books, electronic books, and distance education courseware.
CPI’s processes for developing books and courseware were
similar to those used by most other publishers, but those
processes had proven cumbersome and slow in an era of
rapid product cycles and multiple product formats.

Text and art were developed in a wide variety
of electronic formats, and conversions among those
formats were difficult and error-prone. Many editing steps
were performed with traditional paper-and-pencil methods.
Consistency errorswithin books andamongbooks and related

products were common. Developing or revising a book and all
its related products typically took a year or more.

CPI’s president initiated a strategic project to re-
engineer the way that CPI developed books and related
products. CPI formed a strategic partnership with Davis
Systems (DS) to develop software that would support the
re-engineered processes. DS had significant experience
developing software to support product development in
the chemical and pharmaceutical industries by using the
latest development tools and techniques, including object-
oriented software and relational databases. CPI expected
the new processes and software to reduce development
time and cost. Both companies expected to license the
software to other publishers within a few years.

(continued on page 406)

CHAPTER 12 ■ Databases, Controls, and Security 405

www.llbean.com
www.cdw.com
www.pgpi.org

A joint team specified the workflows and high-level
requirements for the software. The team developed plans
for a large database that would hold all book and course-
ware content through all stages of production. Authors,
editors, and other production staff would interact with the
database in a variety of ways, including traditional word-
processing programs and Web-based interfaces. When
required, format conversions would be handled seamlessly
and without error. All content creation and modification
would be electronic—no text or art would ever be created
or edited on paper, except as a printed book ready for sale.

Software would track and manage content through
every stage of production. Content common to multiple
products would be stored in the database only once.
Dependencies within and across products would be
tracked in the database. Software would ensure that any
content addition or change would be reflected in all
dependent content and products, regardless of the final
product form. For example, a sentence in Chapter 2 that
refers to a figure in Chapter 1 would be updated automat-
ically if the figure were renumbered. If a new figure were
added to a book, it would be added automatically to the

related courseware presentation slides. Related course-
ware and study material on the Web site would automati-
cally reflect changes, such as a new answer to an end-
of-chapter question.

1. Consider the contents of this textbook as a template
for CPI’s database content. Draw a class diagram that
represents the book and its key content elements.
Expand your diagram to include related product con-
tent, such as a set of PowerPoint slides, an electronic
book formatted as a Web site or PDF file, and a Web-
based test bank.

2. Develop a list of data types required to store the content
of the book, slides, and Web sites. Are the relational
DBMS data types listed in Figure 12-14 sufficient?

3. Authors and editors are often independent contrac-
tors, not publishing company employees. Consider
the implications of this fact for controls and security.
How would you enable authors and editors to interact
with the database? How would you protect database
content from hackers and other unauthorized
accesses?

RUNNING CASE STUDIES

Community Board of Realtors

In Chapter 4, you developed a domain model class dia-
gram. Using your previous solution or one provided to
you by your instructor, update your domain model
class diagram with any additional problem domain
classes, new associations, or additional attributes that
you have discovered as you worked through the previ-
ous chapters. Finalize this comprehensive domain
model and then turn it in as part of your solution.

Using this comprehensive domain model class
diagram, develop a relational database schema. In the
schema, identify the foreign keys that are required.

Also, identify a key attribute for each table. You may
need to add a key field if there isn’t an attribute that
could logically serve as the key. Remember that a can-
didate key for an association class is the combination of
the keys of the connect classes. However, it may make
sense to define a shorter, more concise key field.

Verify that each table is in first, second, and third
normal form. Discuss any discrepancies you had to fix
from your first solution. Discuss any tables that may
not be in third normal form and why you are leaving it
as not-normalized.

The Spring Breaks ‘R’ Us Travel Service

As with other social networking sites and systems,
users of the Spring Breaks ‘R’ Us social networking
system face such risks as identity theft, phishing
attacks, and viruses. Review the following information
related to social networking risks and security
published by the United States Computer Emergency
Readiness Team, including:

■ Socializing Securely: Using Social Networking
Services (www.us-cert.gov/reading_room/
safe_social_networking.pdf)

■ Cyber Security Tip ST06-003: Staying Safe on
Social Network Sites (www.us-cert.gov/cas/tips/
ST06-003.html)

(continued on page 407)

(continued from page 405)

406 PART 5 ■ Advanced Design and Deployment Concepts

www.us-cert.gov/reading_room/safe_social_networking.pdf
www.us-cert.gov/reading_room/safe_social_networking.pdf
www.us-cert.gov/cas/tips/ST06-003.html
www.us-cert.gov/cas/tips/ST06-003.html

■ Cyber Security Tip ST05-013: Guidelines for
Publishing Information Online (www.us-cert.gov/
cas/tips/ST05-013.html)

After reviewing this information, revisit the
questions for this case in Chapter 6 for the Social

Networking subsystem. Based on the contents of this
chapter and the information contained in the read-
ings, what specific controls and security measures
should be incorporated into the Social Networking
subsystem?

On the Spot Courier Services

In Chapter 4, you developed a domain model class dia-
gram. Using your previous solution or one provided to
you by your instructor, update your domain model class
diagram with any additional problem domain classes,
new associations, or additional attributes that you have
discovered as you worked toward your solutions in the
previous chapters. Finalize this comprehensive domain
model and then turn it in as part of your solution.

Using this comprehensive domain model class
diagram, develop a relational database schema. In the
schema, identify the foreign keys that are required.
Also, identify a key attribute for each table. You may
need to add a key field if there isn’t an attribute that
could logically serve as the key. Remember that a candi-
date key for an association class is the combination of the
keys of the connect classes. However, it may make sense
to define a shorter, more concise key field.

Verify that each table is in first, second, and third
normal form. Discuss any discrepancies you had to fix
from your first solution. Discuss any tables that aren’t

in third normal form and why you are leaving them as
not-normalized. (For example, in the United States,
city and state are functionally dependent on zip code,
but we leave all three fields in the same table. Why?)

In Chapter 6, you discussed hardware require-
ments, and in Chapter 10, you developed component
and deployment diagrams. Based on your work in
those chapters, take these steps:

1. For each user and each type of device, discuss
what security precautions and techniques should
be used to protect access to the device itself.

2. For each user and each type of device, discuss
what security precautions and techniques should
be used to protect access to the application pro-
grams, connect to the home system, and protect
the data being transmitted to the foreign devices.

3. Discuss any security precautions and techniques
you would recommend for the home office and the
network servers.

Sandia Medical Systems Real-Time Glucose Monitoring

Part 1
Review the original system description in Chapter 2, the
additional project information in Chapters 3, 4, and 8,
and the domain class diagram shown in Figure 12-26
to refamiliarize yourself with the proposed system.
Assume that the type attribute of the AlertCondition
class identifies one of three alert types:

1. Glucose levels that fall outside the specified range
for 15 minutes (three consecutive readings)

2. Glucose levels that fall outside the specified range
for 60 minutes (12 consecutive readings)

3. An average of glucose levels over a eight-hour
period that falls outside a specified range

The specified range for an AlertCondition object is
the set of values between and including lowerBound
and upperBound. AlertCondition objects also include

an effective time period specified by the attributes
startHour and endHour, which enables physicians
to set different alert parameters for sleeping and wak-
ing hours.

When an alert is triggered, an object of type Alert
is created and associated with an alertCondition
object. The dateTime attribute records when the
Alert object was created, and the value(s) attribute
record(s) the glucose levels (alert types 1 and 2) or
average level (alert type 3) that fell outside the speci-
fied range. Each Alert object is indirectly related to a
Patient object via the association between Alert
and AlertCondition and the association between
AlertCondition and Patient.

Develop a set of relational database tables based
on the domain class diagram. Identify all primary and
foreign keys, and ensure that the tables are in 3NF.

(continued from page 406)

(continued on page 408)

CHAPTER 12 ■ Databases, Controls, and Security 407

www.us-cert.gov/cas/tips/ST05-013.html
www.us-cert.gov/cas/tips/ST05-013.html

Part 2
Based on what you learned in this chapter about data-
bases, controls, and system security, review your
answers to the questions for this case in Chapter 6.
Assume that the patient’s cell phone and the

centralized servers are different nodes in a replicated
database architecture and are regularly synchronized.
What changes, if any, should be made to your answers
now that you have a deeper understanding of data-
bases, controls, security, and related design issues?

Further Resources

W. Steve Albrecht, Chad O. Albrecht, Conan
C. Albrecht, and Mark F. Zimbelman, Fraud
Examination, 4th edition, Cengage Learning,
2012.

Alfred Basta and Melissa Zgola, Database Security,
Cengage Learning, 2011.

Carlos Coronel, Steven Morris, and Peter Rob,
Database Systems: Design, Implementation, and

Management, 9th edition, Cengage Learning,
2010.

Michael E. Whitman and Herbert J. Mattord,
Principles of Information Security, 4th edition,
Cengage Learning, 2012.

(continued from page 407)

id
lastName
firstName

id
medicalRecordNumber
lastName
firstName
dateOfBirth
gender
race
height
weight

Patient

dateTime
level

GlucoseObservation

id
phoneNumber
operatingSystem
osVersion
applicationVersion

CellPhone

Physician

alertConditionID

type

startHour

endHour

upperBound

lowerBound

AlertCondition

dateTime

value(s)

Alert

serialNumber
manufacturer
dateOfManufacture
firmwareVersion

MonitoringDevice

1..1

0..*

0..*

0..*

0..*

0..*1..1

0..*1..1

1..1

1..1

1..1

FIGURE 12-26
Updated domain model class
diagram for Sandia RTGM
system

408 PART 5 ■ Advanced Design and Deployment Concepts

13
Making the System
Operational

Chapter Outline

■ Testing

■ Deployment Activities

■ Planning and Managing Implementation, Testing, and Deployment

■ Putting It All Together—RMO Revisited

Learning Object ives

After reading this chapter, you should be able to:

■ Describe implementation and deployment activities

■ Describe various types of software tests and explain how and why each is used

■ Explain the importance of configuration management, change management, and
source code control to the implementation, testing, and deployment of a system

■ List various approaches to data conversion and system deployment and describe
the advantages and disadvantages of each

■ Describe training and user support requirements for new and operational
systems

409

OPENING CASE

Tri-State Heating Oil: Juggling Priorities to Begin Operation

It was 8:30 on Monday morning, and Maria Grasso, Kim
Song, Dave Williams, and Rajiv Gupta were about to begin
the weekly project status meeting. Tri-State Heating Oil had
started developing a new scheduling system for customer
orders and service calls five months earlier. The target com-
pletion date was 10 weeks away, but the project was
behind schedule. Early project iterations had accomplished
far less than anticipated because key users had disagreed
on what new system requirements to include and the sys-
tem scope was larger than expected.

Maria began the meeting. “We’ve gained a day or two
since our last meeting due to better-than-expected unit
testing results,” she said. “All the methods developed
last week sailed through unit testing, so we won’t need
any time this week to fix errors in that code.”

Kim frowned. “I wouldn’t get too cocky just yet,”
she said. “All the nasty surprises in my last project came
during integration testing. We’re completing the user-
interface classes this week, so we should be able to start
integration testing with the business classes sometime
next week.”

Nodding enthusiastically, Dave said, “That’s good!
We have to finish testing those user-interface classes as
quickly as possible because we’re scheduled to start user
training in three weeks. I need that time to develop the
documentation and training materials and work out the
final training schedule with the users.”

Rajiv looked doubtful. “I’m not sure that we should be
trying to meet our original training schedule with so much
of the system still under development,” he said. “What if
integration testing shows major bugs that require more
time to fix? And what about the unfinished business and
database classes? Can we realistically start training with a
system that’s little more than a user interface with half a
system behind it?”

“But we have to start training in three weeks,” Dave
replied. “We contracted for a dozen temporary workers so
we could train our staff on the new system. Half of them

are scheduled to start in two weeks, and the rest two
weeks after that. It’s too late to renegotiate their starting
dates. We can extend the time they’ll be here, but delaying
their starting date means we’ll be paying for people we
aren’t using.”

Maria spoke up. “I think that Rajiv’s concerns are
valid,” she said. “It’s not realistic to start training in three
weeks with so little of the system completed and tested.
We’re at least five weeks behind schedule, and there’s no
way we’ll recapture more than four or five days of that
during the next few weeks. I’ve already looked into rear-
ranging some of the remaining coding to give priority to
the work most critical to user training. There are a few
batch processes that can be back-burnered for a while.
Kim, can you rearrange your testing plans to handle all
the interactive applications first?”

“I’ll have to go back to my office and take another look at
the dependencies among those programs,” Kim replied.
“Offhand, I’d say yes, but I need a few hours to make sure.”

“Okay,” Maria said. “Let’s proceed under the assump-
tion that we can rearrange coding and testing to complete a
usable system for training in five weeks. I’ll confirm that by
e-mail later today, as soon as Kim gets back to me. I’ll also
schedule a meeting with the CIO to deliver the bad news
about temporary staffing costs.”

After a few moments of silence, Rajiv asked, “So,
what else do we need to be thinking about?”

Well, let’s see,” Maria replied. “There’s hardware deliv-
ery and setup, operating system and DBMS installation,
importing data from the old database, the network upgrade,
and stress testing for the distributed database accesses.”

Rajiv smiled and said to Maria, “You must have been a
juggler in your youth, which would have been good prac-
tice for keeping all these project pieces up in the air. Does
management pay you by the ball?”

Maria chuckled. “I do think of myself as a juggler
sometimes. And if management paid me by the ball,
I could retire as soon as this project is finished!”

Overview
Developing any complex system is inherently difficult. For example, consider the
complexity of manufacturing automobiles. Tens of thousands of parts must be
fabricated or purchased. Laborers and machines must assemble those parts into
small subcomponents, such as dashboard instruments, wiring harnesses, and brake
assemblies, which are in turn assembled into larger subcomponents, such as instru-
ment clusters, engines, and transmissions, which in turn must be constructed, tested,
and passed on to subsequent assembly steps. The effort, timeliness, cost, and output
quality of each step depend on all the preceding steps.

Implementing and deploying an information system is similar in many ways; it
is a complex production and assembly process that must use resources efficiently,

410 PART 5 ■ Advanced Design and Deployment Concepts

minimize construction time, and maximize product quality. But unlike automobile
manufacturing, it isn’t done once and then used to build thousands of similar units.
Instead, implementation and deployment are unique to each project and must
match that project’s characteristics.

We have spent many chapters detailing the first four core processes of the
system development life cycle (SDLC). Those core processes are the primary
focus of this text, but additional processes and activities are needed to complete
a system and put it to regular use. The core processes and activities covered in
this chapter are summarized in Figure 13-1.

The fact that we are covering two core processes in a single chapter doesn’t
mean that they are simple or unimportant. Rather, they are complex processes
that you will learn about in detail by completing other courses and reading
other books as well as through on-the-job training and experience. Our purpose
in covering them in this chapter is to round out our discussion of the SDLC and
to show how all the core processes and activities relate to one another.

As you can see from Figure 13-1, program and testing are the primary
implementation activities. You will learn about programming in other courses
and from other textbooks, so we won’t discuss how software components are
constructed in this textbook. However, we will discuss testing activities in
detail because they are such an integral part of multiple core processes, includ-
ing project planning and monitoring, design, implementation, and deployment.

Testing
Testing activities are a key part of implementation and deployment activities,
although different kinds of tests are used in each core process. Testing is the
process of examining a component, subsystem, or system to determine its opera-
tional characteristics and whether it contains any defects. To conduct a test,
developers must have well-defined standards for functional and nonfunctional
requirements. From the requirements, test developers develop precise definitions
of expected operational characteristics and what constitutes a defect. The devel-
opers can test software by reviewing its construction and composition or by
designing and building the software, exercising its function, and examining the
results. If the results indicate a shortcoming or defect, developers cycle back
through earlier implementation or deployment activities until the shortcoming is
remedied or the defect is eliminated.

Test types, their related core processes, and the defects they detect and oper-
ational characteristics they measure are summarized in Figure 13-2. Each type
of testing is described in detail later in this section.

FIGURE 13-1 Activities of the implementation and deployment SDLC core processes

Deployment activities

Perform system and stress tests.

Perform user acceptance tests.

Convert existing data.

Build training materials and conduct training.

Configure and set up production environment.

Deploy the solution.

Implementation activities

Program the software.

Unit test the software.

Identify and build test cases.

Integrate and test components.

Core
processes

1 2 3 4 5 6

Identify problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy
solution.

Iterations

CHAPTER 13 ■ Making the System Operational 411

An important part of developing tests is specifying test cases and data. A
test case is a formal description of the following:

■ A starting state
■ One or more events to which the software must respond
■ The expected response or ending state

The starting and ending states and the events are represented by a set of test
data. For example, the starting state of a system may represent a particular set of
data, such as the existence of a particular customer and order for that customer.
The event may be represented by a set of input data items, such as a customer
account number and order number used to query order status. The expected
response may be a described behavior, such as the display of certain information,
or a specific state of stored data, such as a canceled order.

Preparing test cases and data is a tedious and time-consuming process. At
the component and method levels, every instruction must be executed at least
once. Ensuring that all instructions are executed during testing is a complex
problem. Fortunately, automated tools based on proven mathematical techni-
ques are available to generate a complete set of test cases. Many test cases repre-
senting normal and exceptional processing situations should be prepared for
each scenario.

Unit Testing
Unit testing is the process of testing individual methods, classes, or components
before they are integrated with other software. The goal of unit testing is to iden-
tify and fix as many errors as possible before modules are combined into larger
software units, such as programs, classes, and subsystems. Errors become much
more difficult and expensive to locate and fix when many units are combined.

Few units are designed to operate in isolation. Instead, groups of units are
designed to execute as an integrated whole. If a method is considered a unit,

Test type

Unit testing

Integration testing

Usability testing

Tested defects and operational
characteristics

Software component that doesn’t correctly

perform its function when tested in isolation—for

example, a component for calculating sales tax

that consistently computes sales tax incorrectly

for one or more localities

Software component that performs correctly in

isolation but incorrectly when tested in

combination with other components—for

example, order entry and shipping cost

calculation components that pass unit testing but

fail when tested together due to conversion

errors as data are passed from one component

to the other

System and stress testing

Core process

Implementation

Implementation

Implementation

Deployment System or subsystem that doesn’t correctly

perform its function or fails to meet a

nonfunctional requirement under normal

operating conditions—for example, an order

retrieval function that displays a result in two

seconds when tested in isolation with a dummy

database but requires 30 seconds when tested

with other functions using a live database

Software that works but fails to satisfy one or

more user requirements related to function or

ease of use—for example, a user-interface

component that forces a user to follow a

needlessly complex procedure to complete a

common and simple task

FIGURE 13-2
Test types and corresponding
operational characteristics
and defects

test case a formal description of a starting
state, one or more events to which the software
must respond, and the expected response or
ending state

test data a set of starting states and
events used to test a module, group of modules,
or entire system

unit test test of an individual method,
class, or component before it is integrated with
other software

412 PART 5 ■ Advanced Design and Deployment Concepts

that method may be called by messages sent from methods in one or more
classes and may, in turn, send messages to other methods in its own or other
classes. These relationships are easily seen in a sequence diagram, such as in
Figure 13-3, which duplicates Figure 11-13. For example, when the class
CartItem receives a createCartItem() message, it performs internal processing
and sends messages to six other methods—findPromo(), getPrice(), findProdItem(),
getDescription(), findInvItem(), and updateQty()—in three other classes:
PromoOffering, ProductItem, and InventoryItem.

If the createCartItem() method of CartItem is being tested in isolation, then
two types of testing methods are required. The first method type is called a
driver. A driver simulates the behavior of a method that sends a message to the

FIGURE 13-3 Sequence diagram for Create new order

:ProductItem

:CartHandler

aCrt:OnlineCart

aC:Customer

:CustomerDA

Customer
:PromoOfferingDA :ProductItemDA :InventoryItemDA

:PromoOffering :InventoryItem

description := getDesc ()

findProdItem (prodID)

price := getPrice ()

findPromo (promoID, prodID)

:OnlineCartDA

:CartItemDA

aCI:CartItem

addItemToCart

(promoNo, prodID,

size, color, qty)

aC := findCustomer (acctNo)

(description, price, extendedPrice)

(description, price, extendedPrice)
(description, price, extendedPrice)

saveCart (aCrt)

saveCartItem (aCI)

readPO ()

readInv ()

aCrt := createCart ()

[firstItem]createCart ()

(aCrt)

addItemToCart

(promoNo, prodID, size, color, qty)

readProd ()

aC := readCust (acctNo)

findInvltem (prodID, size, color)

status := updateQty (qty)

createCartItem

(promoNo, prodID, size, color, qty)

driver a method or class developed for unit
testing that simulates the behavior of a method
that sends a message to the method being
tested

CHAPTER 13 ■ Making the System Operational 413

method being tested—in this example, the call by an OnlineCart object to
createCartItem(). A driver module implements these functions:

■ Sets the value of input parameters
■ Calls the tested unit, passing it the input parameters
■ Accepts return parameters from the tested unit and prints them, displays

them, or tests their values against expected results and then prints or
displays the results

Figure 13-4 shows a simple driver module for testing createCartItem().
A more complex driver module might use test data consisting of hundreds or
thousands of test inputs and correct outputs stored in a file or database. The
driver would loop through the test inputs and repeatedly call createCartItem(),
check the return parameter against the expected value, and print or display
warnings of any discrepancy. Using a driver allows a subordinate method to be
tested before methods that call it have been written.

The second type of testing method used to perform unit tests is called a
stub. A stub simulates the behavior of a method that hasn’t yet been written. A
unit test of createCartItem() would require three stub methods: getPrice(),
getDescription(), and updateQty(). Stubs are relatively simple methods that usu-
ally have only a few executable statements. Each of the stubs used to test
createCartItem() can be implemented as a statement that simply returns a con-
stant, regardless of the parameters passed as input. Figure 13-5 shows sample
code for each of the three stub modules.

Integration Testing
An integration test evaluates the behavior of a group of methods, classes, or
components. The purpose of an integration test is to identify errors that weren’t
or couldn’t be detected by unit testing. Such errors may result from a number of
problems, including:

■ Interface incompatibility—For example, one method passes a parameter of
the wrong data type to another method.

main()
{
 // driver method to test CartItem::createCartItem()

 // declare input parameters and values

 int promoID = 23;
 int prodID = 1244;
 String size = “large”;
 String color = “red”;
 int quantity = 1;

 // perform test

 cartItem cartItem = new cartItem();
 cartItem.createcartItem(promoID,prodID,size,color,quantity);

 // display results

 System.out.println(“price=” + cartItem.getPrice());
 System.out.println(“description=” + cartItem.getDescription();
 System.out.println(“status=” + cartItem.getStatus());
} // end main()

FIGURE 13-4
Driver module to test createCartItem()

stub a method or class developed for unit
testing that simulates the behavior of a method
that hasn’t yet been written

integration test test of the behavior of
a group of methods, classes, or components

414 PART 5 ■ Advanced Design and Deployment Concepts

■ Parameter values—A method is passed or returns a value that was unex-
pected, such as a negative number for a price.

■ Run-time exceptions—A method generates an error, such as “out of mem-
ory” or “file already in use,” due to conflicting resource needs.

■ Unexpected state interactions—The states of two or more objects interact to
cause complex failures, as when an OnlineCart class method operates cor-
rectly for all possible Customer object states except one.

These four problems are some of the most common integration testing
errors, but there are many other possible errors and causes.

Once an integration error has been detected, the responsibility for incorrect
behavior must be traced to specific method(s). The person responsible for per-
forming the integration test is generally also responsible for identifying the
cause of the error. Once the error has been traced to a particular method, the
programmer who wrote the method is asked to rewrite it to correct the error.

Integration testing of object-oriented software is very complex. Because an
object-oriented program consists of a set of interacting objects that can be cre-
ated or destroyed during execution, there is no clear hierarchical structure. As a
result, object interactions and control flow are dynamic and complex.

Additional factors that complicate object-oriented integration testing include:

■ Methods can be (and usually are) called by many other methods, and the
calling methods may be distributed across many classes.

■ Classes may inherit methods and state variables from other classes.
■ The specific method to be called is dynamically determined at run time

based on the number and type of message parameters.
■ Objects can retain internal variable values (i.e., the object state) between

calls. The response to two identical calls may be different due to state
changes that result from the first call or occur between calls.

This combination of factors makes it difficult to determine an optimal testing
order and to predict the behavior of a group of interacting methods and objects.
Thus, developing and executing an integration testing plan for object-oriented
software is an extremely complex process. Specific methods and techniques for
dealing with that complexity are well beyond the scope of this textbook. See the

float getPrice()
{
 // stub method for CatalogProduct::getPrice()

 return(24.95);
} // end getPrice()

String getDescription()
{
 // stub method for Product::getDescription()

 return(“mens khaki slacks”);
} // end getDescription()

String updateQty(int decrement)
{
 // stub method for InventoryItem::updateQty()

 return(“OK”);
} // end updateQty()

FIGURE 13-5
Stub modules used by
createCartItem()

CHAPTER 13 ■ Making the System Operational 415

Further Resources section at the end of this chapter for object-oriented software
testing references.

Usability Testing
A usability test is a test to determine whether a method, class, subsystem, or
system meets user requirements. Because there are many types of requirements—
functional and nonfunctional—many types of usability tests are performed at
many different times.

The most common type of usability test evaluates functional requirements
and the quality of a user interface. Users interact with a portion of the system
to determine whether it functions as expected and whether the user interface is
easy to use. Such tests are conducted frequently, as user interfaces are developed
to provide rapid feedback to developers for improving the interface and correct-
ing any errors in the underlying software components.

System, Performance, and Stress Testing
A system test is an integration test of the behavior of an entire system or indepen-
dent subsystem. Integration testing is normally associated with the implementation
core process, and system testing is normally associated with the deployment core
process. The line separating integration testing from system testing is fuzzy, as is the
line between implementation and deployment activities. The important differences
are scope and timing. Integration tests are performed more frequently and on smal-
ler component groups. System tests are performed less frequently on entire systems
or subsystems.

For a system developed by using a traditional waterfall SDLC, system test-
ing is concentrated near the end of the project. In a typical iterative project,
some deployment activities, including system testing activities, are usually per-
formed at the end of each iteration. In essence, the system is implemented and
deployed incrementally.

System testing may also be performed more frequently. A build and smoke
test is a system test that is typically performed daily or several times per week.
The system is completely compiled and linked (built), and a battery of tests is
executed to see whether anything malfunctions in an obvious way (“smokes”).

Build and smoke tests are valuable because they provide rapid feedback on
significant integration problems. Any problem that occurs during a build and
smoke test must result from software modified or added since the previous test.
Daily testing ensures that errors are found quickly and that they can be easily
tracked to their sources. Less frequent testing provides rapidly diminishing bene-
fits because more software has changed and errors are more difficult to track to
their sources.

A performance test, also called a stress test, determines whether a system
or subsystem can meet such time-based performance criteria as response time or
throughput. Response time requirements specify desired or maximum allowable
time limits for software responses to queries and updates. Throughput require-
ments specify the desired or minimum number of queries and transactions that
must be processed per minute or hour.

Performance tests are complex because they can involve multiple programs,
subsystems, computer systems, and network infrastructure. They require a large
suite of test data to simulate system operation under normal or maximum load.
Diagnosing and correcting performance test failures are also complex. Bottlenecks
and underperforming components must first be identified. Corrective actions may
include any combination of the following:

■ Application software tuning or reimplementation
■ Hardware, system software, or network reconfiguration
■ Upgrade or replacement of underperforming components

usability test a test to determine whether
a method, class, subsystem, or system meets
user requirements

system test an integration test of an
entire system or independent subsystem

build and smoke test a system test
that is performed daily or several times a week

performance test or stress test an
integration and usability test that determines
whether a system or subsystem can meet
time-based performance criteria

response time the desired or maximum
allowable time limit for software response
to a query or update

throughput the desired or minimum
number of queries and transactions that must
be processed per minute or hour

416 PART 5 ■ Advanced Design and Deployment Concepts

User Acceptance Testing
A user acceptance test is a system test to determine whether the system fulfills
user requirements. Acceptance testing may be performed near the end of the
project or it may be broken down into a series of tests conducted at the end of
each iteration. Acceptance testing is a very formal activity in most development
projects. Details of acceptance tests are sometimes included in the request for
proposal (RFP) and procurement contract when a new system is built by or pur-
chased from an external party. Customer payments to the developers are often
tied to passing specific usability tests.

Deployment Activities
Once a new system has been developed and tested, it must be placed into opera-
tion. Deployment activities (see Figure 13-6) involve many conflicting constraints,
including cost, the need to maintain positive customer relations, the need to sup-
port employees, logistical complexity, and overall risk to the organization. User
acceptance and other test types were described in the previous section. Multiple
types of tests are often performed concurrently because later project iterations
typically include implementation and deployment activities. The following sections
provide additional details about deployment activities other than testing.

Converting and Initializing Data
An operational system requires a fully populated database to support ongoing
processing. For example, online order-entry and management functions of the
RMO CSMS rely on stored information about products, promotions, customers,
and previous orders. Developers must ensure that such information is present in
the database at the moment the subsystem becomes operational.

Data needed at system startup can be obtained from these sources:

■ Files or databases of a system being replaced
■ Manual records
■ Files or databases from other systems in the organization
■ User feedback during normal system operation

Reusing Existing Databases
Most new information systems replace or augment an existing manual or auto-
mated system. In the simplest form of data conversion, the old system’s database
is used directly by the new system with little or no change to the database struc-
ture. Reusing an existing database is fairly common because of the difficulty and

FIGURE 13-6 SDLC deployment activities

Deployment activities

Perform system and stress tests.

Perform user acceptance tests.

Convert existing data.

Build training materials and conduct training.

Configure and set up production environment.

Deploy the solution.

Core

processes
1 2 3 4 5 6

Identify problem and obtain
approval.

Plan and monitor the project.

Discover and understand details.

Design system components.

Build, test, and integrate system
components.

Complete system tests and deploy

solution.

Iterations

user acceptance test a system test
performed to determine whether the system
fulfills user requirements

CHAPTER 13 ■ Making the System Operational 417

expense of creating new databases from scratch, especially when a single data-
base often supports multiple information systems, as in today’s enterprise
resource planning (ERP) systems.

Although old databases are commonly reused in new or upgraded systems,
some changes to database content are usually required. Typical changes include
adding new tables, adding new attributes, and modifying existing tables or attri-
butes. Modern database management systems (DBMSs) usually allow database
administrators to modify the structure of a fully populated database. Such sim-
ple changes as adding new attributes or changing attribute types can be per-
formed entirely by the DBMS.

Reloading Databases
More complex changes to database structure may require creating an entirely new
database and copying and converting data from the old database to the new data-
base. Whenever possible, utility programs supplied with the DBMS are used to
copy and convert the data. In more complex conversions, implementation staff
must develop programs to perform the conversion and transfer some or all of
the data. The upper portion of Figure 13-7 shows both approaches. In either
case, the old database can be discarded once the conversion and transfer process
is complete.

The middle of Figure 13-7 shows a more complex approach that uses an
export utility, an import utility, and a temporary data store. This approach
might be employed when the source and target databases employ different data-
base technologies; no utility exists that can directly translate from one to the
other, but a “neutral” format exists that can serve as a bridge.

Data from paper records can be entered by using the same programs being
developed for the operational system. In that case, data-entry programs are

FIGURE 13-7 Complex data-conversion example

Old
database

Copy and
convert data

DBMS
import
utility

DBMS
import
utility

New
database

DBMS
export
utility

Temporary
data store

Manual
data entry

Paper
records

Related
subsystem
database

Optical
character

recognition
Temporary
data store

Copy and
convert data

418 PART 5 ■ Advanced Design and Deployment Concepts

usually developed and tested as early as possible. Initial data entry can be struc-
tured as a user training exercise. For greater efficiency, data from paper records
can also be scanned into an optical character recognition program and then
entered into the database by using custom-developed conversion programs or a
DBMS import utility.

In some cases, it may be possible to begin system operation with a partially
or completely empty database. For example, a customer order-entry system need
not have existing customer information loaded into the database. Customer
information could be added the first time a customer places an order, based on
a dialog between a telephone order-entry clerk and the customer. Adding data
as they are encountered reduces the complexity of data conversion but at the
expense of slower processing of initial transactions.

Training Users
Training two classes of users—end users and system operators—is an essential
part of any system deployment project. End users are people who use the system
from day to day to achieve the system’s business purpose. System operators are
people who perform administrative functions and routine maintenance to keep
the system operating. Figure 13-8 shows representative activities for each role.
In smaller systems, a single person may fill both roles.

The nature of training varies with the target audience. Training for end
users must emphasize hands-on use for specific business processes or functions,
such as order entry, inventory control, or accounting. If the users aren’t already
familiar with those procedures, training must include them. Widely varying skill
and experience levels call for at least some hands-on training, including practice
exercises, questions and answers, and one-on-one tutorials. Self-paced training
materials can fill some of this need, but complex systems also require some
face-to-face training. If there is a large number of end users, group training ses-
sions can be used, and a subset of well-qualified end users can be trained and
then pass their knowledge on to other users.

System operator training can be much less formal when the operators aren’t
end users. Experienced computer operators and administrators can learn most
or all they need to know by self-study. Thus, formal training sessions may not
be required. Also, the relatively small number of system operators makes one-
on-one training feasible, if it is necessary.

Determining the best time to begin formal training can be difficult. On
one hand, users can be trained as parts of the system are developed and
tested, which ensures that they hit the ground running. On the other hand,
starting early can be frustrating to users and trainers because the system may
not be stable or complete. End users can quickly become frustrated when
using a buggy, crash-prone system with features and interfaces that are con-
stantly changing.

In an ideal world, training doesn’t begin until the interfaces are finalized and a
test version has been installed and fully debugged. But the typical end-of-project

End-user activities System operator activities

Creating records or transactions

Modifying database contents

Generating reports

Querying database

Importing or exporting data

Starting or stopping the system

Querying system status

Backing up data to archive

Recovering data from archive

Installing or upgrading software

FIGURE 13-8
Typical activities of end users and
system operators

CHAPTER 13 ■ Making the System Operational 419

crunch makes that approach a luxury that is often sacrificed. Instead, training
materials are normally developed as soon as the interfaces are reasonably stable,
and end-user training begins as soon as possible thereafter. It is much easier to
provide training if system interfaces are completed in early project iterations.

Documentation and other training materials are usually developed before
formal user training begins. Documentation can be loosely classified into two types:

■ System documentation—descriptions of system requirements, architec-
ture, and construction details

■ User documentation—descriptions of how to interact with and use the
system

Each documentation type is targeted to a different purpose and audience.
The purpose of system documentation is to support development activities now
and in the future. User documentation is created during implementation. The
development team can’t create user documentation earlier because many details
of the user interface and system operation either haven’t yet been determined or
may change during development.

System Documentation
System documentation serves one primary purpose: providing information to
developers and other technical personnel who will build, maintain, and upgrade
the system. System documentation is generated throughout the SDLC by each
core process and many development activities. System documentation developed
during early project iterations guides activities in later iterations, and documen-
tation developed throughout the SDLC guides future system maintenance and
upgrades.

A system deployed for a customer is a collection of computing and network
hardware, system software, and application software. Once the system has been
developed, separate descriptions of it, such as written text and graphical models,
are redundant with the system itself. In the early days of computing, there were
few automated tools to support development of analysis and design models and
even less support for automating the process of generating application software
from those models. Developers in that era faced a recurring dilemma: how to
minimize the duplicate effort of updating models and application software while
ensuring that the system documentation was always “in sync” with the actual
system. In the rush to complete and deploy systems and to maintain and
upgrade them over time, system documentation updates were often neglected
and documentation was frequently lost. As a result, systems were often scrapped
“before their time” because it was cheaper to build a new system than to fix or
upgrade a poorly documented existing system.

Modern application development tools and methods have largely solved the
system documentation dilemma of earlier times. A modern integrated develop-
ment environment provides automated tools to support all SDLC core processes.
Requirements and design models, such as use case descriptions, class diagrams,
and sequence diagrams, are developed by using the development tool and stored
in a project library (see Figure 13-9). Changes to one model are automatically
synchronized with related models. Application software is often generated in
part or in its entirety directly from design models. When application software is
altered at a later date, the development tools can “reverse engineer” appropriate
changes to the models. Due to these capabilities, system documentation is
always complete and in sync with the deployed system, thus simplifying future
maintenance and upgrades.

User Documentation
User documentation provides ongoing support for end users of the system. It
primarily describes routine operation of the system, including such functions as

system documentation descriptions
of system requirements, architecture, and
construction details, as used by maintenance
personnel and future developers

user documentation descriptions of
how to interact with and use the system, as
used by end users and system operators

420 PART 5 ■ Advanced Design and Deployment Concepts

data entry, output generation, and periodic maintenance. Topics typically cov-
ered include:

■ Software startup and shutdown
■ Keystroke, mouse, or command sequences required to perform specific

functions
■ Program functions required to implement specific business procedures

(e.g., the steps followed to enter a new customer order)
■ Common errors and ways to correct them

For ease of use, user documentation typically includes a table of contents, a
general description of the purpose and function of the program or system, a
glossary, and an index.

User documentation for modern systems is almost always electronic and is
usually an integral part of the application. Most modern operating systems pro-
vide standard facilities to support embedded documentation. Figure 13-10
shows electronic user documentation of a typical Windows application. The
table of contents can be displayed by clicking the book-shaped icon in the top
toolbar, and the user can search for specific words or phrases by using the
search tool. The center portion of the display shows individual pages of user
documentation. The sample page includes embedded glossary definition hyper-
links (in green) and hyperlinks to other documentation pages (in blue).

Knowledge of how to use a system is as important an asset as the system
itself. After initial training is completed, that practical knowledge is stored in
the minds of end users. But experience such as that is difficult to maintain or
effectively transfer to other users. Employee turnover, reassignment, and other
factors make direct person-to-person transfer of operational knowledge difficult
and uncertain. In contrast, written or electronic documentation is easier to
access and far more permanent.

Developing good user documentation requires special skills and considerable
time and resources. Writing clearly and concisely, developing effective presenta-
tion graphics, organizing information for easy learning and access, and commu-
nicating effectively with a nontechnical audience are skills for which there is
high demand and limited supply. Development takes time, and high-quality
results are achieved only with thorough review and testing. Unfortunately,

FIGURE 13-9 System documentation stored within Microsoft Visual Studio

CHAPTER 13 ■ Making the System Operational 421

preparing user documentation is often left to technicians lacking in one or more
necessary skills. Also, preparation time, review, and testing are often short-
changed because of schedule overruns and the last-minute rush to tie up all the
loose ends of implementation.

Configuring the Production Environment
Modern applications are built from software components based on interaction
standards, such as Common Object Request Broker Architecture (CORBA),
Simple Object Access Protocol (SOAP), and Java Platform Enterprise Edition
(Java EE). Each standard defines specific ways in which components locate and
communicate with one another. Each standard also defines a set of supporting
system software to provide needed services, such as maintaining component
directories, enforcing security requirements, and encoding and decoding mes-
sages across networks and other transport protocols. The exact system software,
its hardware, and its configuration requirements vary substantially among the
component interaction standards.

Figure 13-11 shows a typical support infrastructure for an application
deployed using Microsoft .NET, a variant of SOAP. Application software com-
ponents written in such programming languages as Visual Basic and C# are
stored on one or more application servers. Other required services include a
Web server for browser-based interfaces, a database server to manage the data-
base, an Active Directory server to authenticate users and authorize access to
information and software resources, a router and firewall, and a server to

FIGURE 13-10 Sample Windows Help and Support display

422 PART 5 ■ Advanced Design and Deployment Concepts

operate such low-level Internet services as domain naming (DNS) and Internet
address allocation (DHCP).

Unless it already exists, all this hardware and system software infrastructure
must be acquired, installed, and configured before application software can be
installed and tested. In most cases, some or all of the infrastructure will already
exist—to support existing information systems. In that case, developers work
closely with personnel who administer the existing infrastructure to plan the
support for the new system. In either case, this deployment activity typically
starts early in the project so software components can be developed, tested, and
deployed as they are developed in later project iterations.

Planning and Managing Implementation,
Testing, and Deployment
The previous sections have discussed the implementation, testing, and deploy-
ment activities in isolation. In this section, we concentrate on issues that impact
all those activities as well as other core processes, including project planning
and monitoring, analysis, and design. In an iterative development project, activi-
ties from all core processes are integrated into each iteration and the system is
analyzed, designed, implemented, and deployed incrementally. But how does the
project manager decide which portions of the system will be worked on in early
iterations and which in later iterations? And how does he or she manage the
complexity of so many models, components, and tests?

Some of these issues were partly addressed in earlier chapters. But now that
you understand implementation, testing, and deployment activities in depth, you
can see that there are many interdependencies that must be accounted for. These
interdependencies must be fully identified and considered when developing a
workable iteration plan. Furthermore, automated tools must be utilized to

FIGURE 13-11 Infrastructure and clients of a typical .NET application

Router and
Firewall

Internet Internal network

DNS, DHCP, and
Active Directory servers

Web/application
servers

Database
server

Additional or redundant
servers in the cloud

CHAPTER 13 ■ Making the System Operational 423

manage each part of the development project and to ensure maximal coordina-
tion across iterations, core processes, and activities.

Development Order
One of the most basic decisions to be made about developing a system is the
order in which software components will be built or acquired, tested, and
deployed. Choosing which portions of the system to implement in which itera-
tions is difficult, and developers must consider many factors, only some of
which arise from the software requirements. Some of the other factors discussed
in earlier chapters include the need to validate requirements and design decisions
and the need to minimize project risk by resolving technical and other risks as
early as possible.

A development order can be based directly on the structure of the system
itself and its related issues, such as use cases, testing, and efficient use of devel-
opment staff. Several orders are possible, including:

■ Input, process, output
■ Top-down
■ Bottom-up

Each project must adapt one or a combination of these approaches to spe-
cific project requirements and constraints.

Input, Process, Output Development Order
The input, process, output (IPO) development order is based on data flow
through a system or program. Programs or modules that obtain external input
are developed first. Programs or modules that process the input (i.e., transform
it into output) are developed next. Programs or modules that produce output
are developed last. The key issue to analyze is dependency—that is, which clas-
ses and methods capture or generate data that are needed by other classes or
methods? Dependency information is documented in package diagrams and
may also be documented in a class diagram. Thus, either or both diagram types
can guide implementation order decisions.

For example, the package diagram in Figure 13-12 shows that the Customer
account and Marketing subsystems don’t depend on any of the other subsys-
tems. The Sales subsystem depends on the Customer account and Marketing
subsystems, and the Order fulfillment and Reporting subsystems depend on the
Sales subsystem.

Data dependency among the packages (subsystems) implies data dependency
among their embedded classes. Thus, the classes CustomerHandler, Customer,
Address, Account, FamilyLink, Message, Suggestion, CustPartnerCredit,
PromoPartner, Promotion, PromoOffering, ProductItem, and InventoryItem
have no data dependency on the remaining RMO classes. Under the IPO devel-
opment order, those three classes are implemented first.

The chief advantage of the IPO development order is that it simplifies test-
ing. Because input programs and modules are developed first, they can be used
to enter test data for process and output programs and modules. The IPO devel-
opment order is also advantageous because important user interfaces (e.g., data-
entry routines) are developed early. User interfaces are more likely to require
change during development than during other portions of the system, so early
development allows for early testing and user evaluation. If changes are needed,
there is still plenty of time to make them. Early development of user interfaces
also provides a head start for related activities, such as training users and writ-
ing documentation.

A disadvantage of the IPO development order is the late implementation of
outputs. Output programs are useful for testing process-oriented modules and
programs; analysts can find errors in processing by carefully examining printed

input, process, output (IPO)
development order a development
order that implements input modules first,
process modules next, and output modules last

424 PART 5 ■ Advanced Design and Deployment Concepts

reports or displayed outputs. IPO development defers such testing until late in
the development phase. However, analysts can usually generate alternate test
outputs by using the query-processing or report-writing capabilities of a data-
base management system (DBMS).

Top-Down and Bottom-Up Development Order
The terms top-down and bottom-up have their roots in traditional structured
design and structured programming. A traditional structured design decomposes
software into a series of modules or functions, which are hierarchically related
to one another. As a visual analogy, consider a typical organization chart with
the president or CEO at the top. In structured design, a single module (the presi-
dent or CEO) controls the entire software program. Modules at the bottom per-
form low-level specialized tasks when directed to do so by a module at the next
higher level. Top-down development begins with the CEO and works down-
ward. Bottom-up development begins with the detailed modules at the lowest
level and works upward to the CEO.

Top-down and bottom-up program development can also be applied to
object-oriented designs and programs, although a visual analogy isn’t obvious
with object-oriented diagrams. The key issue is method dependency—that is,
which methods call which other methods. Within an object-oriented subsystem
or class, method dependency can be examined in terms of navigation visibility,
as discussed in Chapters 10 and 11.

FIGURE 13-12 Package diagram for the four RMO subsystems

SearchItemWindow

AddItemWindow

AddAccessWindow

CustLoginWindow

Sales Subsystem

CartHandler

OnlineCart

CartItem

ReturnItem

Sale

SaleItem

AccessoryPackage

SaleTxn

Data Access Layer

PromoOfferingDA

ProductItemDA

InventoryItemDA

CustomerDA

OnlineCartDA

CartItemDA

ViewAccessWinodw

DisplayItem+AccessWindow

DisiplayItemWindow

Reporting Subsystem

Customer Account Subsystem

CustomerHandler

Customer

Address

FamilyLink

Message

Suggestion

Account CustPartnerCredit

Order Fulfillment Subsystem

Shipment Shipper

View Layer

Domain Layer

ProductItem

Inventory Item

PromoPartner

Promotion

PromoOffering

Marketing Subsystem

top-down development a development
order that implements top-level modules first

bottom-up development a develop-
ment order that implements low-level detailed
modules first

CHAPTER 13 ■ Making the System Operational 425

For example, consider the three-layer design of part of the RMO Order-
entry subsystem shown in Figure 13-13. The arrows connecting packages and
classes show navigation visibility requirements. Methods in the view (user-
interface) layer call methods in the domain layer, which in turn call methods in
the data access layer. Top-down implementation would implement the view
layer classes and methods first, the domain layer classes and methods next, and
the data access layer classes and methods last. Bottom-up implementation
would reverse the top-down implementation order.

Method dependency is also documented in a sequence diagram. For exam-
ple, in Figure 13-3, method dependency is documented in the left-to-right flow
of messages among objects. Rotating the figure 90 degrees clockwise creates a
top-down and bottom-up visual analogy similar to an organizational chart.
Top-down development would proceed through CartHandler, Customer,
CustomerDA, OnlineCart, OnlineCartDA, CartItem, CartItemDA, and the set
of classes: PromoOffering, PromoOfferingDA, ProductItem, ProductItemDA,
InventoryItem, and InventoryItemDA. Bottom-up development would reverse
this order, starting with InventoryItem and InventoryItemDA and ending with
CartHandler.

The primary advantage of top-down development is that there is always a
working version of a program. For example, top-down development in Figure 13-3
would begin with a partial or complete version of the CartHandler class and

SearchItemWindow

AddItemWindow

AddAccessWindow

CustLoginWindow

View Layer

Domain Layer

CartHandler

OnlineCart

CartItem

PromoOffering

CustomerDA

OnlineCartDA

CartItemDA

PromoOfferingDA

ProductItemDA

InventoryItemDA

CustomerHandler

Customer

Address

InventoryItem

Account

ProductItem

ViewAccessWindow

DisplayItem+AccessWindow

DisiplayItemWindow

Data Access Layer

FIGURE 13-13
Package diagram for a three-layer
object-oriented design

426 PART 5 ■ Advanced Design and Deployment Concepts

dummy (or stub) versions of the Customer and OnlineCart classes. This set of clas-
ses forms a complete program that can be built, deployed, and executed, although
at this point, it wouldn’t do very much when executed. As each method or class is
implemented, stubs for the methods or classes on the next lower level are added. At
every stage of development, the program can be executed and tested, and its behav-
ior becomes more complex and realistic as development proceeds.

The primary disadvantage of top-down development order is that it doesn’t
use programming personnel very efficiently at the beginning of software devel-
opment. Development has to proceed through two or three levels before a signif-
icant number of classes and methods can be developed simultaneously. In
contrast, bottom-up development enables many programmers to be put to work
immediately on classes that support a wide variety of use cases. Unfortunately,
bottom-up development also requires writing a large number of driver methods
to test bottom-level classes and methods, which adds additional complexity to
the implementation and testing process. Also, the entire system isn’t assembled
until the topmost classes are written. Thus, testing for individual use cases and
integration testing are delayed.

Other Development Order Considerations
IPO, top-down, and bottom-up development are only starting points for creat-
ing implementation and iteration plans. Other factors that must be considered
include use case–driven development, user feedback, training, documentation,
and testing. Use cases deserve special attention in determining development
order because they are one of the primary bases for dividing a development
project into iterations.

In most projects, developers choose a set of related use cases for a single
iteration and complete analysis, design, implementation, and deployment activi-
ties. Developers choose which use cases to focus on first based on such factors
as minimizing project risk, efficiently using nontechnical staff, or deploying
some parts of the system earlier than others. For example, use cases with uncer-
tain requirements or high technical risks are typically addressed in early itera-
tions. Addressing uncertain requirements requires usability and other testing by
nontechnical development staff, and those staff members may only be available
at certain times in the project.

User feedback, training, and documentation all depend heavily on the user
interfaces of the system. Early implementation of user interfaces enables user train-
ing and the development of user documentation to begin early in the development
process. It also gathers early feedback on the quality and usability of the interface.
Note the important role that this issue played in the opening case of this chapter.

Testing is also an important consideration when determining development
order. As individual software components are constructed, they must be tested.
Programmers must find and correct errors as soon as possible because they
become much harder to find and more expensive to fix as components are inte-
grated into larger units. It is important to identify portions of the software that
are susceptible to errors and to identify portions of the software where errors
can pose serious problems that affect the system as a whole. These portions of
the software must be built and tested early, regardless of where they fit within
the basic approaches of IPO, top-down, or bottom-up development.

Source Code Control
Development teams need tools to help coordinate their programming tasks. A
source code control system (SCCS) is an automated tool for tracking source
code files and controlling changes to those files. An SCCS stores project source
code files in a repository, and it acts the way a librarian would—that is, imple-
ments check-in and checkout procedures, tracks which programmer has which
files, and ensures that only authorized users have access to the repository.

source code control system
(SCCS) an automated tool for tracking
source code files and controlling changes to
those files

CHAPTER 13 ■ Making the System Operational 427

A programmer checks out a file in read-only mode when he or she wants to
examine the code without making changes (e.g., to examine a module’s inter-
faces to other modules). When a programmer needs to make changes to a file,
he or she checks out the file in read/write mode. The SCCS allows only one pro-
grammer to check out a file in read/write mode. The file must be checked back
in before another programmer can check it out in read/write mode.

Figure 13-14 shows the source code control display of Microsoft Visual
Studio. Various source code files from the RMO CSS are shown in the display.
Some files are currently checked out by programmers. For each file checked out
in read/write mode, the program lists the programmer who checked it out, the
date and time of checkout, and whether the copy currently stored in the central
repository is the most current (latest) version.

An SCCS prevents multiple programmers from updating the same file at the
same time, thus preventing inconsistent changes to the source code. Source code
control is an absolute necessity when programs are developed by multiple pro-
grammers. It prevents inconsistent changes and automates coordination among
programmers and teams. The repository also serves as a common facility for
backup and recovery operations.

Packaging, Installing, and Deploying Components
As with the other disciplines discussed in this chapter, deployment activities are
highly interdependent with activities of the other disciplines. In short, a system
or subsystem can’t be deployed until it has been implemented and tested. If a
system or subsystem is large and complex, it is typically deployed in multiple
stages or versions, thus necessitating some formal method of configuration and
change management.

FIGURE 13-14 Project files managed by a source code control system

428 PART 5 ■ Advanced Design and Deployment Concepts

Important issues to consider when planning deployment include:

■ Incurring costs of operating both systems in parallel
■ Detecting and correcting errors in the new system
■ Potentially disrupting the company and its IS operations
■ Training personnel and familiarizing customers with new procedures

Different approaches to deployment represent different trade-offs among cost,
complexity, and risk. The most commonly used deployment approaches are:

■ Direct deployment
■ Parallel deployment
■ Phased deployment

Each approach has different strengths and weaknesses, and no one approach
is best for all systems. Each approach is discussed in detail here.

Direct Deployment
In a direct deployment, the new system is installed and quickly made opera-
tional, and any overlapping systems are then turned off. Direct deployment is
also sometimes called immediate cutover. Both systems are concurrently oper-
ated for only a brief time (typically a few days or weeks) while the new system is
being installed and tested. Figure 13-15 shows a timeline for direct deployment.

The primary advantage of direct deployment is its simplicity. Because the old
and new systems aren’t operated in parallel, there are fewer logistical issues to
manage and fewer resources required. The primary disadvantage of direct deploy-
ment is its risk. Because older systems aren’t operated in parallel, there is no
backup in the event that the new system fails. The magnitude of the risk depends
on the nature of the system, the cost of workarounds in the event of a system fail-
ure, and the cost of system unavailability or less-than-optimal system function.

Parallel Deployment
In a parallel deployment, the old and new systems are operated for an
extended period of time (typically weeks or months). Figure 13-16 illustrates
the timeline for parallel deployment. Ideally, the old system continues to operate
until the new system has been thoroughly tested and determined to be error-free
and ready to operate independently. As a practical matter, the time allocated for
parallel operation is often determined in advance and limited to minimize the
cost of dual operation.

The primary advantage of parallel deployment is relatively low operational
risk. If both systems are operated completely (i.e., using all data and exercising
all functions), the old system functions as a backup for the new system. Any
failure in the new system can be mitigated by relying on the old system.

New system
deployed and

configured
Old system
terminated

Time

Old system in operation

New system in operation

FIGURE 13-15
Direct deployment and cutover

direct deployment or immediate
cutover a deployment method that installs
a new system, quickly makes it operational, and
immediately turns off any overlapping systems

parallel deployment a deployment
method that operates the old and the new
systems for an extended time period

CHAPTER 13 ■ Making the System Operational 429

The primary disadvantage of parallel deployment is cost. During the period
of parallel operation, the organization pays to operate both systems. Extra costs
associated with operating two systems in parallel include:

■ Hiring temporary personnel or temporarily reassigning existing personnel
■ Acquiring additional computing and network capacity
■ Increasing managerial and logistical complexity

Parallel operation is generally best when the consequences of a system failure
are severe. Parallel operation substantially reduces the risk of a system failure
through redundant operation. The risk reduction is especially important for such
“mission critical” applications as customer service, production control, basic
accounting functions, and most forms of online transaction processing.

Full parallel operation may be impractical for any number of reasons, including:

■ Inputs to one system may be unusable by the other, and it may not be pos-
sible to use both types of inputs.

■ The new system may use the same equipment as the old system (e.g., com-
puters, I/O devices, and networks), and capacity may be insufficient to
operate both systems.

■ Staffing levels may be insufficient to operate or manage both systems at the
same time.

When full parallel operation isn’t possible or feasible, a partial parallel opera-
tion may be employed instead. Possible modes of partial parallel operation include:

■ Processing only a subset of input data in one of the two systems. The subset
could be determined by transaction type, geography, or sampling (e.g.,
every 10th transaction).

■ Performing only a subset of processing functions (e.g., updating account
history but not printing monthly bills)

■ Performing a combination of data and processing function subsets

Partial parallel operation always entails the risk that significant errors or pro-
blems will go undetected. For example, parallel operation with partial input
increases the risk that errors associated with untested inputs won’t be discovered.

Phased Deployment
In a phased deployment, the system is deployed in a series of steps or phases.
Each phase adds components or functions to the operational system. During
each phase, the system is tested to ensure that it is ready for the next phase.
Phased deployment can be combined with parallel deployment, particularly
when the new system will take over the operation of multiple existing systems.

Deployed and
configured

Parallel operation
and testing

Time

Old system in operation

New system in operation

FIGURE 13-16
Parallel deployment and operation

phased deployment a deployment
method that installs a new system and makes
it operational in a series of steps or phases

430 PART 5 ■ Advanced Design and Deployment Concepts

Figure 13-17 shows a phased deployment with direct and parallel deploy-
ment of individual phases. The new system replaces two existing systems. The
deployment is divided into three phases. The first phase is a direct replacement
of one of the existing systems. The second and third phases are different parts
of a parallel deployment that replace the other existing system.

The primary advantage of phased deployment is reduced risk because fail-
ure of a single phase is less problematic than failure of an entire system. The pri-
mary disadvantage of phased deployment is increased complexity. Dividing the
deployment into phases creates more activities and milestones, thus making the
entire process more complex. However, each phase contains a smaller and more
manageable set of activities. If the entire system is simply too big or complex to
install at one time, the reduced risks of phased deployment outweigh the
increased complexity inherent in managing and coordinating multiple phases.

Change and Version Control
Though not formal activities of the implementation or deployment core pro-
cesses, change and version control are key parts of managing software develop-
ment, testing, and deployment. Medium- and large-scale systems are complex
and constantly changing. Changes occur rapidly during implementation and
more slowly during deployment and after the system is in use. System complex-
ity and rapid change create a host of management problems, particularly for
testing and postdeployment support.

FIGURE 13-17 Phased deployment with direct cutover and parallel operation

Phase 2
deployed

Phase 1
deployed

Phase 3
deployed

Phase 1
begins
operation

Phase 3 parallel
operation and testing

Phase 2 parallel
operation and testing

New system phase 1 in operation

New system phase 2 in operation

New system phase 3 in operation

Old system A in operation

Old system B in operation

CHAPTER 13 ■ Making the System Operational 431

Change and version control tools and processes handle the complexity asso-
ciated with testing and supporting a system through multiple versions. Tools
and processes are typically incorporated into implementation activities from the
beginning and continue throughout the life of a system. Most organizations use
a common set of tools and procedures for all their systems.

Versioning
Complex systems are developed, installed, and maintained in a series of versions
to simplify testing, deployment, and support. It isn’t unusual to have multiple
versions of a system deployed to end users and yet more versions in different
stages of development. A system version created during development is called a
test version. A test version contains a well-defined set of features and represents
a concrete step toward final completion of the system. Test versions provide a
static system snapshot and a checkpoint to evaluate the project’s progress.

An alpha version is a test version that is incomplete but ready for some
level of rigorous integration or usability testing. Multiple alpha versions may be
built depending on the size and complexity of the system. The lifetime of an
alpha version is typically short—days or weeks.

A beta version is a test version that is stable enough to be tested by end
users over an extended period of time. A beta version is produced after one or
more alpha versions have been tested and known problems have been corrected.
End users test beta versions by using them to do real work. Thus, beta versions
must be more complete and less prone to disastrous failures than alpha versions.
Beta versions are typically tested over a period of weeks or months.

A system version created for long-term release to users is called a production
version, release version, or production release. A production version is
considered a final product, although software systems are rarely “finished” in
the usual sense of that term. Minor production releases (sometimes called
maintenance releases) provide bug fixes and small changes to existing features.
Major production releases add significant new functionality and may be the result
of rewriting an older release from the ground up.

Keeping track of versions is complex. Each version needs to be uniquely
identified for developers, testers, and users. In applications designed to run
under Windows, users typically view the version information by choosing the
About item from the standard Help menu (see Figure 13-18). Users seeking
support or reporting errors in a beta or production version use this feature to
report the system version to testers or support personnel.

alpha version a test version that is
incomplete but ready for some level of rigorous
integration or usability testing

beta version a test version that is stable
enough to be tested by end users over an
extended period of time

production release, release version,
or production release a system version
that is formally distributed to users or made
operational for long-term use

maintenance release a system update
that provides bug fixes and small changes to
existing features

FIGURE 13-18
About box of a typical Windows
application

432 PART 5 ■ Advanced Design and Deployment Concepts

Controlling multiple versions of the same system requires sophisticated version
control software, which is often built into development tools or can be obtained
through a separate source code and version control system, as described later in this
chapter. Programmers and support personnel can extract the current version or any
previous version for execution, testing, or modification. Modifications are saved
under a new version number to protect the accuracy of the historical snapshot.

Beta and production versions must be stored as long as they are installed on
any servers or user machines. Stored versions are used to evaluate future bug
reports. For example, when a user reports a bug in version 1.0, support person-
nel extract that release from the archive and attempt to replicate the user’s error.
Feedback provided to the user is specific to version 1.0, even if the most recent
production release is a higher-numbered version.

Submitting Error Reports and Change Requests
To manage the risks associated with change, most organizations adopt formal
control procedures for all systems under development and in operation. Formal con-
trols are designed to ensure that potential changes are adequately described, consid-
ered, and planned before being implemented and deployed. Typical change control
procedures include these:

■ Standard reporting methods
■ Review of requests by a project manager or change control committee
■ For operational systems, extensive planning for design and implementation

Figure 13-19 shows a sample error (bug) report that has been completed by
a tester or system developer. In this case, error reporting is integrated into the

FIGURE 13-19 Sample error report in Microsoft Visual Studio

CHAPTER 13 ■ Making the System Operational 433

application development tool and source code control system, which enables the
project manager to centrally manage all reports, assign reports to specific devel-
opers, and track each report to its resolution.

Similar tools can be used to report and manage errors and requests for new
features in operational systems. In the case of new features, the request is usually
submitted to a change control committee that reviews the change request to assess
the impact on existing computer hardware and software, system performance and
availability, security, and operating budget. Approved changes are added to the list
of pending changes for budgeting, scheduling, planning, and implementation.

Implementing a Change
Change implementation follows a miniature version of the SDLC. Most of the
SDLC activities are performed, although they may be reduced in scope or some-
times completely eliminated. In essence, a change for a maintenance release is an
incremental development project in which the user and technical requirements
are fully known in advance. Analysis activities are typically skimmed or
skipped, design activities are substantially reduced in scope, and the entire proj-
ect is typically completed in one or two short iterations.

Planning for a change includes these activities:

■ Identify what parts of the system must be changed.
■ Secure resources (such as personnel) to implement the change.
■ Schedule design and implementation activities.
■ Develop test criteria and a testing plan for the changed system.

Whenever possible, changes are implemented and tested on a copy of the
operational system. The production system is the version of the system used
day to day. The test system is a copy of the production system that is modi-
fied to test changes. The test system may be developed and tested on separate
hardware or on a redundant system. The test system becomes the operational
system only after complete and successful testing.

Putting It All Together—RMO Revisited
In a medium-sized or large-scale development project, managers usually feel
overwhelmed by the sheer number of activities to be performed, their interde-
pendencies, and the risks involved. In this section, we give you a glimpse of the
interplay among those issues by showing how Barbara Halifax’s team developed
an iteration plan for RMO’s Customer Support System (CSS). But keep in mind
that no single example can adequately prepare you to tackle iteration planning
for a complex project. That is why iteration planning and other project planning
tasks are typically performed by developers with years of experience.

Before reading the rest of this section, you may want to review earlier
descriptions of the RMO case in Chapters 2, 3, 4, 6, and 9. Some basic para-
meters for the project are already described, including subsystem boundaries,
project length, and number of iterations.

Chapter 9 describes Barbara’s early planning decisions. In this section, she
expands on those decisions, makes some changes to her earlier decisions, makes
additional key decisions, and develops the revised iteration plan shown in
Figure 13-20. The sections that follow describe key issues and decisions that
underlie that plan.

Upgrade or Replace?
Upgrading the current CSS “in place” was ruled out early in project planning
for these reasons:

■ The current infrastructure is near capacity.
■ RMO expects to save money by having an external vendor host the CSMS.

production system the version of the
system used from day to day

test system a copy of the production
system that is modified to test changes

434 PART 5 ■ Advanced Design and Deployment Concepts

■ Existing CSS programs and Web interfaces are a hodgepodge developed
over 15 years.

■ Current system software is several versions out of date.
■ Infrastructure that supports the current CSS can be repurposed to expand

SCM capacity.

In short, it would be too complex to upgrade the current CSS without dis-
rupting operations, and the risks of upgrading old infrastructure and application
software are simply too great. By building and deploying an entirely new

FIGURE 13-20 Revised CSMS iteration plan

Iteration

1

2

3

Description

Define business models and development/deployment environment. Define essential use cases and

rough class diagram. Storyboard sales processing. Finalize deployment environment. Select and

acquire network components, system software, hardware, and development tools. Create a CSS

database copy with minimal data content as a starting point for CSMS database. Construct a simple

prototype for adding a customer order (no database updates) and perform usability testing.

Define class, use case, sequence diagrams, and programs, concentrating on the key use cases

(Search for item, Fill shopping cart, Check out shopping cart, Look up customer, and Create customer
account). Deploy infrastructure components, including operating systems, Web/application servers,

and DBMS by the middle of the iteration. Update database schema based on newly defined or revised

classes and associations. Perform usability, unit, and integration testing to validate database design,

customer/sales function set, and user interfaces.

Loop through iteration 2 use cases again and make all changes determined at the end of the previous

iteration. Expand requirements and design to cover additional sales use cases and essential customer

account and order-fulfillment use cases. Perform usability, unit, and integration testing.

4

5

Loop through iteration 3 use cases again and make all changes determined at the end of the previous

iteration. Expand requirements and design to cover remaining Marketing subsystem use cases for

products and promotions. Develop customer-oriented online help for all functions implemented in

previous iterations. Prepare training materials and conduct training for phone and retail stores sales

personnel. Finalize the new database and prepare it for data migration. Develop data migration

(import) procedures. Test and refine data migration procedures by importing all data from the CSS

database.

Loop through iteration 4 use cases again and make all changes determined at the end of the previous

iteration. Continue training for phone and retail stores sales personnel. Conduct usability tests with a

large number of actual or simulated customers. Make any needed changes to user interfaces,

including online help. Conduct performance and stress testing and make any needed changes.

Create a copy of the CSMS deployment environment at the Park City data center for use as a test

system for version 2.0 development. Conduct use acceptance testing. Import all CSS database

changes since the last import. Place version 1.0 into production.

6

7

Monitor system performance and user comments. Develop a change list and classify them as “ASAP”

or “version 2.0.” Implement ASAP changes. Expand requirements and design to cover essential use

cases from the Reporting subsystem and those related to social networking. Migrate database

updates from CSMS to CSS database twice per day. If no problems are encountered with CSMS,

discontinue data migration and old system operation at the end of this iteration.

Loop through iteration 6 use cases again and make all changes determined at the end of the previous

iteration. Expand requirements and design to cover all remaining use cases. Update database design

as needed to support version 2.0 use cases. Program iteration 7 and use cases and conduct unit and

integration testing.

8

9

Develop customer-oriented online help for all functions implemented in iterations 6 and 7. Prepare

training materials and conduct training for sales, marketing, and management personnel. Conduct

usability tests with a large number of actual or simulated customers. Make any needed changes to

user interfaces, including online help. Update the production database with any structural changes

in the test database.

Continue training for sales, marketing, and management personnel. Conduct performance and stress

testing and make any needed changes. Conduct use acceptance testing. Place version 2.0 into

production.

CHAPTER 13 ■ Making the System Operational 435

system, RMO will make a clean break from the existing CSS and its supporting
infrastructure. A new hosted infrastructure will be developed for the CSMS.
After the first deployment phase, the existing CSS infrastructure will be updated
to match the hosted environment and serve as a test environment for later devel-
opment and deployment activities.

Phased Deployment to Minimize Risk
The schedule described in Chapter 9 didn’t call for phased deployment, but nei-
ther did it directly consider such deployment issues as database development,
data migration, and training. To minimize deployment risks, the CSMS will be
deployed in two versions. Version 1.0 will reimplement most of the existing
CSS use cases with minimal changes. Version 2.0 will incorporate bug fixes and
incremental improvements to version 1.0 and will add additional functionality
not present in the CSS, including social networking, feedback/recommendations,
business partners, and Mountain Bucks.

The two-phase deployment minimizes project risk by dividing a single large
deployment into two smaller deployments. Another key risk mitigation feature
is maintaining the current CSS and its database as a backup for at least one iter-
ation after version 1.0 deployment. If a serious problem arises with version 1.0,
RMO can revert to the current CSS simply by redirecting Web site accesses
back to its internal servers.

Database Development and Data Conversion
Many of the classes in the CSMS class diagram are already represented in the
existing CSS database. However, there are some new classes and associations
and some changes to existing classes. Thus, there is some degree of compatibility
between the old and new databases but not enough to enable an upgraded ver-
sion of the current database to directly interface with both systems. Thus, a
new CSMS database will need to be built, and data will need to be migrated
from the CSS database prior to deploying version 1.0.

Database development and migration prior to version 1.0 deployment will
occur over multiple iterations. The iteration plan calls for creating a copy of the
CSS database early in the project and making incremental changes to it. All data
in the production CSS database will be migrated to the CSMS database near the
end of the fourth iteration. If problems are encountered, they will be resolved
and the migration will be repeated as early as possible during the fifth iteration.
Migrating much of the data during the fourth iteration will enable fifth-iteration
testing of user interfaces with real data from real customers and products and
system and stress testing with a “production sized” database.

At the end of the fifth iteration, all CSS database changes since the last full
migration will be copied to the CSMS database. Copying only the changes will
enable migration within a matter of hours. The CSS system will be offline dur-
ing the migration. Cutover to the CSMS will occur as soon as the migration is
completed. To minimize risk, additional data conversion routines will copy
new data from the CSMS database back to the CSS database twice per day
during the fifth iteration. If disaster strikes, the CSS can be restarted with a
current and complete database. If CSMS version 1.0 passes all user acceptance
tests during the fifth iteration, the CSS will be turned off and data migration
will cease.

Development Order
The IPO development order is the primary basis for the development plan.
By starting with a copy of the CSS database, a set of test data will exist from the
first iteration, thus enabling the highest risk use cases to be tackled first. These
involve the entire Sales subsystem and customer-facing portions of the Order-
fulfillment subsystem. The risks arise from new technology, uncertainty about

436 PART 5 ■ Advanced Design and Deployment Concepts

requirements, and the operational importance of sales and order fulfillment to
RMO. By tackling those use cases first, Barbara allowed her development staff
plenty of time to resolve uncertainties and test related software. Note that sig-
nificant testing of these functions began in iteration 2 and continued through
most of the project.

Documentation and Training
Training activities were spread throughout later project iterations for both pro-
duction versions. Initial training exercises covered the highest-risk portion of the
system prior to deployment. They also enabled developers to do integration and
performance testing on the sales-related use cases long before deployment.
Additional training continued as new functions were added to the system, pro-
viding a gradual ramping up of user skills and developer workload.

Chapter Summary
Implementation and deployment are complex processes
because they consist of so many interdependent activities.
Testing is a key activity of implementation and deploy-
ment. Software components must be constructed in an
order that minimizes the use of development resources
and maximizes the ability to test the system and correct
errors. Unfortunately, those two goals often conflict.
Thus, a program development plan is a trade-off among
available resources, available time, and the desire to detect
and correct errors prior to system deployment.

Configuration and change management activities
track changes to models and software through multiple
system versions, which enables developers to test and
deploy a system in stages. Versioning also improves
postdeployment support by enabling developers to
track problem support to specific system versions.
Source code control systems enable development teams
to coordinate their work.

Key Terms

alpha version 432

beta version 432

bottom-up development 425

build and smoke test 416

direct deployment 429

driver 413

immediate cutover 429

input, process, output (IPO)
development order 424

integration test 414

maintenance release 432

parallel deployment 429

performance test 416

phased deployment 430

production system 434

production version, release version, or
production release 432

response time 416

source code control system
(SCCS) 427

stub 414

system documentation 420

system test 416

test case 412

test data 412

test system 434

throughput 416

top-down development 425

unit testing 412

usability test 416

user acceptance test 417

user documentation 420

CHAPTER 13 ■ Making the System Operational 437

Review Questions
1. List and briefly describe each activity of the SDLC

core processes Build, test, and integrate system
components and Complete system tests and deploy
solution.

2. Define the terms unit test, integration test, system
test, and user acceptance test. During which
SDLC activity (or activities) is each test type
performed?

3. What is a test case? What are the characteristics of a
good test case?

4. What is a driver? What is a stub? With what type of
test is each most closely associated?

5. List possible sources of data used to initialize a new
system database. Briefly describe the tools and
methods used to load initial data into the database.

6. How do user documentation and training activities
differ between end users and system operators?

7. List and briefly describe the three basic approaches
to program development order. What are the
advantages and disadvantages of each?

8. How can the concepts of top-down and bottom-up
development order be applied to object-oriented
software?

9. What is a source code control system? Why is such
a system necessary when multiple programmers
build a program or system?

10. Briefly describe direct, parallel, and phased deploy-
ments. What are the advantages and disadvantages
of each deployment approach?

11. Define the terms alpha version, beta version, and
production version. Are there well-defined criteria
for deciding when an alpha version becomes a beta
version or a beta version becomes a production
version?

Problems and Exercises
1. Describe the process of testing software developed

with the IPO (input, process, output), top-down, and
bottom-up development orders. Which development
order results in the fewest resources required for test-
ing? What types of errors are likely to be discovered
earliest under each development order? Which devel-
opment order is best, as measured by the combination
of required testing resources and ability to capture
important errors early in the testing process?

2. Assume that you and three of your classmates are
charged with developing the first prototype to imple-
ment the RMO use case Create/update customer
account. Create a development and testing plan to
write and test the classes and methods. Assume that
you have two weeks to complete all tasks.

3. Talk with a computer center or IS manager about
the testing process used with a recently deployed
system or subsystem. What types of tests were per-
formed? How were test cases and test data gener-
ated? What types of teams developed and
implemented the tests?

4. Consider the issue of documenting a system by
using only electronic models developed with an
integrated development tool, such as Microsoft
Visual Studio or Oracle JDeveloper. The advantages
are obvious (e.g., the analyst modifies the models to
reflect new requirements and automatically gener-
ates an updated system). Are there any

disadvantages? (Hint: The system might be main-
tained for a decade or more.)

5. Talk with an end user at your school or work about
the documentation and training provided with a
recently installed or distributed business applica-
tion. What types of training and documentation
were provided? Did the user consider the training to
be sufficient? Does the user consider the documen-
tation to be useful and complete?

6. Assume you are in charge of implementation and
deployment of a new system that is replacing a
critical existing system that is used 24 hours a day.
To minimize risk, you plan to phase in deployment
of new subsystems over a period of six weeks and
operate both systems in parallel for at least three
weeks beyond the last new subsystem deployment.
Because there aren’t enough personnel to operate
both systems, you plan to hire up to 30 temporary
workers during the parallel operation period.
How should you use the temporary workers? In
answering that question be sure to consider these
issues:

i. Some current personnel will be trained before
subsystem deployments, and those employees
will train other employees.

ii. Employees newly trained on the system will
probably not reach their former levels of effi-
ciency for many weeks.

438 PART 5 ■ Advanced Design and Deployment Concepts

Case Study

HudsonBanc Billing System Upgrade

Two regional banks with similar geographic territories
merged to form HudsonBanc. Both banks had credit card
operations and operated billing systems that had been
internally developed and upgraded over three decades.
The systems performed similar functions, and both
operated primarily in batch mode on mainframe compu-
ters. Merging the two billing systems was identified as a
high-priority cost-saving measure.

HudsonBanc initiated a project to investigate how to
merge the two billing systems. Upgrading either system
was quickly ruled out because the existing technology
was considered old and the costs of upgrading the system
were estimated to be too high. HudsonBanc decided that a
new component-based, Web-oriented system should be
built or purchased. Management preferred the purchase
option because it was assumed that a purchased system
could be brought online more quickly and cheaply. An RFP
(request for proposal) was prepared, many responses were
received, and after months of business modeling and
requirements activities, a vendor was chosen.

Hardware for the new system was installed in early
January. Softwarewas installed the followingweek, and a ran-
domsample of 10 percent of the customer accountswas cop-
ied to the new system. The new system was operated in
parallel with the old systems for two months. To save costs
involved with complete duplication, the new system com-
puted but didn’t actually print billing statements. Payments
were entered into both systems and used to update parallel
customer account databases. Duplicate account recordswere
checked manually to ensure that they were the same.

After the second test billing cycle, the new system
was declared ready for operation. All customer accounts
were migrated to the new system in mid-April. The old sys-
tems were turned off on May 1, and the new system took
over operation. Problems occurred almost immediately.

The system was unable to handle the greatly increased
volume of transactions. Data entry and customer Web
access slowed to a crawl, and payments were soon
backed up by several weeks. The system wasn’t handling
certain types of transactions correctly (e.g., charge correc-
tions and credits for overpayment). Manual inspection of
the recently migrated account records showed errors in
approximately 50,000 accounts.

It took almost six weeks to adjust the incorrect accounts
and update functions to handle all transaction types correctly.
On June 20, the company attempted to print billing state-
ments for the 50,000 corrected customer accounts. The sys-
tem refused to print any information for transactions more
than 30 days old. A panicked consultation with the vendor
concluded that fixing the 30-day restriction would require
more than a month of work and testing. It was also con-
cluded that manual entry of account adjustments followed
by billing within 30 days was the fastest and least risky way
to solve the immediate problem.

Clearing the backlog took two months. During that
time, many incorrect bills were mailed. Customer support
telephone lines were continually overloaded. Twenty-five
people were reassigned from other operational areas, and
additional phone lines were added to provide sufficient
customer support capacity. System development person-
nel were reassigned to IS operations for up to three
months to assist in clearing the billing backlog. Federal
and state regulatory authorities stepped in to investigate
the problems. HudsonBanc agreed to allow customers to
spread payments for late bills over three months without
interest charges. Setting up the payment arrangements
further aggravated the backlog and staffing problems.

1. What type of installation did HudsonBanc use for its
new system? Was it an appropriate choice?

2. How could the operational problems have been
avoided?

RUNNING CASE STUDIES

Community Board of Realtors

Assume that the Multiple Listing Service that is under
development will replace an existing system devel-
oped many years ago. The database requirements
and design for the old and new systems are very simi-
lar. Unfortunately, the existing system stores its data

in a Microsoft Access database, which provides little
support for simultaneous access and updates by
multiple users. An important reason for replacing
the current system is to upgrade to a DBMS that can
easily support many simultaneous accesses.

(continued on page 440)

CHAPTER 13 ■ Making the System Operational 439

The current plan is to use Microsoft SQL Server as
the new DBMS and to migrate all data from the exist-
ing Microsoft Access database immediately prior to
full deployment. Perform these tasks to prepare for
this migration:

1. Investigate data migration from Microsoft
Access to SQL Server. What tools are available

to assist in or perform the migration? If there are
multiple possible tools, which should you use
and why?

2. Develop plans to test the migration tools/strategy
in advance of full deployment. When should the
test be performed, and how will you determine
whether the test has been “passed”?

The Spring Breaks ‘R’ Us Travel Service

Review the case-related questions and tasks as well as
your responses from Chapters 8 and 9. As described in
previous chapters, assume the new system will upgrade
an existing system and add new social networking
functions to it. Specifically, review your answer to
question 2 in Chapter 9 in light of the more detailed
understanding of the risks, costs, and benefits of various
implementation orders and deployment approaches that
you gained by reading this chapter.

1. For each subsystem—Resort relations, Student
booking, Accounting and finance, and Social net-
working—specify which other subsystem(s) it
depends on for input data?

2. Can the four subsystems be developed and
deployed independently? If so, in which order
should they be developed and deployed? If not,
explain why not and describe how you would
develop and deploy the system.

On the Spot Courier Services

In Chapter 8, we identified these four subsystems:

■ Customer account subsystem (such as customer
account)

■ Pickup request subsystem (such as sales)
■ Package delivery subsystem (such as order

fulfillment)
■ Routing and scheduling subsystem

In Chapter 8, you also decided on a development
order for these four subsystems, assuming a single two-
person team. In Chapter 9, you created individual sub-
system iteration schedules and a combined project
schedule. In Chapter 6, you identified equipment that
would be needed for the system.

Your assignment for this chapter is to develop a test
plan for each subsystem and for the overall project as
well as to develop a conversion/deployment schedule.

1. For your test plan, do the following:

a. Develop an iteration test plan (i.e., one that
applies to and can be used within a subsystem
iteration mini-project). Discuss which types of
testing (as identified in this chapter) you would
include and why. Estimate how much time will
be needed for each type of test. Discuss what
types of testing might be combined or scheduled
with an overlap.

b. Develop a total project test plan to integrate all
the subsystems. Discuss which types of testing
you would include and why. (Don’t put them
on a schedule yet.)

2. Develop a conversion/deployment plan. Discuss
these:

a. Data conversion:Which parts of the data must be
saved from the old spreadsheet/manual system?
Which parts of the data can just be discarded (i.e.,
not moved to the new system)? Discuss specific
tables that you identified in Chapter 12.

b. Deployment: Based on your decisions about
which subsystems should be deployed first
(Chapter 8), your overall testing plan, and your
data conversion decisions, develop an overall
schedule for testing and deployment of the new
system. How would you characterize your
solution: direct, parallel, or phased conversion?
Support your answer by discussing the logic
behind your decisions.

3. Revisit your solution in Chapter 6 regarding the
types of equipment that will be needed. Include in
your discussion your current recommendation for
hosting the system. Add to your deployment
schedule the activities to purchase equipment and
set up the hosting environment.

(continued from page 439)

(continued on page 441)

440 PART 5 ■ Advanced Design and Deployment Concepts

Sandia Medical Devices

Refer to the case information provided at the end of
Chapters 8 and 9 and the domain class diagram at
the end of Chapter 11. Review and update your results
from performing the tasks at the end of Chapter 9
based on the information provided in this chapter.
Then, answer these questions:

1. What integration and system tests are required,
and when should they be incorporated into the
iteration schedule?

2. What are the documentation and user training
requirements for the system, and when should they
be incorporated into the iteration schedule?

3. Assume that after deployment and a three-month
testing and evaluation period, updates to the first
Android-based system (client and server) will be
implemented and another client-side version will be
implemented for the iPhone. Develop an iteration
plan for implementing and deploying the second
version of the system.

Further Resources

Robert V. Binder, Testing Object-Oriented Systems:

Models, Patterns, andTools. Addison-Wesley, 2000.

Mark Fewster and Dorothy Graham, Software Test

Automation. Addison-Wesley, 1999.

Jerry Gao, H.-S. Jacob Tsao, and Ye Wu, Testing
and Quality Assurance for Component-Based

Software, Artech House Publishers, 2003.

William Horton, Designing and Writing Online

Documentation: Hypermedia for Self-Supporting

Products (2nd edition). John Wiley & Sons, 1994.

William Horton, Designing Web-Based Training:

How to Teach Anyone Anything Anywhere

Anytime. John Wiley & Sons, 2000.

William Horton, e-Learning by Design. Pfeiffer,
2011.

International Association of Information
Technology Trainers (ITrain) Web site, http://
itrain.org.

David Yardley, Successful IT Project Delivery.
Addison-Wesley, 2002.

(continued from page 440)

CHAPTER 13 ■ Making the System Operational 441

http://itrain.org
http://itrain.org

This page intentionally left blank

14
Current Trends in System
Development

Chapter Outline

■ Trends in System Development Methodologies

■ Trends in Technology Infrastructure

■ Trends in Application Software Availability

■ The Web as an Application Platform

Learning Object ives

After reading this chapter, you should be able to:

■ Describe the elements of the Unified Process (UP)

■ Compare and contrast the features of Extreme Programming and Scrum
development

■ Describe the major trends in connectivity, Internet, and telephone technologies

■ List and describe the various methods of deploying application software

■ List and describe the various elements that enhance Web applications

■ Describe the various approaches to developing Rich Internet Applications

443

OPENING CASE

Valley Regional Hospital: Measuring a Project’s Progress

Claire Haskell, the vice president of technology at Valley
Regional Hospital (VRH), listened quietly to Henry
Williams’s progress report on the new patient records sys-
tem. Henry was the project leader for the team that was
developing the system. Also in the meeting were the pro-
ject’s sponsor, Charlie Montgomery, who was the director
of patient information and records, and Jason Smith, the
director of software development. Months before, Jason
and Henry had asked Claire to try a new development
approach called Extreme Programming (XP) for this recently
approved project. They had already spoken with Charlie, and
he had agreed to try the XP development method. Claire
approved the project and their request to try the new
approach even though she knew very little about it.

During his presentation, Henry kept talking about how
wonderfully the team was working together and how
much fun they were having. Although she was glad
that the team was functioning well, Claire wanted more
specifics. She wanted to know whether the new system
was on schedule and within budget. After about 20 min-
utes of listening patiently, she couldn’t wait any longer.

“I need to see a schedule,” she told Henry, “and I
need a report on the team’s progress.”

Henry projected a schedule on the screen, but that did
little to help; it had no familiar milestones, such as analysis,
design, and programming. Instead, she saw other terms:
iteration, user stories, and refactoring.

At this point, Claire became worried. She turned
to Charlie and said pointedly: “Exactly how is the project
progressing from your viewpoint?”

His answer surprised her.

“The records administrators and I are extremely
pleased with the demos we are seeing,” he said. “We are
also satisfied with the quality of the system we saw during
our acceptance testing. From what we have seen so far, the
system seems to be exactly what we need. But as far as
the schedule is concerned, I’m not certain whether the
entire system will be delivered on time. I think it will, but
I’m not involved in the day-to-day development.”

Claire felt a little better. At least the system was doing
what it needed to do. But she still wanted reassurance
from the project leader. “Henry, are we going to hit the
completion date?” she asked. “The system needs to be
ready on time.”

“We are progressing on schedule so far and every-
thing looks fine,” Henry responded. “No, I can’t show
you a traditional schedule—one with major milestones.
But here is a short-term schedule for the next two months
of work.”

Claire wasn’t satisfied. She asked Henry to stay and
talk with her privately after the meeting ended, at which
point she became agitated.

“Henry, we need more accountability for this proj-
ect,” she said. “The only solution I see is to meet with
you frequently to monitor its progress. I want a rough
schedule for the rest of the project on my desk on
Monday morning. That gives you three days to develop
one. Then, I want you to meet with me every Monday
from here on out so we can be sure we are on track
and hit the delivery date.”

Although he wasn’t pleased with Claire’s suggestion,
Henry reluctantly agreed.

Overview
So far, this book has focused on teaching you the processes and skills associated
with a system development project. You have learned the “soft” skills associated
with managing projects, interacting in teams, gathering information, and mak-
ing presentations. You have also learned the “hard” skills—those associated
with problem solving, building requirements models, and designing new sys-
tems. You have learned many important concepts about projects, iterative
development, and the SDLC. In short, you have developed a solid working
knowledge of system development and obtained a bag of tools to get you
started developing information systems for businesses and other organizations.

The approach presented in this textbook isn’t the only method for developing
systems. As you move forward with your career in information systems, you will
find that the industry is wide and varied. There are companies using methodologies
and techniques that have been around for 30 years or longer. There are other
groups that are trying various approaches in an attempt to improve the speed
and efficiency of the development process as well as the quality of the end result.
Many organizations have a mix of older, well-established methods for some
projects and newer techniques and methods for other projects. No matter which

444 PART 5 ■ Advanced Design and Deployment Concepts

type of organization you work for, the methods and techniques you have learned
from this textbook are fundamental and will serve you well.

We begin this chapter with a review of three of the more current develop-
ment methodologies, along with their associated practices and techniques. These
are the Unified Process (UP), Scrum, and Extreme Programming (XP). As indi-
cated earlier in this text, most new approaches, including these three, are based
on the Agile philosophy and an iterative life cycle. In this chapter, you will
learn about the details of each of these three approaches.

Following the discussion of these three methodologies, we will look at some
of the new technology trends in the technology and software application industry.
These trends are a major driving force in requiring a more agile and iterative
approach to application software development. Software development is very
different today than it was even a few years ago, and there are two major reasons
for this. One is our ability to connect and network with other like-minded develo-
pers throughout the world thanks to the Internet. The other is the proliferation of
so many types of devices that support computer applications.

We will look at three trends that are currently impacting the world of soft-
ware development.

The first trend is the extremely wide variety of consumer devices that have
computing capabilities: cameras, ebook readers, smartphones, automobile GPS
devices, gaming equipment, tablet and laptop computers, and even household
appliances. Although the operating system software and communication soft-
ware for these devices isn’t a focus of information system development, many
of these devices support custom applications and browser applications, and
those are within the realm of information systems. We will briefly look at the
proliferation of computing devices.

A second trend is the approach to the distribution of application software,
especially consumer applications. For example, the open-source movement has
provided a plethora of components, tools, and applications that can be used by
developers and end users. We will look at two major movements in this arena:
software as a service (SAAS) and open source.

The third trend is the movement toward Web-based applications. With the
widespread availability of Internet access and the incredible amount of informa-
tion and services provided through the Web, browser-based applications have
become the largest source of new application development in the world.
Although this is true for business applications and consumer-oriented applica-
tions, the most dramatic growth by far is in the development of new services
for the consumer. We will review some of the more important aspects of appli-
cation software development for the Web.

Trends in System Development
Methodologies
In Chapter 8, you were introduced to Agile development. The Agile philosophy
has proven to be an effective way to approach software development in today’s
fast-paced, continually changing landscape of computer applications. However,
the Agile philosophy only proposes principles; it isn’t meant to be a complete
methodology, with practices and action steps. In this section, we present three
methodologies that incorporate Agile principles but are also complete methodol-
ogies, with specific techniques and practices.

These three methodologies—UP, XP, and Scrum—are among the most pop-
ular approaches to application software development, but they aren’t always
found in their purest forms. Frequently, organizations either mix and match
techniques from the three or only adopt a specific set of practices. However,
adoption of these methodologies continues to expand throughout all types of
organizations that develop software applications.

CHAPTER 14 ■ Current Trends in System Development 445

The Unified Process
The Unified Process (UP) is an object-oriented system development methodology
originally offered by Rational Software, which is now part of IBM. Developed
by Grady Booch, James Rumbaugh, and Ivar Jacobson—the three pioneers
behind the success of the Unified Modeling Language (UML)—the UP defines a
complete methodology that uses UML for system models and describes a new,
adaptive system development life cycle. In the UP, the term development process
is synonymous with development methodology.

The UP is now widely recognized as a highly influential innovation in soft-
ware development methodologies for object-oriented development using an adap-
tive approach. The original version of UP defined an elaborate set of activities
and deliverables for every step of the development process. More recent versions
are streamlined, with fewer activities and deliverables, simplifying the methodol-
ogy. The methodology used in this textbook is an adaptation of UP principles.

As discussed previously, adaptive methodologies—including the UP—are all
based on an iterative approach to development. You learned in Chapter 1 that
each iteration is like a mini-project, in which requirements are defined based on
analysis tasks, system components are designed, and those components are then
implemented—at least partially—through programming and testing. However,
one of the big questions in adaptive development is what the focus of each itera-
tion should be. In other words, do iterations early in the project have the same
objectives and focus as those done later? The UP answers this question by divid-
ing a project into four major phases.

UP Phases
A phase in the UP can be thought of as a goal or major emphasis for a particu-
lar portion of the project. The four phases of the UP life cycle are: inception,
elaboration, construction, and transition, as shown in Figure 14-1.

Each phase of the UP life cycle describes the emphasis or objectives of the
project team members and their activities at that point in time. Thus, the four
phases provide a general framework for planning and tracking the project over
time. Within each phase, several iterations are planned to give the team enough
flexibility to adjust to problems or changing conditions. The emphases or objec-
tives of the project team in each of the four phases are described briefly in
Figure 14-2.

UP system development life cycle

Iteration Phase

Inception TransitionElaboration Construction

FIGURE 14-1
The Unified Process system
development life cycle

UP phase

Inception

Elaboration

Construction

Objective

Develop an approximate vision of the system, make the business case,
define the scope, and produce rough estimates for cost and schedule.

Define the vision, identify and describe all requirements, finalize the
scope, design and implement the core architecture and functions, resolve
high risks, and produce realistic estimates for cost and schedule.

Transition Complete the beta test and deployment so users have a working system
and are ready to benefit as expected.

Iteratively implement the remaining lower-risk, predictable, and easier
elements and prepare for deployment.

FIGURE 14-2
UP phases and objectives

446 PART 5 ■ Advanced Design and Deployment Concepts

Inception Phase As in any project-planning phase, the inception phase consists
of the project manager developing and refining a vision for the new system in
order to show how it will improve operations and solve existing problems.
Essentially, the project manager makes the business case for the new system,
proving that the new system’s benefits will outweigh the cost of development.
The scope of the system must also be defined so it is clear what the project will
accomplish. Defining the scope includes identifying many of the key require-
ments for the system.

The inception phase is usually completed in one iteration, and as with any
iteration, parts of the actual system may be designed, implemented, and tested.
As software is developed, team members must confirm that the system vision
still matches user expectations or that the technology will work as planned.
Sometimes, prototypes are discarded after proving that point.

Elaboration Phase The elaboration phase usually involves several iterations, and
early iterations typically complete the identification and definition of all the sys-
tem requirements. Because the UP is an adaptive approach to development, the
requirements are expected to evolve and change after work starts on the
project.

The elaboration phase’s iterations also complete the analysis, design, and
implementation of the system’s core architecture. Usually, the aspects of the
system that pose the greatest risk are identified and implemented first. Until
developers know exactly how the highest-risk aspects of the project will
work out, they can’t determine the amount of effort required to complete the
project. By the end of the elaboration phase, the project manager should have
more realistic estimates for the project’s cost and schedule, and the business
case for the project can be confirmed. Remember that the design, implementa-
tion, and testing of key parts of the system are completed during the elabora-
tion phase. One other major objective of the elaboration phase is to do the
necessary research and fact-finding so all the user requirements are identified.
During the elaboration phase, a high percentage of time is spent on under-
standing and analysis.

Construction Phase The construction phase involves several iterations that con-
tinue the design and implementation of the system. The core architecture and
highest-risk aspects of the system are already complete. Now the focus of the
work turns to the routine and predictable parts of the system—for example,
detailing the system controls, such as data validation, fine-tuning the user inter-
face design, finishing routine data maintenance functions, and completing the
help and user preference functions. The team also begins to plan for deployment
of the system.

Transition Phase During the transition phase, one or more final iterations
involve the final user acceptance and beta tests, and the system is made ready
for operation. After the system is in operation, it will need to be supported and
maintained.

UP Disciplines
As we mentioned earlier, the four UP phases define the project sequentially by
indicating the emphasis of the project team at any point in time. To make itera-
tive development manageable, the UP defines disciplines to use within each iter-
ation. A UP discipline is a set of functionally related activities that contributes
to one aspect of the development project. UP disciplines include business model-
ing, requirements, design, implementation, testing, deployment, configuration
and change management, project management, and environment. Each iteration
usually involves activities from all disciplines.

UP discipline a set of functionally related
activities that combine to enable the develop-
ment process in a UP project

CHAPTER 14 ■ Current Trends in System Development 447

Figure 14-3 shows how the UP disciplines are involved in each iteration,
which is typically planned to last four weeks. The size of the shaded area under
the curve for each discipline indicates the relative amount of work included
from each discipline during the iteration. The amount and nature of the work
differs from iteration to iteration. For example, in iteration 2, much of the
effort focuses on business modeling and requirements definition, with much
less effort focused on implementation and deployment. In iteration 5, very little
effort is focused on modeling and requirements and much more effort focused
on implementation, testing, and deployment. But most iterations involve some
work in all disciplines.

Figure 14-4 shows the entire UP life cycle: phases, iterations, and disci-
plines. It includes all the key UP life cycle features and is useful for understand-
ing how a typical information system development project is managed.

The previous figures illustrate how the phases include activities from
each discipline. But what about the detailed activities that occur within each dis-
cipline? The disciplines can be divided into two main categories: system develop-
ment activities and project management activities. The six main UP development
disciplines are:

■ Business modeling
■ Requirements
■ Design
■ Implementation
■ Testing
■ Deployment

For each iteration, the project team must understand the business environ-
ment (business modeling), define the requirements that that portion of the sys-
tem must satisfy (requirements), design a solution for that portion of the system
that satisfies the requirements (design), write and integrate the computer code

71 2 3 4 5 6

Iterations
A four-week iteration includes work in most
disciplines, ending with a stable executable.

Iteration 2 involves much business
modeling and requirements but still
includes some design, implementation,
and testing activities.

Iteration 5 involves minimal modeling
and requirements, some design, but
much more implementation and many
more testing activities.

UP disciplines

Business modeling

Requirements

Design

Implementation

Testing

Deployment

Configuration & change
management

Project management

Environment

FIGURE 14-3
UP disciplines used in varying amounts
in each iteration

448 PART 5 ■ Advanced Design and Deployment Concepts

that makes that portion of the system work (implementation), thoroughly test
that portion of the system (testing), and then, in some cases, put the part of the
system that is completed and tested into operation for users (deployment).

Three additional support disciplines are necessary for planning and control-
ling the project:

■ Configuration and change management
■ Project management
■ Environment

Configuration and change management involves setting up processes to
support the coding activities. This includes such guidelines as when and how
to release code as well as when and how to manage releases and versions.
Project management refers to the tasks that were discussed in Chapter 9,
such as planning the iterations, assigning work, and verifying that work has
been completed. The environment discipline involves those tasks required to
establish the working environment, including the tools to be used by the
team. It also includes those guidelines about how to work together in an itera-
tive Agile project.

All nine UP disciplines are employed throughout the lifetime of a project but
to different degrees. For example, in the inception phase, there is one iteration.
During the inception phase iteration, the project manager might complete a
model showing some aspect of the system environment (the business modeling
discipline). The scope of the system is delineated by defining many of the key
system requirements and listing use cases (the requirements discipline). To prove
technological feasibility, some technical aspect of the system might be designed
(the design discipline), programmed (the implementation discipline), and tested
to make sure it will work as planned (the testing discipline). In addition, the
project manager makes plans for handling changes to the project (the configura-
tion and change management discipline), working on a schedule and cost/benefit
analysis (the project management discipline), and tailoring the UP phases, itera-
tions, deliverables, and tools to match the needs of the project (the environment
discipline).

Design

UP disciplines

Business modeling

Requirements

Implementation

Testing

Deployment

Configuration & change
management

Project management

Environment

UP phases
Unified Process life cycle model

Inception Elaboration Construction Transition

This is a seven-iteration project. Each iteration is a miniproject that
includes work in most disciplines and ends with a stable executable.

FIGURE 14-4
UP life cycle with phases, iterations,
and disciplines

CHAPTER 14 ■ Current Trends in System Development 449

The elaboration phase includes several iterations. In the first iteration, the
team works on the details of the domain classes and use cases addressed in the
iteration (the business modeling and requirements disciplines). At the same time,
it might complete the description of all use cases to finalize the scope (the
requirements discipline). The use cases addressed in the iteration are designed
by creating design class diagrams and interaction diagrams (the design disci-
pline), programmed using Java or Visual Basic .NET (the implementation disci-
pline), and fully tested (the testing discipline). The project manager works on
the plan for the next iteration and continues to refine the schedule and feasibil-
ity assessments (the project management discipline), and all team members
continue to receive training on the UP activities they are completing and the sys-
tem development tools they are using (the environment discipline).

By the time the project progresses to the construction phase, most of the use
cases have been designed and implemented in their initial form. The focus of the
project turns to satisfying other technical, performance, and reliability require-
ments for each use case, finalizing the design, and implementing the design.
These requirements are usually routine and lower risk, but they are key to the
success of the system. The effort focuses on designing system controls and secu-
rity and on implementing and testing these aspects.

As a system development methodology, the Unified Process must be tailored
to the development team and the specific project. Choices must be made about
which deliverables to produce and the level of formality, or ceremony, to be
used. Sometimes, a project requires formal reporting and controls. Other times,
it can be less formal. The UP should always be tailored to the project, although
the UP does tend toward more ceremony than the next two methodologies.

Extreme Programming
Extreme Programming (XP) is an adaptive, agile development methodology that
was created in the mid-1990s. The word extreme sometimes makes people think
that this methodology is completely new and that developers who embrace XP
are radicals. However, XP is really an attempt to take the best practices of soft-
ware development and extend them “to the extreme.” Extreme programming
has these characteristics:

■ Takes proven industry best practices and focuses on them intensely
■ Combines those best practices (in their most intense forms) in a new way to

produce a result that is greater than the sum of the parts

Figure 14-5 lists the core values and practices of XP. In the following
sections, we first present the four core values of XP and then we explain its
12 primary practices. Finally, we describe the basic structure of an XP project
and the way XP is used to develop software.

• Communication
• Simplicity
• Feedback
• Courage

• Planning
• Testing
• Pair programming
• Simple designs
• Refactoring the code
• Owning the code collectively
• Continuous integration
• On-site customer
• System metaphor
• Small releases
• Forty-hour week
• Coding standards

XP core values XP practices
FIGURE 14-5
XP core values and practices

450 PART 5 ■ Advanced Design and Deployment Concepts

XP Core Values
The four core values of XP—communication, simplicity, feedback, and courage—
drive its practices and project activities. You will recognize the first three as best
practices for any development project. You will also notice that the fourth is a
desired value for any project, even though it might not be stated explicitly. Here
are brief descriptions of the four core values of XP:

■ Communication—One of the major causes of project failure is a lack of
open communication among the right players at the right time and at the
right level. Effective communication involves not only documentation but
also verbal discussion. The practices and methods of XP are designed to
ensure that open, frequent communication occurs.

■ Simplicity—Even though developers have always advocated keeping solu-
tions simple, they don’t always follow their own advice. XP includes techni-
ques to reinforce this principle and make it a standard way of developing
systems.

■ Feedback—As with simplicity, getting frequent, meaningful feedback is rec-
ognized as a best practice of software development. Feedback on functional-
ity and requirements should come from the users, feedback on designs and
code should come from other developers, and feedback on satisfying a
business need should come from the client. XP integrates feedback into
every aspect of development.

■ Courage—Developers always need courage to face the harsh choice of doing
things right or throwing away bad code and starting over. But all too fre-
quently, they haven’t had the courage to stand up to a too-tight schedule,
resulting in bad mistakes. XP practices are designed to give developers the
courage to “do it right.”

XP Practices
XP’s 12 practices embody the basic values just presented. These practices are
consistent with the Agile principles explained earlier in this chapter.

Planning Some people describe XP as glorified hacking or as the old “code and
fix” methodology that was used in the 1960s. That isn’t true; XP does include
planning. However, as an adaptive technique, it recognizes that you can’t know
everything at the start. As indicated earlier, XP embraces change. XP planning
focuses on making a rough plan quickly and then refining it as things become
clearer. This reflects the Agile development philosophical dictum that change
is more important than detailed plans. It is also consistent with the idea that
individuals—and their abilities—are more important than an elaborate process.

The basis of an XP plan is a set of stories that users develop. A story
describes what the system needs to do. XP doesn’t use the term use case, but a
user story and a use case express a similar idea. Planning involves two aspects:
business issues and technical issues. In XP, the business issues are decided by
the users and clients, whereas technical issues are decided by the development
team. The plan, especially in the early stages of the project, consists of the list
of stories (from the users) and the estimates of effort, risk, and work dependen-
cies for each story (from the development team). As in Agile development, the
idea is to heavily involve the users in the project rather than have them to
simply sign off on specifications.

Testing Every new piece of software requires testing, and every methodology
includes testing. XP intensifies testing by requiring that the tests for each story
be written first—before the solution is programmed. There are two major types
of tests: unit tests, which test the correctness of a small piece of code, and accep-
tance tests, which test the business function. The developers write the unit tests,

CHAPTER 14 ■ Current Trends in System Development 451

and the users write the acceptance tests. Before any code can be integrated into
the library of the growing system, it must pass the tests. By having the tests
written first, XP automates their use and executes them frequently. Over time, a
library of required tests is created, so when requirements change and the code
needs to be updated, the tests can be rerun quickly and automatically.

Pair Programming More than any other, this practice is one for which XP is
famous. Instead of simply requiring one programmer to watch another’s work,
pair programming divides up the coding work. First, one programmer might
focus more on design and double-checking the algorithms while the other writes
the code. Then, they switch roles; thus, over time, they both think about design,
coding, and testing. XP relies on comprehensive and continual code reviews.
Interestingly, research has shown that pair programming is more efficient than
programming alone. It takes longer to write the initial code, but the long-term
quality is higher. Errors are caught quickly and early, two people become famil-
iar with every part of the system, all design decisions are developed by two
brains, and fewer “quick and dirty” shortcuts are taken. The quality of the
code is always higher in a pair-programming environment.

Simple Designs Opponents say that XP neglects design, but that isn’t true. XP
conforms to the principles of Agile Modeling, as described in Chapter 8, by
avoiding the “Big Design Up Front” approach. Instead, it views design as so
important that it should be done continually, although in small chunks. As with
everything else, the design must be verified immediately by reviewing it along
with coding and testing.

So, what is a simple design? It is one that accomplishes the desired result
with as few classes and methods as possible and that doesn’t duplicate code.
Accomplishing all that is often a major challenge.

Refactoring the Code Refactoring is the technique of improving the code with-
out changing what it does. XP programmers continually refactor their code.
Before and after adding any new functions, XP programmers review their code
to see whether there is a simpler design or a simpler method of achieving the
same result. Refactoring produces high-quality, robust code.

Owning the Code Collectively In XP, everyone is responsible for the code. No
one person can say “This is my code.” Someone can say “I wrote it,” but every-
one owns it. Collective ownership allows anyone to modify any piece of code.
However, because unit tests are run before and after every change, if program-
mers see something that needs fixing, they can run the unit tests to make sure
the change didn’t break something. This practice embodies the team concept
that developers are building a system together.

Continuous Integration This practice embodies XP’s idea of “growing” the soft-
ware. Small pieces of code—which have passed the unit tests—are integrated
into the system daily or even more often. Continuous integration highlights
errors rapidly and keeps the project moving ahead. The traditional approach of
integrating large chunks of code late in the project often resulted in tremendous
amounts of rework and time lost while developers tried to determine just what
went wrong. XP’s practice of continuous integration prevents that.

On-Site Customer As with all adaptive approaches, XP projects require contin-
ual involvement of users who can make business decisions about functionality
and scope. Based on the core value of communication, this practice keeps the
project moving ahead rapidly. If the customer isn’t ready to commit resources
to the project, the project won’t be very successful.

pair programming XP practice in which
two programmers work together on designing,
coding, and testing software

refactoring revising, reorganizing, and
rebuilding part of a system so it is of higher
quality

452 PART 5 ■ Advanced Design and Deployment Concepts

System Metaphor This practice is XP’s unique and interesting approach to
defining an architectural vision. It answers the questions “How does the system
work?” and “What are its major components?” And it does it by having the
developers identify a metaphor for the system. For example, Big Three auto-
maker Chrysler’s payroll system was built as a production-line metaphor, with
its system components using production-line terms. Everyone at Chrysler under-
stood a production line, so a payroll transaction was treated the same way;
developers started with a basic transaction and then applied various processes
to complete it. Of course, a system metaphor should be easily understood or
well known to the members of the development team. It can guide members
toward a vision and help them understand the system.

Small Releases A release is a point at which the new system can be turned over to
users for acceptance testing and even for productive use. Consistent with the entire
philosophy of growing the software, small and frequent releases provide upgraded
solutions to the users and keep them involved in the project. Frequent releases also
facilitate other practices, such as immediate feedback and continual integration.

Forty-Hour Week and Coding Standards These final two practices set the tone for
how the developers should work. The exact number of hours a developer works
isn’t the issue. The issue is that the project shouldn’t be a death march that
burns out every member of the team. Neither should the project be a haphazard
coding exercise. Developers should follow standards for coding and documenta-
tion. XP uses just the engineering principles that are appropriate for an adaptive
process based on empirical controls.

XP Project Activities
Figure 14-6 shows an overview of the XP system development approach. It is
divided into three levels: system (the outer ring), release (the middle ring), and

Finish

Start

Plan
releases

Create acceptance tests

Cr
ea

te
sys

tem
metaphor

Cr
ea

te
us

er
st

or
ie

s

Plan
iterations

Ac
ce

ptance tests

Co
de

Unit test

Integration test

start next release

start next iteration

FIGURE 14-6
XP development approach

CHAPTER 14 ■ Current Trends in System Development 453

iteration (the inner ring). System-level activities occur once during each develop-
ment project. A system is delivered to users in multiple stages called releases.
Each release is a fully functional system that performs a subset of the full system
requirements. A release is developed and tested within a period of no more than
a few weeks or months. The activities in the middle ring cycle multiple times—
once for each release. Releases are divided into multiple iterations. During each
iteration, developers code and test a specific functional subset of a release.
Iterations are coded and tested in a few days or weeks. There are multiple itera-
tions within each release, so the iteration ring (inner) cycles multiple times.

The first XP development activity is creating user stories, which are similar
to use cases in object-oriented analysis. A team of developers and users quickly
documents all the user stories the system will support. Developers then create a
class diagram to represent objects of interest within the user stories.

Developers and users then create a set of acceptance tests for each user
story. Releases that pass the acceptance tests are considered finished. The final
system-level activity is to create a development plan for a series of releases. The
first release supports a subset of the user stories, and subsequent releases add
support for additional stories. Each release is delivered to users and performs
real work, thus providing an additional level of testing and feedback.

The first release-level activity is planning a series of iterations. Each itera-
tion focuses on a small (possibly just one) system function or user story. The
iterations’ small size allows developers to code and test them within a few days.
A typical release is developed by using from a few to a few dozen iterations.

After the iteration plan is complete, work begins on the first iteration-level
activity. Code units are divided among multiple programming teams, and each
team develops and tests its own code. XP recommends a test-first approach to
coding. Test code is written before system code. As code modules pass unit test-
ing, they are combined into larger units for integration testing. When an itera-
tion passes integration testing, work begins on the next iteration.

When all iterations of a release have been completed, the release undergoes
acceptance testing. If a release fails acceptance testing, the team returns it to the
iteration level for repair. Releases that pass acceptance testing are delivered to
end users, and work begins on the next release. When acceptance testing of the
final release is completed, the development project is finished.

Scrum
Those of you who are familiar with rugby are aware that when a team gets pos-
session of the ball, it attempts to go the entire distance in one continuous play—
from point of possession to the score. The team works together, passing the ball
back and forth; even when tackled, it can maintain possession and keep the ball
in play. Originally, this “rugby” approach was applied to product development.

One interesting element in rugby is a scrum, which is used to get a ball back
into play after a penalty. The defining characteristics of a scrum are that it
begins quickly, is a very intense effort, involves the entire team, and usually
only lasts for a short duration.

Combining some of these principles of rugby with the Agile philosophy gave
rise to a methodology—the objective of which is to be quick, agile and intense
and to go the entire distance. This methodology is referred to as the Scrum
approach. Over time, the techniques have been refined to fit into a powerful
adaptive software development methodology. Figure 14-7 illustrates an over-
view of the Scrum approach. There are three important Scrum areas to under-
stand: the philosophy, the organization, and the practices.

Scrum Philosophy
The Scrum philosophy is based on the Agile Development principles described
earlier. Scrum is responsive to a highly changing, dynamic environment in

454 PART 5 ■ Advanced Design and Deployment Concepts

which users might not know exactly what is needed and might also change pri-
orities frequently. In this type of environment, changes are so numerous that
projects can bog down and never reach completion. Scrum excels in this type
of situation.

Scrum focuses primarily on the team level. It is a type of social engineering
that emphasizes individuals more than processes and describes how teams of
developers can work together to build software in a series of short mini-
projects. Key to this philosophy is the complete control a team exerts over its
own organization and its work processes. Software is developed incrementally,
and controls are imposed empirically—by focusing on things that can be
accomplished.

The basic control mechanism for a Scrum project is a list of all the things
the system should include and address. This list—called the product backlog—
includes user functions (such as use cases), features (such as security), and tech-
nology (such as platforms). The product backlog list is continually being priori-
tized, and only a few of the high-priority items are worked on at a time,
according to the current needs of the project and its sponsor.

Scrum Organization
The three main organizational elements that affect a Scrum project are the
product owner, the Scrum master, and the Scrum team or teams.

The product owner is the client, but he or she has additional responsibili-
ties. Remember that in Agile development, the user and client are closely
involved in the project. In Scrum, the product owner maintains the product
backlog list. For any function to be included in the final system, it must first be
placed on the product backlog. Because the product owner maintains that list,
any request must first be approved and agreed to by the product owner. In tra-
ditional development projects, the project team initiates the interviews and
other activities to identify and define requirements. In a Scrum project, the
primary client controls the requirements. This forces the client and user to be
intimately involved in the project. Nothing can be accomplished until the prod-
uct owner creates the backlog.

The Scrum master enforces Scrum practices and helps the team complete
its work. A Scrum master is comparable to a project manager in other
approaches. However, because the team is self-organizing and no overall
project schedule exists, the Scrum master’s duties are slightly different. He or
she is the focal point for communication and progress reporting—just as in a
traditional project. But the Scrum master doesn’t set the schedule or assign

FIGURE 14-7 Scrum software development process

Scrum master
Scrum team

Incremental
software

result

Sprint backlog

Daily scrum

Product owner

Product backlog

Scrum
planning
meeting

30-day
Scrum sprint

product backlog a prioritized list of user
requirements used to choose work to be done in
a Scrum project

product owner the client stakeholder
for whom the system is being built

Scrum master the person in charge of a
Scrum project—similar to a project manager

CHAPTER 14 ■ Current Trends in System Development 455

tasks. The team does. One of the primary duties of the Scrum master is to
remove impediments so the team can do its work. In other words, the Scrum
master is a facilitator.

The Scrum team is a small group of developers—typically five to nine
people—who work together to produce the software. For projects that are very
large, the work should be partitioned and delegated to smaller teams. If neces-
sary, the Scrum masters from all the teams can coordinate multiple team
activities.

The Scrum team sets its own goal for what it can accomplish in a specific
period of time. It then organizes itself and parcels out the work to members. In
a small team, it is much easier to sit around a table, decide what needs to be
done, and have members of the team volunteer or accept pieces of work.

Scrum Practices
The Scrum practices are the mechanics of how a project progresses. Of course,
the practices are based on the Scrum philosophy and organization. The basic
work process is called a sprint, and all other practices are focused on support-
ing a sprint.

A Scrum sprint is a firm 30-day period called a time box, with a specific
goal or deliverable. At the beginning of a sprint, the team gathers for a one-day
planning session. In this session, the team decides on the major goal for the
sprint. The goal draws from several items on the prioritized product backlog
list. The team decides how many of the highest-priority items it can accomplish
within the 30-day sprint. Sometimes, lower-priority items can be included for
very little additional effort and can be added to the deliverables for the sprint.

After the team has agreed on a goal and has selected items from the backlog
list, it begins work. The scope of that sprint is then frozen, and no one can
change it—neither the product owner nor any other users. If users do find new
functions they want to add, they put them on the product backlog list for the
next sprint. If team members determine that they can’t accomplish everything in
their goal, they can reduce the scope for that sprint. However, the 30-day period
is kept constant.

Every day during the sprint, the Scrum master holds a daily Scrum, which is
a meeting of all members of the team. The objective is to report progress. The
meeting is limited to 15 minutes or some other short time period. Members of
the team answer only three questions:

■ What have you done since the last daily Scrum (during the last 24 hours)?
■ What will you do by the next daily Scrum?
■ What kept you or is keeping you from completing your work?

The purpose of this meeting is simply to report issues, not to solve them.
Individual team members collaborate and resolve problems after the meeting as
part of the normal workday. One of the major responsibilities of the Scrum
master is to note the impediments and see that they are removed. A good
Scrum master clears impediments rapidly. The Scrum master also protects the
team from any intrusions. The team members are then free to accomplish their
work. Team members do talk with users to obtain requirements, and users are
involved in the sprint’s work. However, users can’t change the items being
worked on from the backlog list or change the intended scope of any item with-
out putting it on the backlog list.

At the end of each sprint, the agreed-on deliverable is produced. A final
half-day review meeting is scheduled to recap progress and identify changes that
need to be made for the following sprints. By time-boxing these activities—the
planning, the sprint, the daily Scrum, and the Scrum review—the process
becomes a well-defined template to which the team easily conforms, which con-
tributes to the success of Scrum projects.

sprint a time-controlled mini-project that
implements a specific portion of a system

456 PART 5 ■ Advanced Design and Deployment Concepts

Trends in Technology Infrastructure
The technology infrastructure refers to the computing devices along with the
operating system and communication software that allow those devices to func-
tion. The rapid pace of change in microprocessors for the past 30 years has
allowed manufacturers to bring a continual stream of faster, more powerful
computing devices to market. At first, there was the tremendous growth in the
speed and computing capabilities of personal computers. The same increased
capacity also occurred in reasonably priced server computers. No longer were
large, expensive mainframe computers necessary to support high-speed and
high-capacity computers. More recently, as the increase in capacity of personal
and server computers has become more moderate, the most rapid changes are
occurring in such handheld mobile devices as tablets and smartphones.

It is always difficult to predict where the next area of rapid growth will
occur, and we won’t try to do so in this book. However, these advances in
equipment have led to more advanced and sophisticated application software.
And not only have the software applications become more complex, but they
also have had to be developed more rapidly to keep pace. Developers must be
quick and agile just to keep up. This trend will continue in the future and will
undoubtedly open up new opportunities for providing software applications in
many different forms and on many different devices.

We will discuss the technology infrastructure in the following three areas:
client and end-user devices, Internet and telephone communications, and back-
end computing infrastructure for hosting applications.

Client Computing Devices
This is a broad category of devices that users interact with to communicate, play
games, retrieve information, and perform everyday tasks. The most common
devices are desktop, laptop, and notebook computers. However, the rapid rise
of small portable devices, such as tablets and ebook readers, has broadened the
utility of screen-based user computing. The exponential growth of Web technol-
ogy has made these devices even more useful—for businesses and for indivi-
duals. And not only has Web technology and availability expanded
exponentially (with wired and wireless LANs), it has been coupled with wireless
telephone communications and is now available everywhere and anytime. The
combination of these elements—portable, mobile devices and the wide availabil-
ity of the Internet—has opened up a whole new world of opportunity and
challenge for today’s developers.

The capabilities of these devices continues to expand. Cross-capability also
continues to drive new devices with expanded functions. For example, smart-
phones are no longer just telephone devices; they can also be used to play
games, take pictures, take video, send and receive e-mail (with graphic attach-
ments), browse the Internet, and watch TV. In the United States, the number of
smartphones surpasses the number of PCs. Similarly, today’s automobiles pro-
vide not just transportation but maps and directions; they also take pictures
and videos of the view in front of and behind the vehicle. And book-reading
devices no longer just provide downloaded books; they can now be used to
review and purchase online books, music, and video as well as watch movies
and TV. Many of these new devices are telephone and Wi-Fi enabled; thus, con-
nectivity is always available by utilizing the most rapid methods. This trend
toward wider connectivity, enhanced functionality, and increased mobility will
continue into the foreseeable future. Figure 14-8 shows the iPhone and several
of the applications that are available for it.

Software for mobile devices is also changing. Three types of applications are
currently found on stationary and mobile devices. The first type is a stand-alone
application—for example, a word-processing application or an image-editing
application—that executes on a single computer without requiring connectivity

CHAPTER 14 ■ Current Trends in System Development 457

to any other device. We refer to this type as a device-top application. The
second type is a device-top application that is freestanding. Free-standing
Internet applications are indeed device-top applications, but they access the
Internet for certain functions—for example, iTunes. iTunes allows you to create
playlists and to play music stored on your computer. However, when the com-
puter has access to the Internet, iTunes also connects to Apple’s iTunes site to
provide broader and richer multimedia capabilities. The third type of applica-
tion is browser-based software. A browser-based application is an Internet
application that must have a browser, such as Internet Explorer or Firefox, to
execute.

Before 2010, stand-alone device-top applications for mobile devices domi-
nated the software market. Since then, new free-standing or browser-based
Internet applications have outpaced stand-alone applications. Later sections of
this chapter will further discuss software specifics for Internet-enabled
applications.

These new devices produce all types of challenges for software developers—
operating system developers and information system developers. For example,
many of these devices require 24/7 availability and sometimes even 24/7 connec-
tivity. They require high-definition multimedia capabilities, with user interfaces
that are rich, engaging, and intuitive. The small screen size of many of these
devices brings extra challenges regarding how to best present information that
is elaborate and readable. Users now expect almost instant availability and
access to information.

Although the news media focuses primarily on consumer devices for the
general public, organizations and businesses continue to move rapidly toward
the adoption of these new technologies. Product-based industries continue to

FIGURE 14-8
iPhone with several applications

O
le
ks

ly
M
ar
k/
S
h
u
tt
er
st
o
ck

.c
o
m

device-top application a computer
application that is built to execute on a local
computer (such as a desktop) without requiring
a client/server connection

free-standing Internet application a
client/server application that is self-contained
and doesn’t require the use of a Web browser

browser-based application a client/
server application that executes locally within
the control of a Web browser

458 PART 5 ■ Advanced Design and Deployment Concepts

seek new ways to handle, store, and distribute their products more efficiently
and effectively. Service-based industries utilize stationary and mobile devices to
provide enhanced levels of information and service for their clients.
Opportunities abound for new applications to be developed and deployed on
these devices.

Internet and Telephone Communications
The Internet is an incredibly complex system of interconnected computers and
smaller networks. Sometimes, it is called the network of networks because it
consists of millions of private, public, business, academic, and government net-
works. What ties all these individual computers and networks together is the
Internet backbone, which consists of the primary data paths from large, strate-
gically located networks and routers.

The communication infrastructure also continues to change rapidly.
Historically, the technologies of the Internet, the telephone, and television have
grown up separately. Recently, we have seen the migration and merging of
these three technologies’ capabilities—from Internet to telephony, from tele-
phony to Internet, from broadcast TV to Internet TV, and so forth. One can
use the Internet not only to have audio and video communication sessions but
to also place telephone calls. One can also access the Internet through wireless
telephone connections. And one can watch TV and movies on either Internet-
enabled or telephone-enabled devices.

Long-distance telephone communication and long-distance Internet commu-
nication have very similar requirements and capability. Because of that, some of
the largest voice carriers are also the owners of the largest Internet backbone. In
fact, Verizon become the world’s most connected Internet backbone in 2010.
Verizon is also the first company with plans to increase backbone speeds to
100 Gbits per second. In recent years, the growth of purely Internet traffic has
moderated slightly. However, this has been more than offset by increases in tele-
phone traffic, which includes synchronous phone calls, text, messaging, and
multimedia.

The last mile has typically been and continues to be the most challenging
element in telephone communications and Internet access. The term refers to
that part of the communication link from the last backbone node to the local
user. There are various methods used to implement this final link. Most com-
mon is by using telephone lines or cable TV (CATV) lines (either copper or opti-
cal fiber). Telephone lines have always been bidirectional. Now CATV has
added bidirectional communication capability. More recently, due to the rapid
growth of mobile devices, wireless solutions are becoming more prevalent. With
the advent of 4G networks, the communication speeds and bandwidth are
increasing dramatically. The advent of 4G networks will accelerate the penetra-
tion of mobile devices, including smartphones.

Back-End Computing
Back-end computing refers to the server computers that provide the content—
dynamic and static—for all applications that access servers through the Internet.
These applications include Internet-enabled free-standing applications as well as
browser-based applications. Obviously, any type of client-server application
requires server support. As more and more client computers try to access a
particular application, the workloads on the servers becomes incredibly heavy.
In Chapter 6, we discussed the elements of designing the network, including
some of the alternatives: cloud computing, colocation, virtual servers, and
virtual private networks. Those alternatives are only available because of the
expansion of back-end computing capabilities.

Several factors are driving the need for large back-end computing services.
The trend toward continuous connectivity to the Internet is one of them.

Internet backbone the primary data
routes between large, strategically intercon-
nected networks and routers on the Internet

last mile the final leg that delivers
connectivity from the Internet network
to the customer

CHAPTER 14 ■ Current Trends in System Development 459

Another is the type of applications that are now desired by businesses and con-
sumers. Today, many applications in the world of commerce keep a history of
all the transactions that occur. For example, your phone company keeps track
of every call made on your phone, with a tremendous amount of detail: date,
time, to whom, how long, and so forth. The amount of data storage needed to
maintain this amount of data is tremendous. Whether good or bad, organiza-
tions are keeping records of all types of activities, including purchases, credit
card transactions, phone calls, Web sites visited, and even mouse clicks.
Massive amounts of data storage are required to maintain this history (and
then data mining it).

Another interesting trend is the consolidation of processing in central loca-
tions. When desktop and laptop computers first became relatively inexpensive,
many applications and much business processing were done either on client
computers or on localized networks. However, as larger and larger amounts of
data are being captured, analyzed, and shared, it is more productive to use cen-
tralized servers, maintaining a single centralized copy and distributing only the
results of data mining or data processing. Examples of the centralized processing
and storage include such things as Google apps, Office 365, and Apple’s cloud
for consumers. (You can archive your music on Apple’s “cloud” and not have
to store it locally.)

All these factors have provided the impetus for organizations to consolidate
computers in colocation facilities and server farms or purchase hosting services
from companies that provide virtual servers or cloud computing. The two big-
gest activities on the Web today are searching and social networking.
Companies—such as Google, Yahoo!, Microsoft, Facebook, and Twitter—that
provide those services have tremendous server farms consisting of tens of thou-
sands of server computers. Other large companies that sell hosting services also
have server farms in the thousands of computers. Figure 14-9 shows a typical
server farm within a data center.

Content delivery networks (CDN) are also a rapidly increasing component
of back-end computing. Because the Internet allows worldwide connectivity to
any Web site, if the Web site is hosted at one location, many clients would have
long transmission distances, with corresponding delays. To ameliorate this prob-
lem, many Web sites distribute their hosts at several locations around the world.

FIGURE 14-9
Server farm within a data center

E
im

an
ta
s
B
u
za
s/
S
h
u
tt
er
st
o
ck

.c
o
m

460 PART 5 ■ Advanced Design and Deployment Concepts

CDN providers, such as Akamai, Limelight, and EdgeCast, are companies that
host and deliver this content from locations that are physically located closer to
large markets of clients. CDN works especially well for such static content as
images, audio, and video.

Trends in Application Software Availability
Partly due to the changes in the technology infrastructure described earlier, peo-
ple and organizations are finding new ways to deploy and provide applications.
Historically, when a large or small organization needed a software application
to support some organizational procedure, it either developed that software
itself or, if the problem was general enough, purchased software and modified
it to fit the in-house procedure. One of the major trends in today’s information
systems environment is that new methods are available for obtaining software
functionality. Let us discuss several of the more prevalent ones.

Software as a Service (SAAS)
A service is something that we purchase that does something for us. For exam-
ple, we consider our utilities to be services. We don’t have to have our own
power generator to get electricity. We just buy what we need as we need it.
Another example is service on our vehicles. When something breaks on our
cars, we go to auto mechanics and ask them to fix it. We don’t need to have
our own repair shop. We purchase only the service.

Software as a service (SAAS) follows that same basic idea. If an organi-
zation requires some services—for example, bookkeeping and accounting
functions—it can either build or buy an accounting software system.
Alternatively, it could find a firm that provides accounting services and buy
only the accounting services it needs. As with any other utility type of service, it
would purchase and pay only for those services it requires. It doesn’t have to
purchase—or install or maintain—the software system. Sometimes, this is
referred to as on-demand software.

Although the impetus for SAAS originally involved business software, more
general-purpose consumer functions are also being provided as a service—for
example, the editing and manipulation of photos and other graphics. You can
purchase iPhoto or Adobe Photoshop and install it on your personal computer
if you want to manipulate your own photos. Alternatively, there are now many
Web-based photo services that provide many of these same functions. In many
of those instances, not only does the user not have to buy the application
software, but the service is also financed by advertising and is provided free
to users.

SAAS software is usually hosted on a server farm, and the functionality is
distributed over the Internet or a VPN. SAAS can be divided into two catego-
ries: client-data-oriented services and tools services. Each of these can also be
further divided into business or organizational services and end-user services.

Client-data-oriented services are those services that maintain information
about and data for each client. Each client has an account and requires authen-
tication before it can use the service. If there are multiple employees that use
the system, each must have access to a log-on capability. Common business-
oriented SAAS services include accounting, customer relationship management
(CRM), human resource management (HRM), content management (CM), sup-
ply chain management (SCM), and enterprise resource planning (ERP).
Common end-user SAAS services include blog hosting, content management
hosting, and photograph hosting. In all these cases, the client allows the SAAS
provider to host and maintain the client’s data. Depending on the sensitivity
and importance of the data, this can require a high level of trust on the part of
the client toward the SAAS provider.

software as a service (SAAS) a
software delivery model similar to a utility, in
which the application and its associated data
are accessed via the Internet without locally
installed programs

on-demand software another term for
SAAS

CHAPTER 14 ■ Current Trends in System Development 461

The major impetus for using an SAAS provider is the reduced cost of the
service. For many end-user services, the cost is funded by advertising; therefore,
the service is free to the user. For businesses, the cost is reduced substantially
because none of the overhead of owning the software is required. Figure 14-10
itemizes the primary differences between SAAS and owning one’s own software.
Although the figure doesn’t specify dollar amounts, it should be evident that,
overall, using SAAS is less costly—in the number of costs and the amount of
each one.

SAAS tools often don’t save the user’s data. They just provide computer
tool capability. Examples of SAAS that are tools include computer-aided design
(CAD) tools and semiconductor design tools for businesses. There are also Web
sites that generate such things as passwords, md5 encryption, or public key and
private key combinations. In these instances, the users save their own data back
on their local workstation. There is no need for extensive data storage capability
by the service provider.

Application software that will be used in an SAAS environment must be
developed with that end use in mind. Business functions must be developed to
be able to handle all the varieties that occur across different companies. The
software must be option-driven so a given business or user can configure the
system to perform the functions as needed. Developing SAAS applications is
much more complex; in fact, the software is often adjusted over time as new
users require new functionality.

Other critically important issues with SAAS applications have to do with
the security of the data. First, each client’s data must be secure from outside
intrusion. The data center where the equipment is maintained must also be
physically secure, with adequate backup and recovery processes in place.
Second, there must be clear and robust isolation of client data among the multi-
ple client databases. Each client’s data must be secure and incapable of being
viewed by any other client. Just like providers of cloud computing and coloca-
tion services, SAAS providers must maintain high levels of security.

Open-Source Software
Open-source software (OSS) is one of the truly remarkable phenomena in the
recent growth of the software industry. In the very earliest days of computer
programming, application software was developed for a specific business or

Costs Purchasing/owning software SAAS

Software license substantial

Development or customizing substantial

Implementation and installation substantial

Usage fees

substantial

not required

not requiredConfiguration

IT support staff

substantial Application support staff

requiredTraining of users

Servers, networks, data storage substantial

required (possibly) Internet usage

not required

not required

not required

not required

as consumed or used

one time initialization

not required

required

as consumed or used

required

FIGURE 14-10
Comparison of owning software
versus SAAS

open-source software a method of
developing, delivering, and licensing software
that makes the application source code freely
available to any interested developer or client

462 PART 5 ■ Advanced Design and Deployment Concepts

organization in order to satisfy a specific need. These software applications were
at first developed internally. However, because of the commonality of business
needs within specific industries, software development companies soon became
prevalent. A software firm that specialized in a specific industry could consoli-
date its knowledge, expertise, and central pool of program source code to pro-
vide application software more efficiently and effectively. This phenomenon
started in such narrow industry markets as life insurance, health insurance, and
banking. (These early systems were often priced in the millions of dollars due to
the limited customer base for these specific products.) The next step was the for-
mation of software companies that developed applications for the general mar-
ket. Because the market for these products is so large, these applications are
usually sold for reasonable prices—the $30 to $1,000 range—even though they
cost millions of dollars to develop. Such products include Microsoft Office,
Adobe Photoshop, Intuit QuickBooks, and TurboTax.

At some point, developers began using a different model to provide
applications—methods with various names, such as shareware, freeware, and
free software. In 1998, the term open-source software came into existence with
the formation of the Open Source Initiative (OSI), which is the organization
that currently defines the terms and conditions of open-source definitions. The
definition of open-source software includes a method for distributing application
software and a method for licensing the software. Open-source software is dis-
tributed in source code form. It may also be distributed as a binary executable,
but “open” means the source code is freely distributed. An open-source license
gives the licensee the right to copy, modify, and redistribute the source code.
Redistribution can usually be as a modified application or part of a larger,
more elaborate application. Usually, credit must be given to the creator of the
original source code.

The OSI has set specific requirements that have become the industry stan-
dard for the definition and use of open-source software. According to the OSI,
simply giving away the source code doesn’t make an application open source.
It must conform to several criteria, including such items as:

■ Source code—The source code must be open for distribution.
■ Freely redistributable—Recipients of the source code may also distribute it.
■ Derived works—The source code can be modified and distributed in its

modified form.
■ Distribution of license—The open license should apply to all derived or

modified software.
■ No discrimination—The license can’t restrict who can receive or use the

software.
■ No related restrictions—The license can’t restrict other software that may be

distributed in conjunction with the open-source software.

It is estimated that the value of open-source applications distributed each
year approximates $60 billion. There are over 180,000 open-source projects in
the world today. There are also over 1,400 different unique versions of open-
source licenses. Obviously, this has become a major part of the software appli-
cation industry, and it must be an important consideration in the development
and use of application software within any organization or even for an individ-
ual developer. Many businesses and organizations use open-source software as
part of their normal business operations and as internal business tools.
Specifically, considerable software development is done by using open-source
software development tools. Figure 14-11 illustrates a few of the many types of
open-source software.

The business model for open-source software is also an interesting phenom-
enon. Because the software isn’t sold or licensed for a fee, there has to be some
other method for generating revenue. There are all types of organizations
that develop open-source software—from individual programmers to large

CHAPTER 14 ■ Current Trends in System Development 463

foundations or organizations. The methods for funding these organizations also
vary widely. The most obvious method, of course, is to request donations—
either from individuals or other businesses. The developing organization will
often have additional products or services that are sold for a price. Such things
as installation services, code modification services, training, or technical support
can also provide revenue. Another option is to have multitier or proprietary
add-ons to the source code. Often, a base system is free, but a professional ver-
sion with additional capabilities is sold for a price or for a subscription fee.
Finally, some organizations have internal open-source groups that are funded
by the organization itself. Universities have often begun research projects that
became well-accepted open-source applications or system software. In addition
to universities, some businesses believe that participation in the open-source
community makes good business sense and will fund projects and applications
for open-source distribution.

Perhaps the most interesting aspect of open-source software is how the
development work gets done. For small open-source projects, an individual
often develops the system based on his or her own knowledge and skills.
Similarly, some projects have two or three developers who have worked
together on other projects and who pool their skills and resources to develop
the system. However, for large projects—for example, Apache, PostgreSQL, or

Category Name Description

Business Open Office

Open Project

Databases MySQL

NetBeans

PostgreSQL

EclipseDevelopment

GIMPGraphics applications

KTooN

Security and privacy GNU Privacy Guard

ClamWin

Word processing, spreadsheets, presentations,
drawing, and simple database functions

Project management

Database management system

Java-based IDE with toolkit

Database management system

Java-based IDE with toolkit

Graphics manipulation

Vector animation toolkit

Encryption tool

Antivirus program

Aptana StudioWeb development

SeaMonkey

Servers/Internet Unix

Apache

Comprehensive Web-development IDE for Web
languages

Browser, e-mail, newsgroup, HTML-authoring
tool

Operating system; several versions

Web server and other similar projects

WordPressInternet applications

phpBB

Joomla

Blog system

Bulletin board system

Content management system

FIGURE 14-11
Several open-source software
applications

464 PART 5 ■ Advanced Design and Deployment Concepts

WordPress—a large group of developers is involved. Endeavors such as
these usually have several ongoing projects and function much like a major
organization. One major difference is that the organization that develops
the system may not have an office or central location. Meetings and communi-
cation are often done entirely through online tools and online documentation.
Figure 14-12 lists some of the groups that may be involved in a large open-
source project. Remember that for most large projects, the participants reside in
locations throughout the world. Communication and coordination are done
entirely through e-mail, online meetings, conversations, bulletin boards, discus-
sion groups, and tracking logs.

The Web as an Application Platform
As the use of the Internet in mobile and computing devices becomes more wide-
spread, a fundamental shift in our society—the way we work and the way we
interact—is occurring. For many people—either at work or at home—the Web
browser is the computer program they use the most; in fact, for some people, it
is the only application they use. For many others, Web-based applications are
used in almost all aspects of their employment. This trend toward immediate
connectivity has also caused a fundamental shift in software development and
deployment. The Web has become the primary environment for the deployment
of new software applications and systems. The majority of new applications are
being written for the Internet—either as browser-based applications or as free-
standing Internet applications.

Development of this type follows the same pattern that has been discussed
throughout this book. In this section, we focus on browser-based applications
as a new type of development platform for application software.

FIGURE 14-12 Open-source software types of stakeholders

Group Description Responsibilities

Directors

Team leaders

A core group that has control of the software system

and organizes the work to be done. Sometimes, an

organization can afford to have full-time paid

directors.

Experienced developers who take responsibility for

major portions of the system; often involved in

software vision decisions.

Developers/

participants

Usually volunteer developers who accept

assignments and do the actual programming.

Establish the vision and strategy.

Approve major upgrades/enhancements.

Collaborate on design of new features.

Set schedules.

Set the organizational structure.

Choose team leaders.

Collaborate on designing new features.

Organize the work for their portion.

Verify the work quality.

Maintain control lists of work in progress.

Manage the tasks and developer assignments.

Approve and manage developers.

Write code.

Conduct tests.

Write documentation and training.

End users The people who use the application to do their work.

Typically, they are not technically experienced.

Use the application software.

Refer to the documentation and community

discussion boards to get answers.

Identify errors.

Suggest enhancements.

User

community

Users who have downloaded and installed the

open-source software for use in their organization.

Typically, they are technically experienced.

Install the software application.

Join the community of users.

Post comments in forums and discussions.

Log identified errors.

Suggest enhancements.

CHAPTER 14 ■ Current Trends in System Development 465

Three major types of Web applications can be identified, as shown in
Figure 14-13. The first type—Web pages—became prevalent in the mid- to late-
1990s. These pages weren’t really applications. They were information docu-
ments with static text, static images, and hyperlinks to navigate from page to
page throughout the site. Their intent was to provide information and content
via a hypertext type of document. Forms were also supported to enter informa-
tion to be sent back to the site and captured by a program running on
the server.

The second type of Web site began to appear early in the 2000s. These sites
were more interactive, with animated graphics and plug-in modules that allowed
richer content, and the functionality began to approach desktop applications.
During this period, many new tools were invented to make Web sites much
more dynamic, including such things as Java applets, Active X controls, and
JavaScript scripting language. Other browser plug-ins—such as Flash,
QuickTime, and Shockwave—allowed Web pages to function as rich applica-
tions that delivered all types of multimedia. The addition of efficient back-end
databases permitted more dynamic information to be added to these pages. This
was the era of attractive and engaging Web sites.

Most recently, we have seen the rapid growth of Web sites that are not only
dynamic but are also truly interactive—much like desktop applications. In 2004,
the term Web 2.0 was first used to characterize this Web trend. It hasn’t been
precisely defined, but it generally refers to these highly interactive Web sites.
Another term for this type of Web site, which we will discuss later in this sec-
tion, is Rich Internet Application (RIA). The tools that allow these types of
Web sites include more advanced JavaScript capabilities, such as Ajax, Java
applets, widgets, plug-ins, and other components that execute within a browser
on the user’s Internet device. These not only allow interaction with the Web site
via hotlinks, but they also support interaction and processing on the Web page
itself. Thus, these pages function like a desktop software application.

In addition to interactivity, a major element of this recent phase is the abil-
ity to communicate and collaborate by using Web technology within the brow-
sers. Such things as chatting, conferencing, sharing documents, and sharing
photos and other personal relics have added a social collaboration element to

FIGURE 14-13
Evolution of the types of Web pages

C
o
u
rt
es

y
o
f
A
p
ac

h
e,

IM
D
B
,
an

d
G
o
o
g
le

Web 2.0 a loosely defined, nonstandard
term used to refer to Web sites that permit
user-generated content and user interaction,
such as social networking sites

466 PART 5 ■ Advanced Design and Deployment Concepts

Web sites. Increasingly, the users themselves are using these tools to set up their
own Web sites as blogs, wikis, or accounts on such sites as Facebook and
Twitter. In fact, today the largest use of the Internet is for social networking.
Thus, whereas most Web sites 10 years ago were created by existing organiza-
tions and businesses, there are many more Web sites today created by indivi-
duals for personal reasons or to start a small business. Anyone can learn the
opinions of others, express their own opinions, set up a blog, or even begin an
online service or business. Web-based tools are available for all types of users
to do almost anything on the Web.

The Internet is so all-encompassing today that it is next to impossible to cat-
egorize all the tools, techniques, methods, approaches, and capabilities that are
found there. And, of course, it is an evolving landscape. Some of the tools and
techniques that are popular today will continue to grow; others will fade away.
In the following sections, we discuss three areas of Web application develop-
ment. However, it should be recognized that these three topics aren’t generalized
classifications and especially not mutually exclusive topics.

Add-ons and Application Program Interfaces (APIs)
APIs are a powerful technique in the growth of capabilities for Web-based sys-
tems. In Chapter 10, an API was defined as the set of public methods that
are exposed to external systems. In other words, they are the method names
that any external component utilizes to plug into the system. Most OSS appli-
cations are also distributed with API documentation. However, many proprie-
tary systems also publish an API so other developers can provide additional
tools for users of these systems. Let us define a few of these terms and look at
some examples.

Types of Web Software Components
Plug-ins are software components that add specific capabilities to a larger soft-
ware application. They are found at many different levels of Web applications.
Some work directly with the browser—for example, ones that allow browsers
to play video, scan for malware, or add developer tools. In addition, many Web
applications have plug-ins—for example, the OSS application WordPress.
WordPress is a blogging software application that users can download and host
on a server. It has many third-party functions (i.e., written by non-WordPress
employees) that can be downloaded and installed. These allow WordPress to do
such things as caching, keeping statistics, adding more menus, and locking
pages. Plug-ins can be written by third parties because WordPress was built
with specific access points and has a well-defined API that developers can use
to integrate their plug-ins with the system. Figure 14-14 lists a few popular
plug-ins for Wordpress blogging software out of the hundreds that are available.

A widget is a type of plug-in, but it usually has a user interface component.
In other words, it is a plug-in that can be placed on a Web page and is visible to
the user. There are two kinds of widgets: browser widgets and application wid-
gets. An example of a browser widget would be a time-and-temperature widget
or a stock market widget that is displayed in one corner of the browser. It is
always there—no matter what Web page is being viewed at the time. An exam-
ple of an application widget would be something that enables the user to write
blogs by using rich text formatting. A different application widget might main-
tain and display statistics about the blog, such as user comments or visits to the
page. A gadget is another term that is used to describe a widget. Gadgets are
most frequently used on a desktop, although some Web sites refer to their wid-
gets as gadgets. Figure 14-15 illustrates some Google gadgets that are available
for Web pages for Google accounts.

A theme is a type of add-on that focuses on the look and feel of either the
browser or the Web application. The development and use of a theme depends

plug-ins a software component that adds
specific capabilities to a larger software
application

widget a type of plug-in that focuses on
enhancing the user interface with additional
capability

gadget another term for a widget—often
used for widgets that reside on a desktop

theme a type of add-on to an application
that allows the look and feel, such as colors
and layout, to be changed

CHAPTER 14 ■ Current Trends in System Development 467

FIGURE 14-15 Sample Google Web page gadgets

Plug-in name

Ads Manager Plug-in

Plug-in description

Quickly and easily inserts any ad code unit to your posts
from Forum topics.

Akismet Protects your blog from comment and trackback spam by
accessing the Akismet database.

Artiss YouTube Embed Embeds YouTube videos in your blog.

Awesome Flickr Gallery Creates and customizes a gallery of your Flickr photos
on your blog.

Fast Secure Contact Form Easily configures and adds contact forms to your blog to
allow users to send e-mails to the site administrator

Google Analytics Popular Posts Uses Google Analytics API to fetch data from your analytics
account and post it on your blog.

Social Sharing Toolkit Enables sharing of your blog content via popular social
networks.

What Others Are Saying Uses the RSS field in your Blogroll to display the most
recent post from sites that you link to.

WP to Twitter Posts a Twitter status update from your blog.

WP Super Cache Generates a static html file from your dynamic WordPress
blog for faster service.

FIGURE 14-14
Sample plug-ins available on a
WordPress blog

C
o
u
rt
es

y
o
f
G
o
o
g
le

468 PART 5 ■ Advanced Design and Deployment Concepts

on the availability of an API that defines how to integrate CSS files and images
into the application. Themes are a powerful technique that can drastically
change the entire layout and look of a Web page. An example that shows dra-
matic differences of exactly the same content but with different themes is found
at www.csszengarden.com.

A toolbar is a type of add-on that can provide multiple capabilities to the
browser. It functions a little like a menu in that it provides a selection of func-
tions or hotlinks for the user. Browser toolbars can be supplied by the browser
provider; third-party toolbars are also available. These often consist of links
that go to specific services provided by the third party. Toolbars may also be
added to specific pages as part of the installation of a plug-in. If the plug-in has
various functions that it can perform, it can add a menu or a toolbar to allow
the user to access those functions.

Web mini-apps—sometimes referred to as Web apps—come in many varie-
ties. Some of them are stand-alone applications that don’t require a browser—
for example, those that are available for such smartphones as iPhone and
Android. (This is probably the largest number of apps available today.) Many
of these function as desktop or device-top applications and don’t require a
browser to execute. Others are complete Web sites and execute their code
within the browser. Still other mini-apps are plug-ins that are attached to a par-
ent Web site and can only be accessed through the parent. Perhaps the most
common example of these are Facebook apps. Facebook provides an extensive
API definition that allows third-party developers to create many different types
of games, personal apps, and even commercial apps.

Development
Historically, most software was developed by organizations—either regular
businesses for their internal use or software development firms. However, open-
source software, Web mini-apps, and add-ons are being developed by entrepre-
neurial independent programmers. Literally tens of thousands of programmers
have joined the ranks of independent entrepreneurs. The locus of software
development has moved out of business and industry and into the consumer
arena. Everyone wants “cool stuff” for their phones, tablets, and gaming
devices, which has nothing to do with such business applications as accounting
or inventory management.

Another reason a cottage industry has developed is the ease of entry into soft-
ware development. In the past, software development required large mainframes
or large servers that cost hundreds of thousands if not millions of dollars. Only
those corporate employees with access to these expensive resources could be pro-
grammers or developers. Today, anyone with a laptop and access to the Internet
can obtain open-source software and begin developing applications.

In earlier chapters, we discussed the various stakeholders in the development
of a software system. These include the client, the user, the architect, the analyst,
the designer, and the programmer. When an entrepreneur develops software, he
or she plays all these roles. Problems can occur if the developer’s view of the
problem to be solved is too limited. However, in some situations, the scope of
the application is often small enough that even that isn’t a major problem.

Mashup Applications
The open-source perspective also permeates the development and use of Web
applications. Today, thousands of Web sites provide APIs to access the various
services provided on the Web site. Through the use of these open APIs, the ser-
vices on one Web site can be added to the total presentation of a different Web
site. The idea of a mashup is to “mash” the services of two or more Web sites
together to provide a new service or new way of viewing information. Mashups
are an important trend in software, particularly social software and Web 2.0.

toolbar a type of add-on usually comprised
of iconic menu items that access the capabili-
ties of the application or plug-ins in a user-
friendly fashion

Web mini-app a software application
that provides a complete set of functions but
that must be executed within the confines of
another application

mashup a type of Web site that combines
the functionality of several other Web sites
through the use of predefined APIs

CHAPTER 14 ■ Current Trends in System Development 469

www.csszengarden.com

Obviously, the key to mashups is the availability of open APIs provided by
various Web services. You will remember that an API is defined as a set of
method calls to a class or a component. For Web-based APIs, those calls are
expressed as particular URLs, which return to the originating source Web site.
In other words, a mashup is a combination of data or services from multiple,
physically separated Web sites.

One way to categorize these APIs is by whether they provide data or a ser-
vice through this URL access.

Data-type APIs often provide indexes of documents, images, videos, or
items for sale. Another example of a data-type API is a news aggregator for
news feeds or podcasts. Service-type APIs do such things as convert data from
one form to another—for example, a language translator or a URL shortener.
Another example of a service-type API is a security Web site that performs
authentication or encryption. Communication services, such as instant messag-
ing or e-mail, can also be embedded within a parent Web site through a service-
type API. Of course, some APIs provide both. For example, the Google Maps
API not only provides the raw geolocator information but will render it in a
user-friendly viewer.

The more popular open APIs used in mashups include Google Maps API,
YouTube API, Twitter API, Flickr API, Facebook API, eBay API, and Google
Search API. Figure 14-16 is a snapshot of a mashup that lets you build your
own dashboard page. It uses APIs from many Web sites.

FIGURE 14-16 Mashup of several APIs to create a dashboard page

C
o
u
rt
es

y
o
f
P
ag

ef
la
ke

s

470 PART 5 ■ Advanced Design and Deployment Concepts

From a developer’s viewpoint, open APIs are a simple yet powerful tool to
enhance and extend a Web site. In fact, some APIs are so simple that the end
users are able to add functionality to their Web site themselves. It isn’t uncom-
mon to have personal blogs or Web sites with search boxes, maps, or videos
embedded in the Web site. This trend will probably continue as more open
APIs are made available. Figure 14-17 shows a Web site that compares the
capability of Google and Yahoo!’s search engines. In this case, two simple APIs
are used and then the results are displayed in an interesting graphical format.

Rich Internet Applications (RIA)
Another very powerful trend in the use of the Web as an application platform is
the development of Rich Internet Applications (RIAs). An RIA is a Web appli-
cation that is built to have the same rich functionality and responsiveness as a
desktop application. Because it is Internet connected, it also frequently delivers
rich multimedia. Desktop applications can be very versatile and extremely
responsive—their functions constructed to do exactly what the user requires—
with a very efficient and rapid response. In addition, the layout and presentation
of the desktop can be tailored for optimal user friendliness.

Historically, Web applications have had more limited capabilities. As
explained previously, the early vision of the Web (and hence the development
of Web browsers) was as a means of presenting information. Recently, however,
as more tools have become available, Web applications have permitted a much
richer user experience, with many services and capabilities. Today, Web applica-
tions are approaching desktop applications in versatility and usability.

The key to the development of RIAs is the addition of computing on the
local client computer—within the browser itself. The delay going to and from
the server prohibited a rapid and rich user experience in purely URL-driven

FIGURE 14-17 Comparison of results from Google and Yahoo! search engines

C
o
u
rt
es

y
o
f
La

n
g
re
ite

r.
co

m

Rich Internet Applications (RIAs)
a type of Web site that provides active user
interaction as well as delivers rich multimedia

CHAPTER 14 ■ Current Trends in System Development 471

Web sites. RIAs require enhanced computing capability locally and limited
round trips to the server. We will now describe five of the major approaches to
developing RIAs. As is frequently the case, there are open-source solutions, pro-
prietary solutions, and standard specifications for new browser capabilities. It
will continue to be an interesting world for developers and users as these vari-
ous platforms compete and migrate to new levels. It is difficult to illustrate in a
single image all the power and capability of an RIA Web site. Figures 14-18
and 14-19 illustrate two Web sites that include interesting animation and allow
dynamic user interaction.

JavaScript and Ajax Libraries
JavaScript has become the de facto standard for adding desktop-like computing
within browsers. It is a powerful, object-based scripting language that can detect
and trigger actions based on keystrokes within browsers. It is also used to access
and manipulate all the components on the Web page as part of the document
object model (DOM). (This is a hierarchical tree dynamically built by the
browser of every element on a given Web page.) Detecting keystrokes and
manipulating the DOM are two critical factors that allow JavaScript to support
almost any type of desktop-like behavior that is limited to the local client.

In the late-1990s, Microsoft developed a set of JavaScript methods and
techniques to allow data access to the server in order to dynamically update
and manipulate the Web page without having to refresh the entire Web
page. This set of methods and techniques, termed Ajax (an acronym for

FIGURE 14-18 RIA from Nike Plus

C
o
u
rt
es

y
o
f
n
ik
er
u
n
n
in
g
.n
ik
e.
co

m

472 PART 5 ■ Advanced Design and Deployment Concepts

Asynchronous JavaScript with XML), allows the Web application to communi-
cate with the server in the background (asynchronously) to request data, wait
for it, and then process it when it arrives. This added capability permitted
JavaScript to extend its desktop-manipulation capabilities to include dynamic
data updating.

The ability of JavaScript to support rich Web apps has been enhanced by the
proliferation of libraries of JavaScript tools. The most popular libraries include
Dojo, jQuery, MooTools, and YUI (Yahoo! User Interface). With the use of one
of these libraries, Web site developers have a whole set of functions—such as
user interaction, grids, graphs, Ajax, widgets, forms, and pop-ups—that add the
richness of a desktop application to a Web page.

ICEFaces and JavaFX
ICEFaces is an open-source framework that provides Java language APIs to
build and deploy server-based RIAs. The underlying framework that enables
ICEFaces is Ajax; hence, it depends on the JavaScript language but doesn’t
require programmers to interact with JavaScript. ICEFaces applications are
JavaServer Faces (JSF) applications and are included in the Java Enterprise
Edition toolset. The purpose of ICEFaces is to enable Java developers to utilize
their skill set with the Java EE development model and to protect them from
doing low-level JavaScript and Ajax programming.

Another, more recent Java-based toolset is JavaFX, which was introduced in
2007. As a relatively new language and platform, it is in the early stages of

FIGURE 14-19 RIA from Mini Cooper

C
o
u
rt
es

y
o
f
M
in
iu
sa

.c
o
m

CHAPTER 14 ■ Current Trends in System Development 473

providing comprehensive support for RIAs. However, JavaFX consists entirely
of Java constructs, and it executes as part of the Java Virtual Machine (JVM)
runtime environment. Because it runs under the Java Runtime Environment
(JRE), it can be used to build RIAs for most devices that can run the JRE. For
JavaFX 1.3, this includes desktops, browsers, and mobile phones. Another
advantage of using the JRE to produce RIAs with JavaFX is that there is more
consistency across browsers and platforms than with languages, such as
JavaScript, that depend on the implementation provided by each browser.

Adobe Flash Platform
The Adobe Flash platform was introduced in 1996 and is best known as a mul-
timedia platform for adding animation and interactivity to Web pages. Flash’s
power is in its ability to animate many elements on a Web page. It can capture
user input from all computer components, including a mouse, a keyboard, a
microphone, or a camera. It also supports bidirectional streaming of audio and
video. The Adobe Flash player is available on desktops, within browsers, and
on some mobile phones (but not the iPhone). With this rich history and back-
ground, Adobe has extended the Flash platform to enable the development and
deployment of RIAs. One major advantage of Flash is that the Flash player has
a 95–99 percent penetration rate on computers. It also has a very rich set of
multimedia functions that are supported by a deep set of development tools.
However, Flash is a proprietary product owned and licensed by Adobe and
hence must be licensed from Adobe, although some components have been
released as open-source products.

Microsoft Silverlight
Microsoft Silverlight is an application framework, similar to Adobe Flash, that
is part of Microsoft’s Windows Communication Foundation (WCF) .NET RIA
Services to support the development and deployment of RIAs. Silverlight was
introduced in 2007 and went through several rapid iterations before reaching a
rich set of components to enhance the user experience with Silverlight 5, which
was released in the fall of 2011. Silverlight requires a plug-in to execute, and
plug-ins for all the major browsers are available for download. As of 2011, it
had a penetration rate of approximately 75 percent; thus, it has grown very rap-
idly, although not as rapidly as JavaScript or Adobe.

A Silverlight application is developed as part of a Web Services application
within the WCF .NET RIA services. The Web Services app provides the func-
tionality on the server side, and the Silverlight app provides the functionality on
the client side. User interfaces are defined by using Extensible Application
Markup Language (XAML), which can be used to define graphics and anima-
tions that execute within the browser plug-in. Data access is also done asyn-
chronously; thus, pages can dynamically send and retrieve data to and from the
server without reloading pages.

HTML5
The World Wide Web Consortium (W3C) is the body that defines standards for
HTML and XHTML. As these standards are defined and agreed upon, all Web
browsers are expected to conform to them. Of course, in the real world, stan-
dards aren’t always conformed to, and even when a standard is agreed upon,
differences in implementation frequently produce different results. The Web
Hypertext Application Technology Working Group (WHATWG), a working
group of the W3C, began developing HTML5 in 2004, and in 2008, it published
the first working draft of the specification. As of 2011, the specification is still
in the Last Call stage of the Working Draft, with a target date for
Recommendation of 2014. Even though it appears that the specification won’t

HTML5 the new HTML specification that
standardizes RIA specifications for built-in
browser delivery

474 PART 5 ■ Advanced Design and Deployment Concepts

be fully completed for years to come, in reality, many of RIA capabilities identi-
fied in the specification have already been implemented in today’s browsers. In
fact, some proponents of HTML5 see it as the wave of the future, replacing
other RIA approaches.

The advantage of the HTML5 specifications for RIA Web pages is that rich
presentation of audio, video, graphics, and animation is built into the browsers,
without the need for specialized plug-ins or languages. For example, the new
HTML5 has such tags as <video>, <audio>, and <canvas> as well as other vec-
tor graphics manipulation tags to provide rich display of data and images. The
specification also includes APIs that can be used for manipulating elements on a
Web page. Such APIs as drag-and-drop, file handling, geolocation, and SQL
database access are included in the specification.

Chapter Summary
One of the most active trends in software development is
adaptive development methodologies. The world is chang-
ing in many ways, with new consumer devices, new ser-
vices, and new technology. To keep pace with these
changes, the way software is developed has also changed.

The most formal adaptive process is the Unified
Process (UP). It was one of the first methodologies to be
formalized, with specific definitions for iterations and
processes. Other more radical adaptive methodologies
are now being promoted and used. Two of the more pop-
ular ones are Extreme Programming and Scrum.

Extreme Programming (XP) and Scrum are method-
ologies that embody Agile principles. Two core elements
of XP are that system tests are written first and that
programmers work in pairs to design, code, and test
the software. Thus, when a function is completed, it has
not only been designed and coded, it has been reviewed
and tested.

The Scrum approach defines a specific goal that can
be completed within four weeks. During that four-week
sprint, the project team is protected from all outside dis-
tractions so it can complete the defined goal. A product
backlog of all outstanding requests is maintained by the
client, and changes to the work the team is doing are only
allowed between sprints.

Major trends in technology, mobile computing
devices, software availability, and Web access are the
driving forces behind the need to develop application
software more rapidly.

Client computing devices include all those devices
that allow users to communicate, play games, retrieve
information, and perform other life-related tasks. The
most common client computing devices are desktop, lap-
top, and notebook computers. However, the number of
computers will soon be surpassed by the number of
mobile devices, such as smartphones and tablet comput-
ing devices. These devices have become so pervasive
because of the expanded availability of Internet access

through wireless and telephone connections. Finally, the
availability of so many connected computing devices has
necessitated the growth of large-scale data centers with
very large server farms. These server farms, which some-
times consist of thousands of computers, are needed to
support the Internet activity of popular Web sites and
applications.

Historically, most software was developed within
large organizations and was private to that organization.
However, there is a trend toward sharing software appli-
cations among many users and organizations. One such
method is called Software as a Service (SAAS), in which
third-party companies have software that can be used by
many companies. Instead of delivering and installing the
applications to the purchasing organization, only the use
of the software is sold. The idea is to sell a service, such as
accounting, the same way a utility is sold to individual
households.

Another trend is providing software applications free
of charge as open-source software. Open-source software
is usually developed by individuals and teams of people
that are distributed throughout the world and work
together on an application in a loosely configured project.
The business model for this type of development is to not
generate revenue from the basic application but sell add-
on services and capabilities.

A final—and extremely important—trend is the use
of the Web as an application platform. The largest per-
centage of new application software being developed is
for Web applications. Coupled with the open-source soft-
ware trend, many Web-based software applications
provide APIs so Web-based applications can share func-
tionality and even be combined to provide new uses of
Web-based software. Most Web sites are also including
sophisticated local computing capabilities to provide a
Rich Internet Application (RIA). RIAs allow a Web-
based application to function much like a desktop appli-
cation, with multimedia and active user interactions.

CHAPTER 14 ■ Current Trends in System Development 475

Key Terms

browser-based application 458

device-top application 458

free-standing Internet applications 458

gadget 467

HTML5 474

Internet backbone 459

last mile 459

mashup 469

on-demand software 461

open-source software 462

pair programming 452

plug-ins 467

product backlog 455

product owner 455

refactoring 452

Rich Internet Applications (RIAs) 471

Scrum master 455

software as a service (SAAS) 461

sprint 456

theme 467

toolbar 469

UP discipline 447

Web 2.0 466

Web mini-apps 469

widget 467

Review Questions
1. What are the four UP phases, and what is the

objective of each?

2. What are the six UP development disciplines?

3. What are the three UP support disciplines?

4. List the basic principles of Agile Modeling.

5. Why is the word extreme included as part
of Extreme Programming?

6. List the core values of XP.

7. List the XP practices.

8. What is the product backlog used for in a Scrum
project?

9. Explain how a Scrum sprint works.

10. Explain the difference between device-top applica-
tions, free-standing applications, and browser-based
applications.

11. What is the “last mile” problem?

12. Explain what SAAS is and why it is an economically
attractive alternative.

13. What are the six licensing criteria that are usually
associated with open-source software?

14. List eight or 10 popular open-source applications.
You may include some not mentioned in the text.

15. Explain the evolution of Web pages.

16. Explain how an API works.

17. What is the difference between widgets and plug-ins
and themes?

18. What is meant by Web 2.0?

19. What is a mashup and why is it an important
contribution to Web 2.0?

20. What is an RIA and why is it an important
contribution to Web 2.0?

21. What is the difference between JavaScript and
JavaFX?

22. What is HTML5?

Problems and Exercises
1. The Unified Process (UP) was first developed by a

company called Rational, which is now owned by
IBM. On the IBM Web site, find any information
about UP tools available through IBM/Rational.
Briefly describe the suite of tools available. Also,
look on the IBM Web site and other Web sites
(such as the Agile Modeling Web site) for

opinions on the relationships and commonality
between the UP and Agile Modeling. Report
your findings.

2. Consider XP’s team-based programming approach
in general and its principle of allowing any
programmer to modify any code at any time in

476 PART 5 ■ Advanced Design and Deployment Concepts

particular. No other development approach or
programming management technique follows this
particular principle. Why not? In other words, what
are the possible negative implications of this prin-
ciple? How does XP minimize these negative
implications?

3. Visit the Web sites of the Agile Alliance
(www.agilealliance.org) and Agile Modeling
(www.agilemodeling.com). Find some articles on
project management in an Agile environment.
Summarize key points that you think make project
management more difficult in this environment than
in a traditional, predictive project. Do the same for
key points that make project management easier for
an Agile project.

4. Visit the Web site of the World Wide Web
Consortium (www.w3.org) and review recent
developments related to the HTML5 standard.

What are some of the basic components of the
standard? What are the major additions to
HTML4?

5. Find a company in your community that uses Scrum
or XP (or variations thereof) as its development
methodology. Learn how the company has applied
the methodology and how it applies the principles
and practices. Also, research what development
tools it uses and how well the methodology is
supported.

6. Find someone in your community who is working
on a software development project that is using
Agile principles. How was the team trained to use
Agile Development? How was this approach
adopted in the organization? What is the general
feeling about its success? What aspects does this
developer like? Which aspects does he or she find
frustrating or difficult to use?

Case Study

Midwestern Power Services

Midwestern Power Services (MPS) provides natural gas
and electricity to customers in four Midwestern states.
Like most power utilities, MPS has seen significant
changes in federal and state regulations in the last several
years. Federal deregulation opened the floodgates of
change, but there was little guidance from the federal gov-
ernment on how that would shape the industry’s future.
State legislatures also significantly changed their laws
and regulations. The industry went through tremendous
upheaval, with significant problems created by power
shortages at several California power companies. Today,
regulations such as the Sarbanes-Oxley Act are changing
the landscape again. These new regulations seriously
affect all areas of business, including accounting, record
keeping, power purchases, distribution agreements, and
customer consumption and billing.

New and proposed regulations seek to increase con-
trols and expand competition for electricity and natural gas.
The final form these regulations will take is unknown, and
the exact details will probably vary from state to state.

MPS needed to rapidly prepare its systems for these
new regulations. Three systems are most directly
affected: one for purchasing wholesale natural gas, one
for purchasing wholesale electricity, and one for billing
customers for combined gas and electric services. The
billing system isn’t currently structured to separate supply
and distribution charges, and it has no direct ties to the
natural gas and electricity purchasing systems. MPS’s
general ledger accounting system is also affected
because it is used to account for MPS’s own electricity-
generating operations.

MPS plans to restructure its accounting, purchasing,
and billing systems in the following ways:

■ Customer billing statements will clearly distinguish
between charges for supply and distribution of gas and
electricity. The wholesale suppliers of each power
commodity will determine prices for supply. Revenues
will be allocated to appropriate companies—for exam-
ple, distribution charges to MPS and supply charges to
wholesale providers.

■ MPS will create a new payment system for wholesale
suppliers to capture per-customer revenues and to
generate payments from MPS to wholesale suppliers.
Daily payments will be made electronically based on
actual payments by customers.

■ MPS will restructure its own electricity-generating
operations into a separate profit center—similar to
other wholesale power providers. Revenues from cus-
tomers who choose MPS as their electricity supplier
will be matched to generation costs.

MPS’s current systems were developed internally
many years ago. The general ledger accounting and natural
gas purchasing systems are mainframe based. They were
developed in the mid-1990s, and incremental changes
have been made ever since. All the programs are written
in Visual Basic; DB2 (a relational DBMS) is used for data
storage and management. There are approximately
50,000 lines of Visual Basic code.

The billing system was rewritten from the ground up
in the mid-1990s and has been slightly modified since
that time. The system runs on a cluster of servers that
use the UNIX operating system. The latest version of

(continued on page 478)

CHAPTER 14 ■ Current Trends in System Development 477

www.agilealliance.org
www.agilemodeling.com
www.w3.org

Oracle (a relational DBMS) is used for data storage and
management. Most of the programs are written in C++,
although some are written in C and others use Oracle
Forms. There are approximately 80,000 lines of C and C++
code.

MPS has a network that is used primarily to support
terminal-to-host communications, Internet access, and
printer and file sharing for personal computers. The billing sys-
tem relies on the network for communication among servers
in the cluster. The servers that support the accounting and
purchasing systems are connected to the network, although
that connection is primarily used to back up data files and soft-
ware to a remote location.

MPS is currently in the early stages of planning the sys-
tem upgrades. It hasn’t yet committed to specific technolo-
gies or development approaches. It also hasn’t yet decided
whether to upgrade individual systems or replace them
entirely. The target date for completing all system modifica-
tions is three years from now, but the company is actively
seeking ways to shorten that schedule.

1. What would you recommend as an approach to
upgrading the three listed applications—a single total
project or three individual projects? Explain your
decision.

2. Describe the pros and cons of the UP approach ver-
sus XP and Scrum development approaches to
upgrading the existing systems or developing new
ones. Do the pros and cons change if the systems
are replaced instead of upgraded? Do the pros and
cons vary by system? If so, should different devel-
opment approaches be used for each system?

3. Assume that MPS has had very little experience with
developing projects by using adaptive techniques. Do
you think it would be viable for them to attempt an
adaptive approach for these three systems? What
would be your recommendation for each? Which
method would you recommend and why?

4. Assuming MPS decided to use one of the three
methodologies discussed in the chapter, make a list of
potential problems and the steps they should take to
avoid those problems. List any activities they should
consider to ensure success.

5. Assuming that MPS decided to develop and deploy
each system individually, what would you recommend
for a development approach? Would you recommend
any SAAS solutions? Would you recommend using MS
Visual Studio and IIS or a Unix environment by using
some open-source applications? Explain your decision.

RUNNING CASE STUDIES

Community Board of Realtors

The Community Board of Realtors Multiple Listing
Service is a small system with limited requirements.
In Chapter 9, you identified a complete list of use
cases and divided the system into two subsystems.
Using the results from your earlier work, please do
the following:

1. Based on Figure 14-6—the XP methodology—
divide your use cases into releases and iterations
within each release. Develop a project iteration
plan that includes the necessary activities at each
level (system, release, iteration) for integration
testing and acceptance testing. Compare your

answer to this question to the project iteration
plan you developed for Chapter 9.

2. Discuss the requirements of this system for mobil-
ity devices. What use cases would be best utilized
on a mobile device? What use cases would be best
with a desktop user interface?

3. Would this application be suited as an SAAS
application? What would be critical factors for a
company to consider if it wanted to offer an SAAS
version of this application?

4. Can you identify any use cases that would best be
implemented as a mashupWeb application? Discuss
which ones might fit this requirement and why?

The Spring Breaks ‘R’ Us Travel Service

Recall from Chapter 2 that SBRU’s initial system
included four major subsystems: resort relations, student
booking, accounting and finance, and social networking.

In Chapter 9, you developed a comprehensive list of use
cases for each of the four subsystems. You also devel-
oped a project plan by using the adaptive SDLC and

(continued on page 479)

(continued from page 477)

478 PART 5 ■ Advanced Design and Deployment Concepts

other principles that you learned in this textbook. For
this chapter, you will develop a project plan by using
XP. The approach for ordering the use cases will be
based on user interface issues.

1. For each subsystem, build a table with the
following columns:
a. Use case name—as defined in Chapter 9
b. Primary use device—whether this use case will

be used primarily on a mobile device or a desk-
top device or equally prevalent on each

c. Development platform—whether this use case
best fits as a desktop app, a free-standing
Internet app, or a browser-based app

d. RIA—whether this use case should be an RIA
(for browser-based applications)

2. Based on your table from question 1, organize the
use cases by using two criteria:
a. The logical ordering based on functional simi-

larity (i.e., as you did in Chapter 9)
b. Group them together as much as possible based

on primary use device, development platform,
and RIA characteristics. In other words, you are
trying to help the team so everyone is building
similar types of use cases together.

3. Assuming two separate XP programmer teams,
build a project iteration plan as you did in
Chapter 9.

On the Spot Courier Services

As you read this chapter, you probably noted that the
development methodology used in this textbook has
many things in common with the Unified Process,
Scrum, and Extreme Programming. In fact, our objec-
tive in this textbook is to teach you the principles com-
mon to all these methodologies without forcing you to
accept only one.

Given these four methodologies—Satzinger-
Jackson-Bird (SJB), UP, Scrum, XP—and what you
now know about Agile and iterative development, do
the following for the development of the On the Spot
system:

1. Choose a single methodology. Why did you
choose that one?

2. Mix and match practices from each methodology.
Discusswhich ideas you like from eachmethodology.

Given the trends in new technology, software
availability, and the Web as an application platform,
answer these questions:

1. What kind of equipment would be best and most
stable for the truck drivers to use?

2. What would you recommend as the development
approach and platform: a custom application
using Visual Studio and .NET, a custom applica-
tion using Java or similar language, a Web appli-
cation using ASP.NET, a Web application using
PHP and JavaScript, or some other combination.
Discuss your recommendation.

Sandia Medical Devices

Based on the discussion of hardware, Internet, and
software technology trends in this chapter, it should
be clear to you that the Real-Time Glucose
Monitoring (RTGM) system is an interesting combina-
tion of older and newer technology. Except for the
interface to software and data on mobile phones,
the server-side portions of the system are a relatively
traditional business-oriented application that can be
implemented by using old-fashioned technology.
What makes the RTGM system “new” are its client-
side functions, including the automated collection of
glucose levels, the regular transmission of that data to
servers, the integration of communication between
patients and health-care providers, and the integration

of those functions within software installed on a
portable device that can be carried in a user’s pocket.

With that in mind, answer the following questions.
You may need to do some additional research to fully
address them.

1. The chapter classified apps on portable devices as
device-top, free-standing Internet, and browser-
based. Which type is most appropriate for the
client-side portions of the RTGM system? Be sure
to consider such issues as client-server communi-
cation requirements and frequency, user interface
quality, and portability across devices and
operation systems.

(continued on page 480)

(continued from page 478)

CHAPTER 14 ■ Current Trends in System Development 479

2. Which (if any) social networking capabilities might
make a useful addition to the RTGM system? Be
sure to consider the HIPAA requirements described
for this case at the end of Chapter 6.

3. When recorded glucose levels generate high-
priority alerts, physicians or other health-care
providers initiate direct contact with the patient.
An ordinary phone call over the cellular phone
network is one way to support direct contact.
Because any client-side device used with the
RTGM system must be fully Internet-capable,
an Internet telephony application, such as
Skype, is another possible way of supporting
synchronous voice or video communication
with the patient. Should Skype or a similar
Internet telephony application be used with the
RTGM system? Why or why not? If such an
application is used, should it support video? Why
or why not?

Data mining is an increasingly important tech-
nique for medical research. The ability to scan
medical records of large numbers of patients over
extended time periods enables researchers to better
evaluate the effectiveness of drugs and therapies,
more accurately connect disease risk levels to spe-
cific patient characteristics, and identify patterns of
transmission or occurrence, progression, and treat-
ment response for rare diseases and conditions.
What types of medical research might be enabled or
better supported by the data collected by the
RTGM system? Would your answer change if the
database were extended to include additional
information that might be gathered from the
patient’s mobile phone (e.g., location information
when each glucose level was captured, size and
content of the patient’s contact list, call history, and
the volume of text messages and Internet browsing
activity)?

Further Resources

Agile Alliance, www.agilealliance.org.

Scott W. Ambler, Agile Modeling: Effective

Practices for eXtreme Programming and the

Unified Process. John Wiley and Sons, 2002.

Scott Ambler, John Nalbone, and Michael J. Vizdos,
The Enterprise Unified Process: Extending the

Rational Unified Process, Prentice Hall, 2005.

Ken Auer and Roy Miller, Extreme Programming

Applied: Playing to Win. Addison-Wesley, 2002.

Kent Beck, Extreme Programming Explained:

Embrace Change. Addison-Wesley, 1999.

Mike Cohn, Succeeding with Agile: Software
Development Using Scrum, Addison-Wesley,
2010.

Philippe Kruchten, The Rational Unified

Process: An Introduction. Addison-Wesley,
2004.

Craig Larman, Agile and Iterative Development:

A Manager’s Guide. Addison-Wesley, 2004.

“Manifesto for Agile Software Development,” Agile
Alliance, www.agilemanifesto.org.

Pete McBreen, Questioning Extreme Programming.
Addison-Wesley, 2003.

Andrew Pham and Phuong-Van Pham, Scrum in

Action, Course Technology, 2011.

Ken Schwaber and Mike Beedle, Agile
Software Development with Scrum. Prentice
Hall, 2002.

(continued from page 479)

480 PART 5 ■ Advanced Design and Deployment Concepts

www.agilealliance.org
www.agilemanifesto.org

INDEX

1NF (first normal form), 383–384
2NF (second normal form), 385–386
3G networks, 206–207
3NF (third normal form), 386
4G networks, 207, 459

abstract classes, 106, 311
acceptance tests, 24, 417, 454
access controls, 394, 397–399
action-expressions, 135
activation lifelines, 335
activity diagrams

defined, 57–58
documenting workflows using, 57–60
for Fill Shopping Cart, 340
relationship with other models, 142–143, 297
for RMO Supplier Information Subsystem, 17
for RMO Supplier Information System, 18
for use cases, 125–126, 340

actors, defined, 72, 121
adapter pattern, 356–358
adaptive approaches to the SDLC, 228,

229–232. See also Agile development;
project management

Adobe Flash, 474
affordance, 193–194
aggregation, 106–107
Agile development

defined, 6, 244
iterative, 8–9, 25
modeling principles, 245–247
philosophy and values, 244–245
Scrum, 454–456
UP, 446–450
XP, 450–454

Agile project management (APM), 259–262. See
also project management

Ajax Corporation, 226
Ajax libraries, 472–473
alpha versions, 432
alt frames, 129, 130
AM (agile modeling), 245–247
analysis. See systems analysis
APIs (application program interfaces)

defined, 300
Web-based, trends in, 467–471

APM (Agile project management), 259–262. See
also project management

application architecture and software
defined, 37
design key question, 162
design overview, 163–164
trends in software availability, 461–465

application program interfaces. See APIs
approval, quantifying factors for, 265–269
apps, defined, 4
architectural design. See also package diagrams

component diagrams, 300–303
defined, 158
for enterprise-level systems, 298–300
object-oriented, 298–303
for single-user systems, 298
of two-layer Internet systems, 301–303

architectures
distributed databases, 387–391
of RMO Supplier Information Subsystem,

22–23
of RMO Tradeshow System, 21
RMO’s current technology architecture,

179–180
artifacts, defined, 331
assistive technologies, 207
association classes, 102–104
associations. See also relationships

among things in problem domain,
96–98

representing in database, 379–381
assumptions for first-cut sequence

diagrams, 344
asymmetric key encryption, 400, 401
attributes

class-level, 311
in databases, 375
elaboration of, 312
of things in problem domain, 95–96

authentication, 397
authorization, 398
automated input devices, 210–211
automation boundary, 81
availability, 176
Aviation Electronics, 188

back-end computing, 459–461
backlog, product, 455
backup, database, 395
bar graph sample, 218
benefits, anticipated, 263, 267–269
beta versions, 432, 433
binary associations, defined, 98
Blue Sky Mutual Funds, 254
bottom-up development, 425–427
boundary classes, 309
brainstorming technique, 93–94
break-even point, 268
brief use case descriptions, 78, 121–122
browser-based systems. See also Internet systems

add-ons and APIs, 467–469
affordance and visibility in, 193–194
evolution of, 465–467
internal network, 169
mashup applications, 469–471
pros and cons of, 21, 169
remote access via, 178
user interface guidelines, 204–207

build and smoke testing, 416
business benefits, 263, 267–269
business logic layer. See domain layer
business processes

elementary, 70–71
observing and documenting, 56
questions related to, 50

camelback or camelcase notation, 101
cardinality, defined, 97
cascading style sheets (CSS), 204
CDNs (content delivery networks), 174,

460–461
cell phones. See handheld devices
ceremony, project management and,

257–258
certificates, 400–402
certifiying authorities, 401
CGI, 303
change and version control, 431–434
chaordic, defined, 244
CHAOS report, 255–256
check boxes, 203
class diagrams. See also DCDs; domain model

class diagrams
defined, 15, 101
in object-oriented approach, 242, 243
for RMO Tradeshow System, 15–16

classes. See also DCDs; use case realization
abstract and concrete, 106, 311
on CRC cards, 314–317
creating tables for, 377
defined, 101
design overview, 308
notation for, 310–311
types of, in UML, 309

classification hierarchies, representing, 381–382
class-level attributes, 311
class-level methods, 212, 310
clients (customers). See also stakeholders

in Agile projects, 244–245
defined, 257
reviewing withand obtaining approval from,

271
in Scrum, 455
in XP, 452

clients (software/hardware)
defined, 47, 168
for Internet deployment, 177
for remote, distributed environments,

178–179
trends in, 457–459

client-server achitecture. See also three-layer
client-server architecture

defined, 168
design, 299–300

closed-ended questions, 50

481

cloud computing, 176
cloud-based database server architecture,

388, 390
code ownership in XP, 452
coding standards adoption in XP, 453
cohesion, 238, 318–319
collaboration on CRC cards, 314–317
colocation, 175, 176
colors, 202
combo boxes, 203
committees, oversight, 257, 258
communication diagrams, 332, 349–350
communications

establishing environment for, 272–275
on Internet, 459
management of, 259
in XP, 451

completeness controls, 394
complex data types, 386
complex update controls, 394–395
component diagrams, 297, 300–304
composite states, 135–137
composition, defined, 107
compound attributes, defined, 96
computer applications, defined, 4
concrete classes, 106, 311
concurrency in state machine diagrams, 135–137
consistency, 194, 201–202, 204–205
Consolidated Concepts, 226
construction phase, 446, 447
content delivery networks (CDNs), 174,

460–461
continuous integration, 452
contracts for Agile projects, 245
control break, 214
control classes, 309
controller pattern, 330–331, 356
controls, integrity, 392–396
controls, security. See security and system

controls
corrective actions, taking, 281–282
cost/benefit analysis, 267–268
costs

estimated, 266–267
intangible, 269
management of, 259, 261

coupling, 238, 317–318
CRC cards, detailed design with, 314–317
critical path, 279–280
CRUD technique, 77–78
CSS (cascading style sheets), 204
customers. See clients (customers)

dashboard, project, 272–273
data access classes, 309
data access layer

client/server vs. Internet systems, 299–300
designing, 345–347
linking to domain layer, 345–346, 387, 388
relationship with other layers, 170
responsibilities of, 356

data centers, 173–174, 175–176, 460
data encryption, 399–400
data entities, defined, 92, 98
data entry controls, 202–203
data flow diagrams, 239, 240
data layer. See data access layer
data types, 386–387
data validation controls, 394
database synchronization, 389
databases and design. See also relational

databases
data access classes, 387, 388
definitions and overview, 19, 166–167, 373
distributed architectures, 387–391

Downslope Ski Company, 372
integrity controls, 392–396
key question for, 162
reloading, 418–419
reusing existing, 417–418
for RMO CSMS, 436
RMO distributed architecture, 390–391
for RMO Supplier Information

Subsystem, 20
security controls, 396–402
timing and risks, 391–392

DBMS (database management system),
373–374. See also databases and design

DCDs (design class diagrams)
class notation, 310–311
defined, 21, 305
for Fill Shopping Cart, 341
first-cut, 311–314
identifying data content from, 211
input requirement model for, 297
for RMO CSMS, 164
for RMO Customer Account Subsystem, 337
for RMO Supplier Information Subsystem,

21–22
symbols in, 309
updating, based on sequence diagrams,

351–353
decryption, 399
dependency relationships, 354
deployment

data conversion and initialization, 417–419
direct, 429
internal, 168–171
Internet. See Internet systems
parallel, 429–430
phased, 430–431
planning, 428–431
production environment configuration,

422–423
for RMO CSMS, 437
Tri-State Heating Oil, 410
user training, 419–422

deployment diagrams, 297
design. See systems design
design class diagrams. See DCDs
design constraints, defined, 43
design patterns. See also multilayer design

adapter, 356–358
controller, 330–331, 356
overview, 330, 356
singleton, 358–360

desktop metaphor, 191–192
desktop systems, 168–169
destination states, defined, 134
detailed design, defined, 158. See also object-

oriented detailed design
detailed reports, 213
detailed sequence diagrams. See also DCDs

for Create customer account, 333–334,
336–339

for Create new order, 413
defined, 332
for Fill Shopping Cart, 339–343,

346, 348
guidelines and assumptions for first-cut, 344
in object-oriented approach, 242, 243, 297,

304–305
detailed work schedule, 277–279
devices, handheld. See handheld devices
device-top applications, 458
DFDs (data flow diagrams), 239, 240
diagrams. See specific diagrams
dialog metaphor, 191–193
dialogs

developing, 41–42

documenting, 199–200
indicating closure using, 195
structuring to permit action reversal, 196
use cases and, 196–197, 198

digital certificates, 400–402
digital signatures, 400–402
direct deployment, 429
direct manipulation metaphor, 191–192
disabilities, users with, 206–207
disciplines in UP, 447–450
distributed database architectures, 387–391
distributed environments, 177–179
document metaphor, 191–192
documentation

classifications, 420–422
establishing environment for, 272–275
for RMO CSMS, 437

domain classes, defined, 101
domain layer

client/server vs. Internet systems, 299–300
linking to data layer, 345–346, 387, 388
relationship with other layers, 170–171
responsibilities of, 356

domain model class diagrams
definitions, 101
design model based on, 297
generalization/specialization relationships,

104–106
notation, 102–104
relationship with other models, 142–143
for RMO CSMS, 107–111, 336
whole-part relationships, 106–107

domain modeling. See also domain model class
diagrams; problem domain

ERDs, 98–101
Waiters on Call, 92

Downslope Ski Company, 372
drill down, 216
drivers (for unit testing), 413–414

EBPs (elementary business processes), 70–71
EDI (electronic data interchange), 208–210
elaboration phase, 446, 447
electronic data interchange (EDI), 208–210
electronic reports, 215–217
Electronics Unlimited, 120
elementary business processes (EBPs), 70–71
encryption, 399–400
end users, training of, 419–422
enterprise-level systems, architectural design for,

298–300
entity classes, 309
entity-relationship diagrams, 98–101, 240
environment

design key question, 162
design overview, 163, 167–168
establishing, 272–276
external, 171–177
internal, 168–171
remote, distributed, 177–179
RMO’s current technology architecture,

179–180
work, 275–276

ERDs (entity-relationship diagrams), 98–101, 240
errors

automating inputs to reduce, 210–211
reporting, 433–434
user interface guidelines, 195–196

estimated cost, 266–267
estimated time for project completion, 265–266
event decomposition technique

event types, 72–74
identifying events, 74–76
overview, 70–72
using, 76

482 INDEX

exception reports, 213
executive reports, 213
executive stakeholders, 47
eXtensible Markup Language, 166, 209–210
external deployment. See Internet systems
external events, 72–73
external outputs, 213–215
external stakeholders, 46, 47
Extreme Programming (XP), 450–454

Facebook apps, 469
factory pattern, 358, 359
feasibility analysis, 269–271
feedback, 195, 451
field combination controls, 394
first normal form (1NF), 383–384
Flash, Adobe, 474
following up interviews, 52–53
fonts, 202
foreign keys

normalization and, 383–386
overview, 375–376
representing associations using,

379–381
forms, guidelines for designing, 201–203
fraud and integrity controls, 396
free-standing Internet applications, 458
functional dependency, 384–385
functional requirements, 42. See also

use cases
functional testing, defined, 24
FURPS and FURPSþ, 43–44

gadgets, 467, 468
Gang of Four (GoF), 330. See also design

patterns
Gantt charts, 279–280
generalization relationships, 104–106
GoF (Gang of Four), 330. See also design

patterns
Google gadgets, 468
graphical models, defined, 46
graphical presentation, 217–218
guard-conditions, defined, 135

handheld devices
trends in, 457–459
user interface guidelines, 207–208

HCI (human-computer interaction), 191–194
headings, 202
help desk, 233
high cohesion, 238
high-level systems design

defined, 19
for RMO Supplier Information Subsystem,

20–23
hosting

defined, 174
options for Internet deployment, 174–176
trends in, 460

hours of work in XP, 453
HTML (Hypertext Markup Language), 169
HTML5, 474–475
HTTPS (Secure HTTP), 173, 402
human resource management, 259
human-computer interaction (HCI), 191–194
Hypertext Markup Language (HTML), 169
Hypertext Transfer Protocol, Secure (HTTPS),

173, 402

ICEFaces, 473
identifiers, defined, 96
IDEs (integrated development environments),

235
immediate cutover, 429

implementation requirements, defined, 44
inception phase, 446, 447
<<includes>> relationships, 82–83, 84
incremental development, 232
indirection, 319
information gathering

brainstorming technique, 93–94
collecting active user comments and

suggestions, 57
interviewing users and stakeholders, 49–54
observing and documenting business

processes, 56
overview, 40–41
questionnaires, 54–55
researching vendor solutions, 56–57
reviewing inputs, outputs, procedures, 55–56

information system development projects,
defined, 227

information systems, defined, 4. See also RMO
CSMS

information systems development processes,
defined, 6. See also Agile development

inheritance, 104–105
input, process, output (IPO) development order,

424–425
input controls, 393–394
inputs. See also system interfaces; user interfaces

designing, 210–211
reviewing, 55–56
in SSDs, 126
for systems design, 159–160

instantiation, 296
intangible benefits, 269
intangible costs, 269
integrated development environments

(IDEs), 235
integration testing, 414–416
integrity controls, 392–396
interaction diagrams. See also detailed sequence

diagrams; SSDs
communication diagrams, 332, 349–350
defined, 126
input requirement models for, 297

interface requirements, defined, 44
interfaces, overview, 188–189. See also system

interfaces; user interfaces
internal deployment, 168–171
internal outputs, 213–215
internal stakeholders, 46, 47
Internet systems. See also browser-based systems

architectural design, 299–300, 301–303
configuration, 171–174
diversity of client devices, 177
hosting options, 174–176
trends in, 459–461

interviewing users and stakeholders, 49–54
invented keys, 377–378
IP Security (IPSec), 402
iPhone sample applications, 458
IPO (input, process, output) development order,

424–425
IPSec (IP Security), 402
issues, tracking, 282
iterative development. See also Agile develop-

ment; project management
in adaptive SDLC, 229–232
overview, 8–9, 25
revised plan for RMO CSMS, 435
user-centered design and, 190–191

JavaFX, 473–474
Javascript, 472–473

keys, defined, 96, 375–376. See also foreign
keys; primary keys

labels, 202
LANs (local area network), 168
last mile, 459
lifelines, 127, 335
list boxes, 202, 203
load balancers, 173–174
local area networks (LANs), 168
logging transactions, 394
loop frames, defined, 129
loose coupling, 238

maintenance releases, 432
managed services, 175, 176
management. See project management
many-to-many associations, 380–381
mashup applications, 469–471
mathematical models, defined, 46
memory, reducing user’s short-term load, 196
menus, use cases and, 196–199
metaphors, 191–193, 453
method signatures, 310
methodologies, Agile. See under Agile

development
methods

class-level, 310
deriving from sequence diagrams, 334–335
top-down development and, 425–426

Microsoft Project, 279–280
Microsoft Silverlight, 474
mobile devices. See handheld devices
models and modeling. See also domain model-

ing; object-oriented requirements models
agile, 245–247
analysis vs. design, 160, 161
benefits of, 45
defined, 44
methodologies and, 233–236
object-oriented approach to, 241–244,

296–298
structured approach to, 236–241
types overview, 45–46

Mountain Vista Motorcycles, 36
multifactor authentication, 397
multilayer design

data access layer, 345–347
domain layer. See use case realization
implementation issues for, 355
overview, 329, 345
responsibilities of each layer, 355–356
top-down development of, 426
view layer, 347–349

multimedia presentation, 217–218
multiplicity

defined, 97
UML notation for, 102

multiplicity constraints, defined, 97

n-ary associations, defined, 98
navigation controls, 203
navigation visibility, 312–313, 343
net present value (NPV), 267–268
network diagrams, 156–158
network-based systems

architectural design for, 299–300
internal, 168–169

New Capital Bank, 294, 328
nonfunctional requirements, defined, 43
normalization, database, 383–386
Norman, Donald, 193
noun technique, 94–95
NPV (net present value), 267–268

object classes for RMO Tradeshow System,
15–16

object lifelines, 127

INDEX 483

object responsibility, 319–320
object-oriented approach, 241–244. See also

OOD/OOP
object-oriented detailed design. See also use case

realization
with CRC cards, 314–317
fundamental principles, 317–320
of multilayer systems, 329–332
overview, 304–305
process, 305–308

object-oriented requirements models. See also
SSDs; state machine diagrams

activity diagrams for use cases, 125–126
Electronics Unlimited, 120
integrating, 142–143
overview, 120–121
use case descriptions, 121–124

objects, defined, 241
on-demand software, 461–462
one-to-many associations, 380
OOD/OOP (object-oriented design/

programming)
architectural design, 298–303
definitions, 241
detailed design. See object-oriented

detailed design
models and processes, 296–298
New Capital Bank, 294, 328
overview, 295–296

open items, tracking, 53
open Web-based APIs, 469–471
open-ended questions, 50
open-source software (OSS), 462–465
operational stakeholders, 47
opt frames, 129, 130
order of development, 424–427, 436–437
organizational risks and feasibility,

269–270
origin states, defined, 134
OSS (open-source software), 462–465
output controls, 395
outputs. See also reports; system interfaces; user

interfaces
designing, 211–218
internal vs. external, 213–215
reviewing, 55–56
in SSDs, 126
for systems design, 159–160

outstanding items, tracking, 53
oversight committees, 257, 258
ownership of code in XP, 452

package diagrams
input model for, 297
for RMO, 425, 426
structuring major components with,

353–355
pair programming, 452
parallel deployment, 429–430
partitioned database server architecture,

388–390
paths, defined, 135
patterns, defined, 329. See also design patterns
payback period, 268
peer-to-peer connections, 178
perfect memory assumption, 344
perfect solution assumption, 344
perfect technology assumption, 76, 344
performance and throughput

handheld devices and, 207–208
in Internet systems, 172–174, 205–206
requirements, defined, 43
testing, 416

persistent classes, 309, 345
phased deployment, 430–431

phases
project, 228–229
UP, 446–450

phones. See handheld devices
physical data store, 373
physical requirements, defined, 44
pictures on Web pages, 206
pie chart sample, 218
Pinnacle Manufacturing, 226
planning. See project management
planning in XP, 451
plug-ins, 467, 468
PMBOK (Project Management Body of

Knowledge), 258–259
ports in component diagrams, 300–301
postconditions, 122–124
preconditions, 122–124
predictive approaches to the SDLC, 227–228,

228–229, 230. See also project
management

primary keys
choosing, 377–379
normalization and, 383–386
overview, 375–376

primitive data types, 386
printers and output controls, 395
prioritizing requirements, 41
privileged users, 398, 399
problem domain

associations among things in, 96–98
attributes of things in, 95–96
brainstorming technique, 93–94
defined, 92
noun technique, 94–95

problem identification, 262–265
procedures, reviewing, 55–56
processes, business. See business processes
procurement management, 259
product backlog, 455
product owner, 455
production environment configuration, 422–423
production releases, 432, 433
production system, 434
production versions, 432, 433
programming for RMO Supplier Information

Subsystem, 23–24
progress monitoring, 281–282
project dashboard, 272–273
project iteration schedule, 277
project management. See also SDLC

agile, 259–262
Blue Sky Mutual Funds, 254
body of knowledge for, 258–259
ceremony and, 257–258
change and version control, 431–434
defined, 256
deployment planning, 428–431
determining project risk and feasibility,

269–271
development order, 424–427
establishing environment, 272–276
evaluating work processes, 281
identifying problem, 262–265
monitoring progress and making

corrections, 281–282
need for, 255–256
overview, 255
putting it all together, for RMO, 434–437
quantifying approval factors, 265–269
reviewing with client and obtaining approval,

271
role of manager, 256–257
scheduling work, 276–280
source code control, 427–428
staffing and allocating resources, 280–281

projects. See also project management; RMO
entries; Systems Development Life Cycle

defined, 5, 227
phases, 228–229
reasons for initiating, 262–263
stakeholders in, 258

protection from variations, 319
pseudostates, defined, 134
public key encryption, 400

quality management, 259, 261–262
questionnaires, 54–55
questions, interview, 50–51

RAD (rapid application development), 258
radio buttons, 203
rapid application development, 258
RDBMS, 374. See also relational databases
recording information, environment for,

272–275
recovery procedures, 395
recursive associations, defined, 98
redundancy, 395
refactoring, 452
referential integrity, enforcing, 382–383
registered users, 398
relational databases

associations, 379–381
classification hierarchies, 381–382
data types, 386–387
definitions and overview, 374–376
design overview, 376–377
normalization, 383–386
primary keys, 377–379
referential integrity, 382–383
schema quality, 383
table creation, 377

relationships. See also associations
defined, 97
generalization/specialization, 104–106
whole-part, 106–107

release versions, 432, 433
releases in XP, 453, 454
reliability requirements, defined, 43
remote, distributed environments, 177–179
remote wipe, 400
replicated database server architecture,

387–389
reports

electronic, 215–217
graphical and multimedia presentation,

217–218
output controls, 395
types of, 212

requirements. See object-oriented requirements
models; system requirements

resource allocation, 280–281
resource risks and feasibility, 270
response time, 416
responsibilities

on CRC cards, 314–317
object, 319–320
separation of, 345

retrospectives, 281
reversal of actions, 196
RIAs (Rich Internet Applications), 466, 471–475
Ridgeline Mountain Outfitters. See RMO entries
risk

analysis, 269–271
management, 259, 261

RMO CSMS (Consolidated Sales and Marketing
System). See also other RMO entries

annual operating costs for, 266–267
anticipated benefits from, 267–268
associations among things in, 97

484 INDEX

database architecture and plan for, 390–391,
436

deployment plan for, 436
development order for, 436–437
documentation and training, 437
domain model class diagram for, 107–111,

378
estimated costs for developing, 266
existing system and architecture, 37–38,

179–180
information repositories for, 274–275
iteration plan, revised, 435
menu design based on use cases, 198–199
order fulfillment activity diagram for, 59
overview, 39
package diagram for, 425
problem domain for, 93
putting it all together, 434–437
samples

associations, 97
CRC card, 315
database table definition, 167
design class diagram, 164
external events, 76
iteration schedule, 280
mail-order form, 55
open-items list, 53
product detail form, 203
questionnaire, 54
reports, 214, 215, 217
sales types, 104, 105
system interface, 166
things in problem domain, 93, 94–95
time estimate document, 265–266
use case diagrams, 81–84
use cases, 77, 78–80
user goals, 69–70
web pages, 202, 204–205, 206, 207

stakeholders for, 48, 49
state machine diagrams for, 138–142
“upgrade or replace” decision, 434–436

RMO Customer Account Subsystem
domain model class diagram for, 108–110,

336
package diagram for, 425

RMO Order-entry Subsystem, package diagram
for, 426

RMO Product Information Subsystem
class diagrams for, 15–16
use cases for, 14–15

RMO Sales Subsystem
domain model class diagram for, 108,

109, 312
package diagram for, 425
samples

CRC cards, 316
design class diagrams, 314, 317
project iteration schedule, 277
work breakdown structure, 278–279

RMO Supplier Information Subsystem
architecture, 22–23
class diagrams for, 15–16
database design, 20
fact finding and user involvement, 14
high-level systems design, 20–23
object classes for, 15–16
planning first iteration, 12–14
programming, 23–24
screen layout, 17–19
testing, 24–25
use cases for, 14–15, 16–17
workflow diagrams development, 17, 18

RMO Tradeshow System. See also other RMO
entries

architecture, 21
introduction, 6–8
managing project, 23

planning overall project and iterations, 11–12
pre-project activities, 9–11
subsystems of, 11
System Vision Document, 10

rows, database, defined, 374

SAAS (software as a service), 461–462
SCCS (source code control system), 427–428
scenarios, defined, 121
schedule risks and feasibility, 270
schema, database, 373
scope, 259, 260–261, 263
Scrum, 454–456
SDLC (Systems Development Life Cycle). See

also Agile development; OOD/OOP;
structured approach

adaptive approaches, 228, 229–232
change implementation, 434
core processes, 6. See also iterative

development
methodologies, models, tool, techniques,

233–236
overview, 5–6, 227
predictive approaches, 227–228, 228–229,

230
sample cases, 226. See also RMO Tradeshow

System
support phase, 232–233

second normal form (2NF), 385–386
Secure HTTP (HTTPS), 402
Secure Sockets Layer (SSL), 402
security and system controls

for databases, 396–402
design key question, 162
design overview, 167
events involving, 75–76
in Internet systems, 172–173, 175
in SAAS applications, 462
in VPNs, 177–178

security requirements, defined, 43
semantic nets, 99–100
separation of responsibilities, 345
sequence diagrams. See detailed sequence dia-

grams; SSDs
server computers, defined, 168
server farms, 173–174, 460
Service Level Agreement (SLA), 176
shortcuts, 194
Silverlight, 474
single database server architecture, 387–389
singleton pattern, 358–360
single-user systems, architectural design

for, 298
SLA (Service Level Agreement), 176
smartphones. See handheld devices
sockets, in component diagrams, 300–301
software as a service (SAAS), 461–462
software availability, trends in, 461–465
software construction. See also application

architecture and software
object-oriented approach to, 241–244
structured approach to, 236–241

sounds on Web pages, 206
source code control, 427–428
specialization relationships, 104–106
spiral model, 230
sprints, 456
SSDs (system sequence diagrams)

defined, 126
design model based on, 297, 332–333
developing, 129–132
for Fill Shopping Cart, 340
identifying inputs and outputs from, 211–212
notation, 127–129
relationship with other models, 142–143

SSL (Secure Sockets Layer), 402
staffing, 280–281

stakeholders. See also clients (customers); infor-
mation gathering; users

categories of, 46–47
defined, 46
internal and external, 258
in open-source projects, 465
for RMO CSMS, 48, 49
in Web add-on and API projects, 469

stand-alone software systems, 168
Standish Group, CHAOS report, 255–256
state events, 73–74
state machine diagrams

composite states and concurrency, 135–137
definitions, 132–135
developing, 137–138
in OOD, 297
relationship with other models, 142–143
for RMO, 138–142

state management, 299
status, collecting and reporting, 281–282
steering committees, 257, 258
stereotypes, 301, 309
storyboarding, 200, 201
stress testing, 416
structure charts, 238, 239
structured approach

combined with object-oriented approach,
243–244

main discussion, 236–241
stubs, 414
subclasses, defined, 104
subsystems, defined, 11
summary reports, 213
superclasses, defined, 104
support

activities, 232–233
staff, as stakeholders, 47

supportability requirements, defined, 44
swimlane headings, defined, 57–58
symmetric key encryption, 399–400
synchronization, database, 389
synchronization bars, defined, 57–58
system capabilities, defined, 263
system controls. See security and system controls
system documentation, 420, 421
system interfaces

defined, 189
design key question, 162
design overview, 165–166
designing inputs, 210–211
designing outputs, 211–218
identifying, 208–210

system metaphor, 453
system operators, training of, 419–422
system requirements. See also information gath-

ering; models and modeling; stakeholders
categories of, 42–44
defined, 42
defining (activity), 41
documenting workflows, 57–60
evaluating with users, 42
prioritizing, 41
sample cases

Mountain Vista Motorcycles, 36
Ridgeline Mountain Outfitters. See RMO

CSMS
system sequence diagrams. See SSDs
system testing, 416
System Vision Documents

components of, 262
for RMO CSMS, 263–265
for RMO Tradeshow System, 10

systems analysis. See also object-oriented
requirements models

activities overview, 40–42
defined, 5, 40
flow to systems design, 159, 160, 161

INDEX 485

systems analysis (continued)
importance of, 4–5
models in, 161
objectives vs. those of design, 160
transition to user-interface design, 196–200

systems analysts, defined, 5
systems controls, designing, 162
systems design

activities overview, 160–167
defined, 5, 155–156
flow from systems analysis, 159, 160, 161
importance of, 4–5
inputs and outputs for, 159–160
major components and levels of, 156–159
models in, 160, 161
objectives vs. those of analysis, 160

Systems Development Life Cycle. See SDLC
systems development methodologies, 233–234

tab order, 202
tables, database, defined, 374
tangible benefits, 268–269
TCP/IP (Transmission Control Protocol/Internet

Protocol), 169
teams in Agile projects, 280–281
technical staff as stakeholders, 47
techniques, methodologies and, 233–236
technological risks and feasibility, 270
technology architecture, 37
technology infrastructure, trends in, 457–461
telephone communications, 459
templates, defined, 329. See also design patterns
temporal events, 73
ternary associations, defined, 98
test versions, 432
testing

build and smoke, 416
definitions and overview, 411–412
integration, 414–416
order of development and, 427
overview, 24
performance, 416
for RMO Supplier Information System, 24–25
stress, 416
system, 416
Tri-State Heating Oil, 410
unit, 412–414
usability, 416
user acceptance, 24, 417
in XP, 451–452

text boxes, 202, 203
textual models, defined, 45
themes, 467, 469
things in problem domain, 95–98
third normal form (3NF), 386
three-layer client-server architecture

environment design, 169–171
implementation issues for, 355
responsibilities of each layer, 355–356
top-down development of, 426
use of in Internet deployments, 171

throughput. See performance and throughput
time

estimated, 265–266
management of, 259, 261

TLS (Transport Layer Security), 173, 402
toolbars, 469
tools, methodologies and, 233–236
top-down development, 425–427
top-down programming, 237–238
tracking logs, 282
traditional approach

predictive, 227–228, 228–229, 230
structured. See structured approach

training, 419–422, 437
transaction logging, 394

transition phase, 446, 447
transitions, defined, 134
Transmission Control Protocol/Internet Protocol

(TCP/IP), 169
Transport Layer Security (TLS), 173, 402
trends. See also Agile development; browser-

based systems
in application software availability, 461–465
in technology infrastructure, 457–461

Tri-State Heating Oil, 410
true/false conditions, defined, 129
turnaround documents, 213
two-layer architectural design, 301–303

UML. See also activity diagrams; class
diagrams; detailed sequence
diagrams; SSDs

component diagrams, 297, 300–304
defined, 46
stereotyping in, 301, 309

unary associations, defined, 98
unauthorized users, 398
undoing actions, 196
Unified Modeling Language. See UML
Unified Process (UP), 258, 446–450
unit testing, 412–414
unresolved issues, tracking, 53
UP (Unified Process), 258, 446–450
usability

requirements, 43
testing, 416
as user-centered design principle, 190

use case descriptions
design model based on, 297
main discussion, 121–124
relationship with other models, 142–143

use case diagrams
defined, 78
design model based on, 297
developing, 83
including other use cases in, 82–83, 84
relationship with other models, 142–143
for RMO CSMS, 81–84
for RMO Supplier Information Subsystem,

16–17
use case instances, defined, 121
use case realization. See also multilayer design

with communication diagrams, 349–350
design process for, 335–336
overview, 328–329
with sequence diagrams

for Create customer account, 336–339
for Fill Shopping Cart, 339–343

updating and packaging design classes,
351–355

use cases. See also DCDs; event decomposition
technique; use case diagrams; use case
realization

activity diagrams for, 125–126
controllers, 330–331
CRUD technique, 77–78
defined, 14, 69
descriptions, 121–124
order of development and, 427
for RMO CSMS, 77, 78–80
for RMO Tradeshow System, 14–15
user goal technique, 69–70
user-interface design and, 196–200
Waiters on Call, 68

user acceptance tests, 24, 417, 454
user documentation, 420–422
user goal technique, 69–70
user interfaces. See also dialogs

adding CRC cards for, 316
defined, 189
design key question, 162

handheld devices, 207–208
menus, 196–199
metaphors for human-computer

interaction, 191–193
order of development and, 427
overview, 165, 200
principles, 189–191
for RMO Supplier Information Subsystem,

17–19
transition from analysis to design of, 196–200
universal guidelines, 193–196
web browser, 204–207
windows and forms, 201–203

user stories, 454
user-centered design principles, 189–191
users. See also information gathering;

stakeholders
access control for, 398–399
defined, 257
evaluating requirements with, 42
gathering information from, 40–41
involvement of, 14
in Scrum, 456
training of, 419–422
in XP, 452

Valley Regional Hospital, 444
value limit controls, 393
variance, analyzing, 281–282
variations, protection from, 319
vendors, researching solutions from, 56–57
version control, 431–434
videos on Web pages, 206
view classes, 309
view layer

client/server vs. Internet systems, 299–300
designing, 347–349
in Internet systems, 171
relationship with other layers, 169–170
responsibilities of, 355

Virtual Private Networks (VPNs), 177–178
virtual servers, 175–176
visibility, 193–194, 310
visibility, navigation, 312–313, 343
visual modeling tools, 235
VPNs (Virtual Private Networks), 177–178

W3C (World Wide Web Consortium), 207
Waiters On Call, 68, 92
walking skeletons, 232
waterfall model, 228–229
WBS (work breakdown structure), 12, 278–279
Web 2.0, 466
Web mini-apps, 469
Web technologies. See browser-based

systems; Internet systems
whole-part relationships, 106–107
widgets, 467
windows, guidelines for designing,

201–203
WordPress application, 467, 468
work

environment, establishing, 275–276
processes, evaluating, 281
scheduling, 276–280

work breakdown structure (WBS), 12, 278–279
work hours in XP, 453
work sequence drafts, 13, 14
workflow diagrams, 17, 18
workflows, documenting, 57–60
World Wide Web Consortium

(W3C), 207
Wysotronics, Inc., 154

XML, 166, 209–210
XP (Extreme Programming), 450–454

486 INDEX

	Cover
	Title Page
	Copyright
	Contents
	Preface
	PART ONE: An Introduction to Systems Development
	1 From Beginning to End: An Overview of Systems Analysis and Design
	Software Development and Systems Analysis and Design
	Systems Development Life Cycle
	Introduction to Ridgeline Mountain Outfitters
	Iterative Development
	Developing RMO’s Tradeshow System
	Where You Are Headed—The Rest of This Book
	Chapter Summary
	Review Questions
	Chapter Case

	PART TWO: Systems Analysis Activities
	2 Investigating System Requirements
	Overview
	The RMO Consolidated Sales and Marketing System Project
	Systems Analysis Activities
	What Are Requirements?
	Models and Modeling
	Stakeholders
	Information-Gathering Techniques
	Documenting Workflows with Activity Diagrams
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Cases
	Further Resources

	3 Use Cases
	Overview
	Use Cases and User Goals
	Use Cases and Event Decomposition
	Use Cases and CRUD
	Use Cases in the Ridgeline Mountain Outfitters Case
	Use Case Diagrams
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Case Studies
	Further Resources

	4 Domain Modeling
	Overview
	“Things” in the Problem Domain
	The Entity-Relationship Diagram
	The Domain Model Class Diagram
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Case Studies
	Further Resources

	5 Extending the Requirements Models
	Overview
	Use Case Descriptions
	Activity Diagrams for Use Cases
	The System Sequence Diagram—Identifying Inputs and Outputs
	The State Machine Diagram—Identifying Object Behavior
	Integrating Requirements Models
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Case Studies
	Further Resources

	PART THREE: Essentials of Systems Design
	6 Essentials of Design and the Design Activities
	Overview
	The Elements of Design
	Inputs and Outputs for Systems Design
	Design Activities
	Design the Environment
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Case Studies
	Further Resources

	7 Designing the User and System Interfaces
	Overview
	User and System Interfaces
	Understanding the User Interface
	User-Interface Design Concepts
	The Transition from Analysis to User-Interface Design
	User-Interface Design
	Identifying System Interfaces
	Designing System Inputs
	Designing System Outputs
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Case Studies
	Further Resources

	PART FOUR: Projects and Project Management
	8 Approaches to System Development
	Overview
	The Systems Development Life Cycle
	The Support Phase
	Methodologies, Models, Tools, and Techniques
	Two Approaches to Software Construction and Modeling
	Agile Development
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Case Studies
	Further Resources

	9 Project Planning and Project Management
	Overview
	Principles of Project Management
	Activities of Core Process 1: Identify the Problem and Obtain Approval
	Activities of Core Process 2: Plan and Monitor the Project
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Cases
	Further Resources

	PART FIVE: Advanced Design and Deployment Concepts
	10 Object-Oriented Design: Principles
	Overview
	Object-Oriented Design: Bridging from Analysis to Implementation
	Object-Oriented Architectural Design
	Fundamental Principles of Object-Oriented Detailed Design
	Design Classes and the Design Class Diagram
	Detailed Design with CRC Cards
	Fundamental Detailed Design Principles
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Cases
	Further Resources

	11 Object-Oriented Design: Use Case Realizations
	Overview
	Detailed Design of Multilayer Systems
	Use Case Realization with Sequence Diagrams
	Designing with Communication Diagrams
	Updating and Packaging the Design Classes
	Design Patterns
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Case Studies
	Further Resources

	12 Databases, Controls, and Security
	Overview
	Databases and Database Management Systems
	Relational Databases
	Data Access Classes
	Distributed Database Architectures
	Database Design Timing and Risks
	Designing Integrity Controls
	Designing Security Controls
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Case Studies
	Further Resources

	13 Making the System Operational
	Overview
	Testing
	Deployment Activities
	Planning and Managing Implementation, Testing, and Deployment
	Putting It All Together—RMO Revisited
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Case Studies
	Further Resources

	14 Current Trends in System Development
	Overview
	Trends in System Development Methodologies
	Trends in Technology Infrastructure
	Trends in Application Software Availability
	The Web as an Application Platform
	Chapter Summary
	Review Questions
	Problems and Exercises
	Case Study
	Running Case Studies
	Further Resources

	Index

